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SOME FIXED POINT THEOREMS IN METRIC AND BANACH SPACES
Josef DANES, Praha

§ O. Introduction. This paper is devoted to the study
of fixed points of some mappings in metric and normed spa-
ces., Notations and terminology are described in Section 1.
Section 2 contains some results near to those given by Kan- ‘
nan in [11) and Kirk in [13]. In Section 3 we study Mk -mcl
mappings and the relation between Fréchet differentiability
and the measure of non-compactness. Section 4 is devoted to

an application of a theorem of Browder [4].

§ 1. Notations and terminology. Let (X ,d ) and(Y, e)
be two pseudometric spaces, C a subset of X and T a map-

ping of X into Y. Then T is said to be uniformly con-
tinuous on C with respect ta X , if for each positive o
there is a positive € such that if ¢ is in C and x in
X with de,x) & € ,then e(T(c),T(x)) & o .
Let M be a subset of X and define
(M) = {¢ >0 : M can be covered by a finite num-
ber of c‘loud € -balls in X}
‘and the measure of non-compactness of the set M by y(M)=
=nf Q(M) (see Sadovskii [14]). For elnohtary proper-

ties of the measure of non-compactness and related topics
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see [3],(8],(91,[15). T is called a % -mcl mapping if
2(T(M)) & % 3 (M) for any subset M of X, T is
called a strictly M -me] mapping n if 2(TIM)) < e g M)
for any non-precompact bounded subset M of X , In this
terminology, T is concentrative if it is continuous and
a strictly 1-me L mapping. T is asymptotically regular
(see [5)), ife(T™x), T"*(x)) — 0 asm —+o00,
for any x in X ., It is easy to see that T is uniformly
continuous on (  with respect to X , respectively a
M-mel, mapping, if it is g¢-Lipschitzian on ( with res-
pect to X (that is ¢ in ¢ and x in X implies that
e(T(e), T(x)) & %.d(c,x) for some & = 0) respecti-
vely f¢ -Lipschitzian on X .

Let (X,n) and (Y, g) be pseudonormed linear spaces
and X, and Y1 their closed unit balls at the origin.
In what followa, "— " and "—> " denote the convergen-
ce in the weak and strong (pseudonorm) topology, respecti-
vely. In [8] and [10] we computed the measure of non-com-
pactness of X : (X, )=0 or 1 if X/p '(0) haa
a finite or infinito_ dimention. If T 4is-‘a linear mapping
of X into Y, denote by 4 (T) the number 1 (TX, ).
It is easy to see that 1 is a pseudonorm on the space of
all linear bounded mappings from X into Y ; its kernel,
that is the set 7(,-4(0) , consists of precompact linear map-
pings of X /into Y . Clearly, y(T)<£ #THI for any li-
near Ts X—>Y . '

1) M-mel ia the abbreviation of "Lipschitzian in the
sense of the measure of non-compactness with constant k ".
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Now, let X and Y be normed linear spaces, C a sub-
set of X and T a mapping of C into Y, Then T is said
to be (a) demicontinuous if x, —» x, in C implies
T(x,)—= T(x,) in Y ; (b) weakly continuous ifx —> x
in C implies T(x,) —> T(x,) in Y; (c) convex if
the functional #(x) = lx—-T(x)ll and the set C are con-
vex; (d) Fréchet differentiable at a point  in C (see
{16]) ifz is in the interior of C and T(z + 4 )= T(2)+
+ T2l +(x, ) (heXN(C-2z) 2, where T?(2),
the Fréchet derivative of T at z ,is a linear continuous map-

ping of X into ¥ and @ (z,#A ), the remainder of T atz,
o (2, )10 - 0 -

1l ?
(e) uniformly Fréchet differentiable on C (see [16])) if (
is open, T is Fréchet differentiable at any x in C’' and

. heo Cz, S
L "t 0 [T AN
bly semicontractive if Y= X = a Banach space and there is

a mapping V of C x C into X such that T(x) = V(x,x)
for all x in C, 1V(x,z) = V(g,2)l € I x~-q |

satisfies the condition: ”’"’h-ro

= 0 uniformly for z in C;(f) fee-

(x,4,% in C ) and the map x — V' (-, x) is compact
from C to the space of maps of C to X with the uniform
metric. The kernel of ( is the set X(C)= {xe X: C is

starshaped with respect to x , that is, the closed segment

b
[x,z ] is contained in C for any z in C } .

~§ 2. In this section we shall present some sufficient
conditions on the existence of fixed points of some mappings

in metric spaces. These results are related to those of

2) C-2z denotes the set {c~2z:c e C 3.
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Kannan [11] and Kirk [13].

Theorem 1. Let (X, =) be a non-empty compact space
and d a non-negative real-valaed symmetric function-om
X x X such that d(x,4)= 0 impliesx=mg (x,y 6 X).
Suppose that 'I‘1 and ‘1'2 are mappinga of X into itself
satisfying the following conditions:

(1) if T(x)e x>y = T,(y) is not true, then

d (T, (), T, (x)) < %[d. (x, T, (x))+ d (g, T, (g NI ;

(2) the function f(x,n) =d(x, T (x)) +d(y,T,(3)
is lower semi-continuous on (X,?) x (X, %) .

Then the mappinga 'I; and Tz have a common fixed point
which is the unique fixed point of each of 'I; and ’1; .
Proof. If » and w are fixed points of '_[; and Tz
respectively, with x = %~ then by (1) we have d.('I;Cz),'I;(ur)k
<% [0+0]= 0, @ conttadiction, proving the trivial part of

the theorem.

Since £(x,q) is a lower semi-continuous function on
the (non-empty) compact space (X,%) x (X, ) , there is a
point (z,w) inXx X at which f attains its infimum.
It

() 'I;(Tz(w))- Tz(w)-'w'
or
(%) x-'lf,(z)-‘Ii(']’,"(z))

is true, then w or 2z is a common fixed point of T, and
Tz . ﬁenco" it suffices to prove that at least one of ()
and (%) i{s satisfied. Suppose not. Then, by (1)

(T (w), T (2)) = d(T(w), T,(T, (w))+ (T (2), T, (T, (2=

= d(T (T, (w)), ?z“‘"»"’ d(T, (=), T,(T,(z )<
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<A (), T, (T (w))) + d G, T, w)) T +
+3ld (2, T 2N+ d(T, (), ,(T,(z))] =
-%[Nz,w) + £ 0T (w), T, )],

that is, f (T, (w), T,(2)) < f(z,w) - a contradiction
to the minimality of f at the point (z,w) .

In the above theorem one can take, for instance, as ad
a metric on X . Proofs of the following corollaries are si-
milar to those given in [7],[101. We can obtain further as-
sertions by taking '1'_" = Tz = T .

Corollary 1. Let (X, ) be a non-empty compact space
and d a non-negative real-valued lower semi-continuous func-
tion on (X,?) x (X,%). Suppose that T, and T, are con-
tinuous mappings of X into itself satisfying the condition
(1) of Theorem 1. Then the conclusion of Theorem 1 remains
valid. '

Corollary 2. Let X be a non-empty weakly compact sub-
set of a normed linear space, ’IT, and Tz weakly continuous
mappings of X into itself satisfying the condition (1) of
Theorem 1 with d (X,4) = lx-4 N . Then the conclusion of
Theorem 1 remains valid.

Corollary 3. Let X be a non-empty weakly compact con-
vex subset of a normed linear space, T, and T, demiconti-
nuous mappings of X into itself ntiofying the condition
(1) of Theorem 1 with o (x,q )= Ix-4 8 Let the function
f (see Theorem 1) be convex on X x X . Then the conlu-
sion of Theorem 1 remains valid.

Corollary 4. Let X,.T1 , T, and d be as in Corollary
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3. Suppose that 1~ T, and I - T, are convex. (I deno-
tes the identity mapping on X .) Then the conclusion of
Theorem 1 remains valid.

Theorem 2. Let (X,d) be a complete metric space, C
& non-empty compact subset of X and T a (not necessari-
ly continuous) mapping of X into itself which is uniform-
ly continuous on C with respect to X . Let «x (T, x) be a
subset of X , for any x € X . Suppose that:

Q) inf d(x,T(x)) = 0

xe X

(22 «(T,x)NC &g for each x in X ;

(3) d(y,T(y4)) € x(d(x,T(x)))  for each 4 €
€ x(T,x), x &« X , where o (t) is a function defined on
(0,+0c0) withr(e)—> 0 as ¢ — 0+ .

Then T has a fixed point in X (even in C ).

Proof. Let € > O be given. Then, by (1),there exists
a point x in X such that d(x,T(x)) < € ; by (2),
there are 4 in «(T,x) and ¢ in C withd(gy,cl< €.
Thus, by (3), we have

d(e,T(c)) & dlc,q) + d(y, T(yN+d(T(y),T) &

£ E+n(e)+ ()= 9Ce) ,

where d"(e) = dup {d(T(2), T(w)):z€ X,wel,d(z,w) € €}
is the modul of uniform eontinuity of T on C with respect
to X . The fact 7 (e) —> 0 as ¢ —>» 0O+ implies that

:’:\{ d(e,TC(c)) = 0 . The continuity of T on the non-
empty compact subset C ensures the. existence of a point

% in C such that dlx,,T(x,N = inf d(c,T(c)) = 0,
and X, ~is a fixed point of T .

- 42 -



Remark. The condition (1) of Theorem 2 is satisfied if
(x,d.) is a bounded complete subset of a normed linear space
and T is a nonexpansive mapping of X into itself and the
kernel of X intersects the range of T, XK(X)NR(T) » ¢
(see [10]),Proposition 4), or if T is asymptotically regu-
lar, d(T™(x), T™*(x)) —> 0 as m —>+ o ,for any x

in X . In many cases we can take &(T,x) c {T™(x )},

0 s 0T
x(T,x) cco{T™x): m =0,4,... 3 ,if X ia a subset of a

linear space (cf. Kirk [(13],Cor.2.1).

§ 3. k-mclL mappings and Fréchet differentiable mappings.

Proposition 1. Let (X, n) and (Y, q) be pseudonormed
linear spaces and T a linear mapping of X into Y . Then:

(1) T 1is continuous if and only if 3 (T) < + o ‘

(2). T is precompact (that is, it maps bounded subsets
of X onto precompact subsets of Y ) if and only ifg(T)=0,

(3) if T is continuous then it is a x(T)-meL mapping;

(4) if T is not precompact, then T is not a fe-melL map-
ping for any &k < 3 (T) .

Proof. (1) and (2) follow at once from the definition of
x(T) end Lemma 1, (2) and (3) in [9]. The same considera-
tions as in the proof of Theorem 8 in [10] prove (3). The
part (4) of the theorem is a consequence of the gq.ualit;y

ATYm (TN = 2(T)- £ (X,) . (Note that x (T) > 0

implies that the dimension of the quotient space X /p~7(0)
is infinite and 2(X,) = 4, cf. Proposition 6 in [10].)

Eroposition 2. Let (X,d) and (Y, e) be pseudometric

- 43 -



spaces and { T, 1,0 a sequence of fe-mcl mappings
of X into Y which converges, uniformly on bounded sub-
sets of X, to a mapping T of X intc Y. Then T is a
Se-mel mapping.

Proof. Let ¢ > 0 be given and let M be a bounded
subset of X . Then there exists m, such that e(»'.[;%(x) ’
T(x)) £ € for all x in M . Hence the Hausdorff distan-
ce (with respect to e ) of ’I;“ (M) and T(M) is not
greater than € and, using [3]1,§ 3, Lemma, or [8], Theo-
rem 1.11, respectively [9]),Lemma 1, (8), we obtain that
I;L('I,‘%(M)) -x(TM))| & € . Hence x (TIM) & x(Tﬂb(M))-c-

+e € M.x(M)+ € . Since ¢ >0 was arbitrary, we
have (T (M)) & fe g (M) .

Theorem 3. Let X and Y be normed linear spaces, C
an open non-empty subset of X and T a mapping of C in-
to Y possessing the Fréchet derivative at a point z of C.
™ , x(T(z+e X, ) tete and la t

en wm‘_*o’ 7. exists . equala to
(T’ (x)) .
Proof. There is an ¢, > 0 such that the closed €, -

ball at 2 is contained in C . We can write

Tixerm)eT@)+TH{)h+w(z,h) (hige, heX) ,

(¢ )
-hquJ(e)-m{!f’ﬁ;-‘—!: heX,0<hl & e? converges

thu(. tenda to O . Further,
“,l‘_(xa-'cjﬁt‘,) e T)+ THz)Ne X))+ @(%,8X) (0<eke,),
T e X)) c T@)= T(z+6X))+w(z,6X)) ,

hence
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( ) |
T z;eX, c Te(,z)"' T’fz)(x,hw(z’:x )
(0<e gk €,)
T,(Z)(x,’) c T(Z) - T(z‘;‘X4) - wcz;GX1) °
Thus
T(z+eX
22eX) c IE), 1gyx,)+ a1 X,
(0<es e)
TaX) e I& _TEreX) o6y,
that is (T¢ .
| 2T eXs) (Tl & o) (0<e s &),

€
and the theorem follows.

Remark. A direct consequence of the proof is that if T

is uniformly Fréchet differentiable on C , then

L (T(z+eX,)
€

formly for 2z in C .

converges to x (T'(z)) as &€ — 0, uni--

Corollary 1. Let X and Y be normed linear spaces,
C an open non-empty subset of X and T a mapping of C
into Y possessing the Fréchet derivative at a point = in
C.If T is a ®-mcl mapping, then soc is its Fréchet de-
rivative T’(z), that is yx (T'(2)) & & .

Proof. The proof is a direct consequence of Theorem 3
and [10],Proposition 6, respectively [ 8], Theorem 1.7.

Lemma 1. Let X and Y be normed linear spaces, C a
non-empty bounded subset of X which is starshaped with
respect to the origin of X and T an a -homogeneous
mapping of C into Y for some @ g 1 (that is T(tx) =
=t¥T(x) it t > 0 and x,tx e C ) and a fe-meL map-
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ping on C N X, for some & = (0. Then T is a (strict-
ly) &k-mel  mapping on C .

Proof. We can restrict our consideration to the case
when T is a #-mecl mapping on C NX,. Let M be a boun-
ded subset of C and denote M, = M N X, and M, = M.N
NEX N\ X1). Then there is a ¢+ > 4  such that ¢+~' M.2 is
contained in X; . Then 3 (T(M,)) = y (+* T(¢t'M,)) =
-t"y(,(TCt"Mz)) € t*. M. a;(Mz) . Therefore

LT = (T 0 T(M, )= mac{x(TM,) ,

L(TM,NI & max S 3 (M,), dooq (M)I=de-g M) .

§ 4. An_application of a Browder s theorem. Recently,
Browder [4) has proved the following important theorem:

Let X be a Banach space, C a closed bounded convex
subset of X having the origin of X in its interior, T
a mapping of C into X such that for each x in the boun-
dary of C, Tx = Ax for any A > 4 . Suppose that for
a given constant % € 4 and a mapping V of C x C in-
to X, T(x) = V(x,x) for all x in C while

WV (X,2)=V(yg,2)l & fe hx-qgll (x,g €C)
and the mep x —>» V (., x) is compact from C to the
space of maps from C to X with the uniform metric. Then:

(a) If %o < 4, T has a fixed point in C . )

(b) If % £ 41 and (IQT)(C) is closed in X , then
T has a fixed point in C . )

By ‘means of this theorem, Browder [4] derived a fixed
point theorem for semicontractive mappings in uniformly con-

vex Banach spaces, and Kirk [ 12) made this for strongly
- 46 -



semicontractive mappings in reflexive Banach spaces. Our
purpose in this section is to give a fixed point theorem
for concentrative feebly semicontractive mappings in Banach
spaces. In the part (b) of the Browder s theorem, the pro-
blem is to prove that (I- T)(C) 1is closed in X .

Lemmg 2, Let X be a normed linear space, C a com-
plete subset of X and T a concentrative mapping of C
into X . Then the mapping I ~T maps bounded closed sub-
sets of C into bounded closed subsets of X ( I deno-

tes the identity mapping of C into C ). .
Proof. Let M be a closed and bounded subset of X .

Since T is concentrative, we have y(T(M)) € x(M)<+oco
and hence T (M) is bounded. Now, the inclusion(I1-T)(M)c
cM~-T(M) implies the boundedness of (I-T)(M). Let
{9, 32_, be a sequence in (I-T) (M) converging (strong-
ly) to a point 4, in X . Then there are points X  in M
such that x ~ T(x,) = 4, . Denote A= {x,:m=1,2,...%
and B={gy, :m= 4,2,...3 . Then, clearly, A c T(A)+ B
and T(A) «c A-B . Thus, B being precompact (the
underlying set of a convergent sequence), we have

1(A) & Y (TAN+(B)= 2 (T(AN& y(A)+ % (B) =1 (A),
that is, y(T(A)) = x(A) , and hence A ialprecompact.
Then A is a compact subset of C . There exists a subse-
quence {x, 3§ of {x,% such that x, —> X, for some X,

in C . We have T(a(m*)——a T(x,) saince T is continu-

ous. Hence x, - T(x,) =-n, and a4, is in (I-T)(C) which
proves the lemma.
Lemma 3. Let X be a normed linear space, C a comple-

te subset of X and T a concentrative mapping of C “into X.
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If X, — x, snd g, =~ T(x,) —> ¢, for some
ix,3cC, x, € C and gy, & X, then 4 = x, - T(x,) .

Proof. Denoting A = {x 3} and B = {4, ? and using
Ac T(A)+B, T(A) c A-B , we have, by the same
argument as in the proof of the preceding lemma,y (A)=0.
Hence A is compact and Xy —> X, in X implies
Xy X .Therefore, a4, = X, - 'I“(xo) .

Theorem 4. Let X be a Banach space, ( a closed boun-
ded convex subset of X having the origin of X in its in-
terior, T a concentrative feebly semicontractive mapping
of C into X satisfying the Leray-Schauder condition:
for each X in the boundary of C and for each A > 1,
Tx s Ax ., Then T has a fixed point in C .

Proof. By Lemma 2, (I ~T) (C) is closed,and using
the Browder s theorem mentioned at the beginning of this
section, our theorem follows.

Corollary 1. Let X and C be as in the theorem. Let
T be a concentrative nonexpansive mapping of C into X
satisfying the Leray-Schauder condition (see Theorem 4).
Then T has a fixed point in C .

Corollary 2. Let X and C be as in the theorem. Let
T ' be the sum of a concentrative nonexpansive mapping and
a compact mapping of C into X ., Suppose that T satis-
fies the Leray-Schauder condition (see Theorem 4). Then T
has a fixed point in C .

Lemma 4. Let X be a normed linear space and {x,} a

sequence in X weakly converging to «x and let ¢ .be a

o
real number greater than y({x tm = 4,2,...3). Then

there is m, such that for each m = my, X, lies in the
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2e -ball at x, .

Proof. Suppose not. Then there is a eubaequence{x@~$
of {x,} which is disjoint from the 2€ -ball at x, .
Now, {x 3} , and hence {xM’J , is covered by a finite num-
ber of closed € -balls. Hence there exist a point x in X
and a subsequence {ag!*' [ offaha.f contained in the clo-
sed ¢ -ball at 2z . Since the closed € -ball at =z is
convex and "‘m.‘.’."'" X, ,tho point x, lies in the closed
¢ -ball at z . Thus, {xﬂatél being contained in the clo-
sed g -ball at = , it is contained in the closed 2 ¢ -ball

at x, , a contradiction.

(-]
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