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Commentationes Mathematicae Universitatis Carolinae

12,1 (1971)

THE LATTICE OF RADICAL FILTERS OF A COMMUTATIVE NOETHERIAN
RING
Ladislav BICAN, Praha

As it was shown by V. Dlab (2], there is a one-to-one
correspondence between all radical filters and some sets of
prime ideals of a commutative Noetherian ring (namely, the
set of all prime ideals contained in ¢ corresponds to any
radical filter € ). In this brief note, there is given a
new one-to-one correspondence between all radical filters end
some sets of prime ideals of @ commutative Noetherian ring

A and it is shown that the lattice &£ of all radical
filters of A is distributive. Further, some necessary
and sufficient conditions for A , under which the latti-
ce & is complementary, are given.

In what follows, /A stands for an associative commu-
tative Noetherian ring with unity. Recall that a (non-emp-
ty) family € of idemls of A is called a radical fil-
ter (commutativity is assumed!) if

1) le¢,IsJ=>Jc ¢ ,

(2) T'€J,)et and (I1:A)6 € for any AeJ=b
=>JT€¢ ,vwhere (I: A= f{c e, wdel}.

Let us denote by J the set of all prime ideals of
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A and by the set of all maximal ideals of A
We call a subset 2L of P a radical set, if any two ele-
ments of are incomparable (in the order of the inclu-~
sion). Let £ be any (non-empty) set of ideals of A .
The maximal elements of the set of all prime ideals which
are contained in some ideal from £ form a radical set
- the radical set belonging to & .

Lemma 1: Let 24 & P be a radical set. Then the
set %n~{1,1$N, YNe?, I ideal in A}
is the radical filter.

Proof: The property (1) is evident.

Proving (2) indirectly we shall show
(3) Ié‘&ns VI, Je ‘ﬁn , 1= J , there exists

AeJ with (I:2)¢ ‘6,)1 .

Let us suppose .I ¢ ‘t.n . Then there exists N € 27 with
I eN. For Je €y, wehave J = N % ¢ , hence we
can take A € J =~ N, Then (I: A)={w eA,ulel=Nje
€ (N:A). But (N:A) = N because N is a prime ideal
an@ A ¢ N which finishes the proof of (3).

Lemma 2: Let 7, , 77, be two radical sets. Then %’{, =

c ‘!.n if and only if to any Nz € ’)Zz there exists
2

_N’1 € 7141 with Nz s .N" , Consequently, ‘&12., = ‘e”z if and

only it N, = %, .

Proof: At first, suppose that the condition holds. Then
ls‘iuq-»;iﬂ, YNe, =>2T¢N, VN6, =>1¢ €,
Conversely, if there exists N € 7‘(«2 which is not con-
tained in any N’ ¢ 7 , then Ne ¢ < %, , For the

1 %, ",
proof of the last part let us note that if ¢, = ¢, ,
%2, z,

then to any Nz € nz there exists N1 € ?[4 and,
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t4 1 ]
further, N, & #, with N, s N s Nz . Buth, =N,
for %z being a radical set which implies 2, s 7 .
The inclusion ?‘L1 S 711 follows by symmetrical argu-

ments.
Theorem 1: Zhere is a one-to-one correspondence bet-

ween all radical filters and all radical sets of prime i-
deals of A .

Proof: In view of Lemmas 1 and 2 it suffices to prove

that to any radical filter % , there exists a radical set
7 such that % = ¢ . Let # be the set of all ma-
ximal elements of the set of all ideals which do not belong
to 2 ., It is easy to see that it suffices to show that 7
contains the prime ideals only. One can easily show that an
ideal ] is prime if and only if (I:A) = I for any '
Ae A =~ 1 . Let us take I € 2. arbitrarily, and let
us assume the existence of A € A = I with (I1: A) 2
2 I . By hypothesis (maximality of I ) it is (I:2)e
€ ¢ adJ={1,A} ¢ ¢ (J is the ideal genera<
tedin A by I and A ). Writing any element p € J
in the forn P = x A +B,x6 A, 361 , wehave
wp =xuA+uf el for any « € (L:A), hence
(I:A2)€(Is@) forany p€J . Then I € € by (1)
and (2), which contradicts our hypothesis. Theorem 1 is-
therefore proved.

It is easy to see that the intersection of any set of
radical filters is a radical filter so that the radical
filters form a (complete) lattice which we denote by & .

Theorem 2: LQt__ﬂ,' , ?Z" be two radical getn of prime
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ideals. Then %, A '!na - ‘Zn , where @ is the ra-

2]
dical set belonging to %, v ?, and ‘én1 v ‘an = ¢,
where 2 is the radical set belonging to the set

&'{N,‘f\Nz,N;‘”,‘, Nzc?t’.} .

Proof: The proof for intersection is direct and we
shall omit it. Proving the part for join, let us have Il €
€ %n" ,v= 1,2, Then I & N, for anyN, 67, , i = 1,2
and therefore I ¢ N for any N € 3l which denotes I €
6 ‘én and hence ‘8”1 v e”z € ¢, . Conversely, let
‘éu, be any radical filter containing ‘2’21 v an . Then
from 20?,‘-, € 4,,,%i=12 andLemma 2 it easily fol-
lows that to any N’ & 2’ there existN; ¢ %, i = 1,2
withN’SJ(' A .N2 . Hence N’ € N for some N € ¢ o-
wing to the definition of # ., Using Lemma 2 again, one
gets ‘5”' € ¢,, as was to be shown.

Theorem 3: The lattice & is distributive,

Proof:We shall prove the "cancellation form" of dist-
ributivity indirectly, namely &£ ¢, a A Lr = @ A C =
=yav &4+ ave . Let us suppose we have three radi-
cal filters ‘2% , 2’2’ , ‘3,:, satisfying 1'7'3 - ‘é'z3 and

(4) fn‘/\‘!ﬂzz‘ﬁn"/\‘%%-'-f” .
Let us put
ﬂ;-nnn., )
WA
n;’-{n‘n,,smcn;,NSMs ’
n;'-{Nsnz,:gMcﬂ.l-.NsM} )
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N =SNe# IMed, ; NsM3 .

One can easily see (by using Theorem 2 and (4)) that 2!

and #! are disjoint and A v ) = i=1,2,3.
kg L g

4 i
In view of %n + %, two cases can arise:
2 3
a) There exists Nz € n2 incomparable (in the in-
clusion) with any N, € 9?" ,

«

b) there exists N, ¢ &, , N, A

3
N § 5,
(we omit the symmetrical two cases concerning 71,_ and 75’ Yo

Ad a): For Nz € %2’ we have Nz e 32; g n, -

with

a contradiction. Hence Nz 6 712” , i.e. there exists M ¢
e, , NyesM. ‘
At first, Ny =M AN, Me 2t , N, ¢ 7, implies
N, ¢ ‘5”1 v ‘&nz by Theorem 2. Secondly, N, € M, n M, ,
Myst, , M, e 9;3 implies N, € M,, M, e n, -
- a contradiction proving N, e ‘E,”q v ‘ﬁ”" .

Ad b) : It is easy to see that N, & 2 gives N, =

2
= N, - a contradiction.

’ Hence N, e 91 , i.e. there exists M e N, -eatis-
fying N, € M . For Ny &€ M, A M, , M € ®, Mz‘ &,
we have N, § M, - a contradiction. Hence N, € %”1 veE,.
Finally, Ny= M n N, M e %, gives rise to N, ¢ ‘en1y 'f”’
which completes the proof of Theorem 3,

Theorem 4: An element ‘tn» has a complement in &
if and only if

a) N contains the maximal ideals only,

b) for any prime ideal P the set fﬂ? of all ideals
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from @ containing P satisfies either WZ? s 4 or

m, At =9 .

Proof: It is clear that the unit element of &£ is 24,
and the zero element is %qn . Let us suppose that the
conditions a) and b) are satisfied and let %’ = %90 = .

Then ¢, A ¢, = ¢, by Theorem 2 and ¢ v €., = €,
by b) and Theorem 2.

Conversely, let 2% have a complement zw in & .
If 21 contains an ideal N which is not in %% , then
there exists M € %% with N § M . For M ¢ 7' we
have N € ‘&,, -~ ‘&n v ¢,, by Theorem 2 and for M ¢ 7’

we have M € ‘£n A ‘tu, =~ ¢ - a contradiction proving

a). Finally, .2’ must be a co::Iement of A in 2 (in-
tersection). If there exists Ps M n M’ |, P orinme,
Me? ,M e’ then Pe ¥, ~¢ v ¢, 6 -a
contradiction proving b).

Theorem 5: The lattice &£ is complementary if and on-
ly if any prime ideal in A is maximal.

Proof: If & is complementary, then by a) Theorem 4
and Lemma 1 any prime ideal in A is maximal. The conver-

se follows immediately from Theorem 4.
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