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Commentationea Mathematicae Universitatia Carolinae 

12,1 (1971) 

SOME FIXED POINT THEOREMS IN METRIC AND BANACH SPACES 

Josef DANES, Praha 

§ 0. Introduction* Thia paper ia devoted to the atudy 

of fixed points of some mappings in metric and normed spa­

ces. Notationa and terminology are described in Section 1. 

Section 2 contains aome reaults near to thoae given by Kan-

nan in [11] and Kirk in [13]« In Section 3 we study fc-zm-eL 

mappinga and the relation between Frdchet differentiability 

and the measure of non-compactness. Section 4 ia devoted to 

an application of a theorem of Browder L 41-

§ !• Notationa and terminology. Let (X t dL ) and(Y, e) 

be two pseudometric spaces, C a subset of X and T a map­

ping of X into Y. Then T is said to be uniformly con­

tinuous on C with respect to X , if for each positive d* 

there ia a positive £ such that if e is in C and x in 

X with d,ic9x) £ e f then e C T C e ) , TCx)) & ct . 

Let M be a subset of X and define 

ACM) » { & > 0 ; M can be covered by a finite num­

ber of closed £ -balls in XI 

and the measure of non-compactness of the set M by %(M) m 

m im# Q ( M ) (see Sadovskii tl4]). For elementary proper­

ties of the measure of non-compactness and related topics 

AMS, Primary 4TH10,47H15,58020 l#f .2.7.978.4 
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see 13],t8], 19],[15J. T i« called a fr-mch mapping if 

^CTCM)) & M % (M ) for any aubaet M of X. T ia 

called a strictly M,~m*eL mapping *' if ̂ CTCAO) *M%(M) 

for any non-precompact bounded subset M of X • In this 

terminology, T is concentrative if it ia continuous and 

a strictly i-mcL mapping. T ia asymptotically regular 

(aee 15)), if e(Tm(x)f T*4"^*)) — * 0 as m, — • + oo , 

for any x in X . It ia easy to see that T is uniformly 

continuous on C with respect to X . respectively a 

Jtr-mcL mapping, if it is Jfc-Lipschitzian on C with res­

pect to X (that ia e in C and x in X implies that 

fcCTCe), TCx)) £ Mt*d(cfx) for some Jfc, £s 0),reapecti-

vely J& -Lipschitzian on X * 

Let (Xfji) and C Y, a ) be pseudonormed linear spacea 

and X. and Y their closed unit balls at the origin. 

In what follows, *—-* w and M — > " denote the convergen­

ce in the weak and strong (pseudonorm) topology, respecti­

vely. In t8l and £10J we computed the measure of non-com-

pactneaa of X^ : ^CX 1)» 0 or 4 if X/jpT4 (Q) has 

a finita or infinite dimention. If T ia a linear mapping 

of X into Y , denote by ^ C T ) the number j^CTCX^)). 

It is easy to see that % is a pseudonorm on the space of 

all linear bounded mappings from X into Y $ its kernel, 

that ia the sat %*4(0) , consists of precompact linear map­

pings of X into Y . Clearly, £ C T ) £ I T I for any li­

near T* X — > Y . 

1) .Jt-zmcL. ia the abbreviation of "Lipschitzian in the 
aense of the aaaaure of non-compactneaa with constant k *. 

- 38 



Now, let X and Y be normed linear spaces, C a sub* 

set of X and T a mapping of C into Y . Then T ia said 

to be (a) demicontinuous if x^ —5* x0 in C implies 

T^^) —*~ TCx0) in y 5 (b) weakly continuous if x̂ —-** xo 

in C implies T C x ^ ) —--* TCx0> in Y ; (c) convex if 

the functional f Cx) •? lx-TCx)ll and the set C are con­

vex; (d) Fr^chet diffepentiable at a point x A& C (see 

[16J) if* is in the interior of C and T (x + M,) m T(&) + 

+ T'(x)M, +*>(x,Sh,) (M,€ Xfl(C -x) 2 \ where VC&), 

the Fr^chet derivative of T at x ,is a linear continuous map­

ping of X into Y and a) (xf<h>) , the remainder of T at a:, 

*.. *. ^ , » . . * . «• IG> (xfMv)t A 

satisfies the condition: Ju*ru ^ ~ • , / — m 0 % 

(e) uniformly Fre*chet differentiable on C (aee [16]) if C 

is open, T is Fr^chet differentiable at any x in C* and 

itmi^^^ rr-r * 0 uniformly for x in C ; (f) fee­

bly semicontracttve if y*« X ** a Banach space and there is 

a mapping V of C x C into X such that TCx) m V C x ? x ) 

for all x in C , I V Cx, # > - V C^, x ) ll if I x - y * ll 

(x, ̂ , * in C ) and the map x —i>V(», x ) is compact 

from C to the space of maps of C to X with the uniform 

metric. The kernel of C is the set K ( C ) » Cx m Xt C is 

starshaped with respect to x , that ia, the closed segment 

[ X, X 1 ia contained in C for any * in C J . 

§ 2. In this section we shall present some sufficient 

conditions on the existence of fixed points of some mappings 

in metric spaces. These results are related to those of 

2) C - X denotes the set <c ~ x t C € C } . 
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Kannan til] and Kirk [13]. 

Theorem 1. Let (X, v) be a non-empty compact apace 

and d ft non-negative real-valaed symmetric function on 

Xx X flucn thftt d(x%y)m 0 implies .*»/y, (xffy>+%). 

Suppose that T\ and Tj aire mappinga of X into itself 

satisfying the following conditions: 

(1) if T^Cx)m x m y, m T^Cty) is not true, then 

d(Ti(x\Ta(x)) < ^tdUJ^x))* d(<r,Tt(y,))l ; 

(2) the function f (*,<$) * d(xf T^(*)) +d(^9Tx(%>)) 

is lower semi-continuous oa (X, <r)x (X,tr) . 

Then the mappings T and T± have, a common fixed point 

which is the unique fixed point of each of T and T . 

Proof* If x and i*r are fixed points of T4
 and ^ 

respectively, with x 4- *r,then by (1) we have€ttT(j&),TCw))< 

< ? £0*0.1 • 0 f • contradiction, proving the trivial part of 

the theorem. 

Since 4(x9y.) is a lower semi-continuous function on 

the (non-empty) compact space (X,t) x (X,tz) f there is a 

point C»^*ur) in X x X at which f attains its infimum. 

If 

(* ) T ( T (^)) m T Our*) -at tir 
1 2 2 

or 
( * # ) X m T f <») at T £ ( ^ < * ) ) 

i s true, then i*r or st ia a common fixadL point of T> ftnd 

T2 * Hence i t aufficea to prove that at leaet one of (*• ) 

and ( # # ) i s aatiafied. Suppose not. Than* by (1) 

^<%!Lmf)9%<»^ - - ^ ( T ^ V ^ C ^ 

- dC%CTg<ntr»9 T^M)* dCT^)9T%CTAC%)))< 
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, <j£d(T1(w)9Ti(T^(mr))) + d(*r9Tz(<ur))] + 

+ \ld(*,,%(»))+ d(%(z), Tt(% (*)))! m 

«iE*C*f<ur)+f (%(<ur)9T^(x))2 , 

that is> 4 (T2 (ttr), T, (»)) <z f (%,9<ur) - a contradiction 

to the minimality of 4 at the point Cx9 w ) . 

In the above theorem one can take, for instance, as d 

a metric on X . Proofs of the following corollariea are si­

milar to thoae given in [73-L101. We can obtain further aa- % 

aertiona by taking T^ m T% -» T . 

Corollary 1. Let (X-tr) be a non-empty compact space 

and d a non-negative real-valued lower semi-oontinuoua func­

tion on (X9t) x (X9v) • Suppose that T, and T% are con-

tinuoua mappinga of X into itself satisfying the condition 

(1) of Theorem 1* Then the conclusion of Theorem 1 remains 

valid. 

Corollary 2. Let X be a non-empty weakly compact sub-

sat of a normed linear space, T^ and T, weakly continuous 

mappings of X into itself satiafying the condition (1) of 

Theorem 1 with d(x9^) m lix-tyW . Than the conclusion of 

Theorem 1 remains valid. 

Corollary 3, Let X be a non-empty weakly compact con­

vex subset of a normed linear apace, X, and T2 demiconti-

nuous mappings of X into itaelf satiafying the condition 

(1) of Theorem 1 with d (x, «y-> «- lx-^1 .Let the function 

4 (aee Theorem 1) ba convex on X x X . Kan the conlu-

sion of Theorem 1 remaina valid* 

Corollary 4* Let X , ^ , T £ and ct ba as in Corollary 
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3. Suppose that 1 - T^ and I - T^ »ra convex. ( I deno­

tes the identity sapping on X .) Then the conclusion of 

Theorem 1 remains valid. 

Theorem 2. Let (X,d) be a complete metric space-. C 

a non-empty compact subset of X and T a (not necessari­

ly continuous) mapping of X into itself which io uniform* 

ly continuous on C with respect to X . Let <x,(T,x) be a 

subset of X , for any x m X . Suppose that: 

(1) Jm,f d(x,T(x)) m 0 • 

Ui otCT,*) il C 4* 0 for each * in X ; 

(3) cLC^TC**)) £ ^tC<iC^,TC .x))) for each /̂  c 

€ ooCT,x), x e X , where /& Ci) is a function defined on 

C09 + oo) with/tCe)—* 0 as e — * 0 + . 

Then T has a fixed point in X (even in C )• 

Ixoof. Let e > 0 be given. Then, by (1),these exists 

a point x in X such that d(x,T(x)) < £ $ by ( 2 ) , 

there are ̂  in ac(T,x) and c in C with c* C^, c) << £ . 

Thus, by (3), we have 

d,Cc,TCc)) m? d(c9^) + d(^,T(^)) + d(T(^),T(c)) & 

*& +/t(&)+cf(&) m -%(€>) , 

whara #(%.)» hufrid(T(%,),T(nir))ixeX,mrm C, d(*,w) 4t ei 

is the modul of uniform continuity of T on C with respect 

to X . The fact 4|Ce) —*' 0 as c — > 0+ implies that 

Ami cLCc, TCc )) «• 0 - The continuity of T on the non-

empty compact subset C tnsures the existence of a point 

^ In C such that <iCtX0,TC^»- 4nf dCe, TCc )) ~ 0 , 

and ̂  it i fixed point of T . 
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Remark. The condition (1) of Theorem 2 ia aatiafied if 

(X7d) ia a bounded complete eubaet of a normed linear apace 

and T ia a nonexpanaive mapping of X into itaelf and the 

kernel of X interaecta the range of T, XCXXIX (T) .-*> 0 

(aee [103,Proposition 4), or if T ia aaymptotically regu­

lar, d(T^U), T^C*)) — > 0 aa m, — * + m ,for any * 

in X . In many caaea we can take ocCT,*) c iT^Cx )i£m0 , or 

oc(T,*) ccoST^Cx) i <ru- Q94,...1 ,i£ X ia a aubaet of a 

linear apace (cf. Kirk £13J,Cor.2.1). 

§ 3. k-mcL mappings and Fr^chet differentiable mappings. 

Propoaition 1* Let (X, ft) and (Y, q^) be paeudonormed 

linear apacea and T a linear mapping of X into Y . Then: 

(1) T ia continuous if and only if^r(T>-c + oo $ 

(2) T ia precompact (that ia, it maps bounded aubaeta 

of X mto precompact aubsata of Y ) if and only if£(T)--»0> 

(3) if T is continuous then it is a %(T)-tm*iL mapping; 

(4) if T ia not precompact, then T ia not a Jt-meL map­

ping for any Jfe, < % ( T > . 

Proof* (1) and (2) follow at once from the definition of 

2£(T)' and Lemma 1, (2) and (3) in L9J. The same considera­

tions as in the proof of Theorem 8 in (10J prove (3). The 

part (4) of the theorem is a consequence of the equality 

l(T) m %(TCX^)> m %(T)* 9^(Xn ) . (Note that ̂ (T) > 0 

implies that the dimension of the quotient space X /*#"* ( 0) 

is infinite and Ti(X^) » 4 , cf. Proposition 6 in L.10}#; 

.Proposition 2. Let ( X, d) and ( Y, e ) be paeudometric 
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epaces and tT/n,}*.Ta<f * sequence of Je-fftcL mappings 

of X into Y which converges, uniformly on bounded sub­

sets of X , to a mapping T of X into Y , Then T i s a 

Jt-*rtcL mapping* 

Proof. Let e > 0 be given and l e t M be a bounded 

subset of X . Then there exists *L0 such that e C ^ C*x) , 

TC*)) £ & to* a l l * in M . Hence the Hausdorff distan­

ce (with respect to e ) of TL (M) and TCM) i s not 

greater than e and, using [31,§ 3 , Lemma, or [ 8 ] , Theo­

rem 1.11 , respectively [93,Lemma 1, (8) , we obtaia that 

IjtCTLCM)) -^CTCM))! £ & . Hence ^CTCM)) *i ^C^L CM))+ 

+ e # J f e ' £ C M ) + £>* Since e -> 0 was arbitrary, we 

have *<TCM>/ .4 Jit r̂ CM) . 

Theorem 3* Let X and Y be normed linear spaces, C 

an open non-empty subset of X and T a mapping of C in­

to Y possessing the Fre'ehet derivative at a point z of C . 
_ A. arCTC*** X, )) 
Then *0H* fl - * — • — — — - — exists and., equals to 

^ C T # C * » . 

Proof* There is an e0 > 0 such that the closed €0 -

ball at X is contained Irr C . We can. write 

'4*C*->^>w^^ C * J M * e#,,#t,€X) , 

lojC-t Ji»)l 
where- c/Te)m*ta.f^i-*-|^j ; Jit eX, 0< M* 1 a e I converges 

ta~~J a* e tandjL to. 0...:Further, 

Ttx+wXileTCMX+THxK* C0-«eei e*> ' 

T * C * K ^ ^ ^ , 

hence. 
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lS^lMcI^ + T^Hx^(^xi) 
(0< t at £„ ) 

T'CfcXX ) c T f a ) - Tfo+tXf) oKa^eX,) 
* e *~ e e 

Thus 

C 0 < - c * e o > 

that is 

s 
and the theorem followa. 

Remark* A direct consequence of the proof is that if T 

is uniformly Fr^chet diffepentiable on C 9 then 

%(T(Z^BX1) „f, ss ' 
g 2— convergea to ̂ (THx,)) aa 6 —¥ 0 9 uni­

formly for & in C . 

Corollary 1* Let X and / be normed linear apacee, 

C an open non-empty aubaet of X and T a mapping of C 

into y possessing the Fr^chet derivative at a point » in 

C . If T is a 9*,-<mcL mapping, then so is its Frgchet de­

rivative T'Ca:) , that is % (T(»)) tai Jh . 

Proof. The proof ia a direct consequence of Theorem 3 

and tlOljJPropoaition 6, reapectively [ 8], Theorem 1.7. 

Lemma 1. Let X and y be normed linear apacea, C a 

non-empty bounded aubaet of X which ia atarahaped with 

respect to the origin of X and T an a,-homogeneoua 

mapping of C into y for some o, am A (that ia T C t * ) -» 

a i ^ T C x ) if t > 0 and*,*** C ) and a Jfe-micl. map-
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ping on C fl X.J for aome Mb £ 0 . Then T ia a (atrict-

ly) Jk~mcL mapping on C . 

Proof. We can reatrict our conaideration to the caae 

when T i s a h~m,&L mapping on C ftX^ . Let M be a boun­

ded subset of C and denote M, » M f) 1 and MA"* MO 

OCX \ X. ) . Then there i i a t > -( auch that i~* M.± ia 

contained in X1 . TCien 3[CTCM2)) • ^ C** TCi^ li% )) m 

mt\CTCr4Az)) & i*- to * %CtA%) . Therefore 

%CTCm)*° %CT(&JuTCUi%))~ macix^^ , 

^CTCM^))! 4 max,1to.%CtoJ, jfe.JtCAI^^-eit^CM) . 

§ 4* An application of a Browder *e theorem. Recently, 

Browder £43 has proved the following important theorem: 

Let X be a Banach space, C a closed bounded convex 

aubaet of X having the origin of X in ite interior, T 

a mapping of C into X auch that for each * in the boun­

dary of C, TM 4* A x for any A >> A . Suppose that for 

a given constant to £ 4 and a mapping V of C x C in­

to X, TCx) » VCx.,*) for all * in C while 

I Y C ^ « ) - Y ( ^ x ) l 6 to H x - ^ H Cx, ̂  c t) 

and the map ,x —**> VC*7 x) ia compact from C to the 

apace of maps from C to X with the uniform metric. Then: 

(a) If Mt -c 4 t T has a fixed point in C . 

(b) li to .6 4 a6d C l - T ) C O ia cloaed in X , then 

T has a fixed point in C . 

By means of this theorem, Browder L43 derived a fixed 

point theorem for semicontractive mappings in uniformly con­

vex Banach spaces, and Kirk 112) made this for strongly 
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semicontractive mappings in reflexive Banach spaces. Our 

purpose in this section is to give a fixed point theorem 

for concentrative feebly semicontractive mappings in Banach 

spaces. In the part (b) of the Browder's theorem, the pro­

blem is to prove that (1~T)(C) is closed in X . 

Lemma 2. Let X be a normed linear space, C a com­

plete subset of X and T a concentrative mapping of C 

into X * Then the mapping I - T maps bounded closed sub­

sets of C into bounded closed subsets of X ( I deno­

tes the identity mapping of C into C ). 

Proof. Let M be a closed and bounded subset of X . 

Since T is concentrative, we have %(T(M )) 1k^(M)<'*rCo 

and hence TCJW) is bounded. Now, the inclusion CI- T) CM) c 

c M - T ( M ) implies the boundedneas of CI-T) CM). Let 

{^ ? °° * be a sequence inCI-T) CM) converging (strong-

ly) to a point nfe in X . Then there are points x^ in M 

such that x^- TCx,^) » /j^ , Denote A - ix^ - "t * 4, 2,„, J 

and 3**ity ; m,* 4,2,,,, J , Then, clearly, A c T(A) + 3 

and T C A ) c A - £ , Thus, 3 being precompact (the 

underlying set of a convergent sequence), we nave 

%(A) & $ (TCA))+$»)-ptCTCA))^ *<A)-i-*CB)-- ̂  CA ) , 

that is, t^CTCA))-* ̂ CA) , and hence A is precompact. 

Then J is a compact subset of C . There exists a subse­

quence { a ^ J of ix^i such that *^^~-* *0
 f o r 8 0 m e x* 

in C . We have TU-)—> TCx0) since T is continu­

ous. Hence x a-TCx 0> * «& and ^ is in CI-T) (C) which 

proves the lemma. 

Lemma 3. Let X be a normed linear space, C a comple­

te subset of X and T a concentrative mapping of C intoX. 
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**^}c C, *0 € C and .^ « X , then ^ - * a - TC*tf) . 

Proof. Denoting A • -CtX̂ i and £ » { ^ * and using 

A c T (A ) + 3, T C A ) c A - 3 , we have, by the same 

argument as in the proof of the preceding lemma, % (A) m 0. 

Hence X is compact and X^ —** xA in K implies 
lf%0> o 

X^—& x .Therefore, ^ * x 0 - T ( x e ) . 

Theorem 4. Let X be a Banach space, C a closed boun­

ded convex subset of X having the origin of X in its in­

terior, T a concentrative feebly semicontractive mapping 

of C into X satisfying the Leray-Schauder condition: 

for each x in the boundary of C and for each A -> 4 , 

Tx 4- A x , Then T has a fixed point in C . 

Proof. By Lemma 2, C I - T ) C C ) is closed,and using 

the Browder'e theorem mentioned at the beginning of this 

section, our theorem follows. 

Corollary 1. Let X and C be as in the theorem. Let 

T be a concentrative nonexpansive mapping of C into X 

satisfying the Leray-Schauder condition (see Theorem 4). 

Then T has a fixed point in C • 

Corollary 2. Let X and C be as in the theorem. Let 

T be the sum of a concentrative nonexpansive mapping and 

a compact mapping of C into X . Suppose that T satis* 

fie* the Leray-Schauder condition (see Theorem 4). Tn«n T 

has a fixed point in C . 

Lemma 4. Let X be a normed linear space and ix^l a 

sequence in X weakly converging to «*0 and let e he a 

real number greater than %(i x^ t m, ** 4., 2,... J ) • ^»*n 

there is m*0 such that for each * Si m,0 x^ lis* i n the 
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2 e -ball at x 0 . 

Proof. Suppose not. Then there is a subsequence l a w * 

of i* } which is disjoint from the 2 e -bell at * * 

Now, {x^l t and hence i^J , ia covered by a finite num­

ber of closed e -balls. Hence there exist a point x in X 

and a subsequence {x ^ ^ I of Ix^^J contained in the clo­

sed 6 -ball at x . Since the closed 6 -ball at x is 

convex and x^. ,—** x ,the point x0 lies in the closed 

6 -ball at x - Thus, $**,*,*} D*in& contained in the clo­

sed £ -ball at * , it is contained in the closed 2 e -ball 

at ,x0 , a contradiction. 

R e f e r e n c e s 

[1] A. AMBROSETTI: Proprieti spettrali di certi operatori 

lineari non compatti. Rend.Sem.Mat.Univ.Padova 

42(1969),189-200. 

[2] L.P. BELLUCE - W.A. KIRK: Some fixed point theorems in 

metric and Banach spaces. Canad.Math.Bull.12 

(1969),481-491. 

[3] Ju.G. BORISOVIC - Ju.I.SAPRONOV: On topological theory 

of compactly restrictable mappings. Trudy Sem. 

Funkc.Anal.12(1969),43-68. 

14] F.E. BROWDER: Semicontractive and semiaccretive nonli­

near mappings in Banach spaces. Bull .Alter .Math. 

Soc.74(1968),660-665. 

[51 F.E. BROWDER - W.V. FBTRXSHTN: The solution by itera­

tion of non-linear functional equations in Ba­

nach spaces. Ibid.,72(1966),571-575. 

49 -



[6] J. DANES: Nonlinear operators and functionals(Thesis). 

Charles University,Faculty of Mathematics and 

Physics,Prague,1968(Czech). 

[7] J. DANES: Some fixed point theorems, Comment,Math.Univ. 

Carolinae 9(1968),223-235. 

[8] J. DANES: Generalized concentrative mappings. Summer 

School on Fixed Points, KrkonoSe,Czechoslova­

kia ,Aug.31-Sept.6 1969. 

[9] J. DANES: Generalized concentrative mappings and their 

fixed points. Comment.Math.Univ.Carolinae 11 

(1970),115-136. 

[10] J. DANES: Fixed point theorems, Nemyckii and Uryson 

operators, and continuity of nonlinear map­

pings. Ibid.,11(1970),481-500. 

[11] R. KANNAN: Some results on fixed points. Bull.Calcutta 

Math.Soc.60(1968),71-76. 

[12] W.A. KIRK: On nonlinear mappings of strongly semicon­

tractive type. Journ.Math.Anal.Appl.37(1969), 

409-412. 

tl3] W.A. KIRK: Nonexpansive mappings and the weak closure 

of sequences of iterates. Duke Math.Journ.36 

(1969),639-645. 

[14] B.N. SADOVSKII: On a principle of fixed points. Funkc. 

Analiz Prilo2.1(1967),74-76. 

[15] B.N. SADOVSKII: On measures of non-compactness and con­

centrative operators. Prablemy Mat.Analiza 

Slo2.Sistem 2(1968),89-119. 

[16] M.M. VAINBERG: Variational methods for the study of 

nonlinear operators. Holden-Day,San Francisco, 

- 50 -



Calif.,1964. 

Matematicko-fyzikální fakulta 

Karlova Universita 

Sokolovská 83, Praha 8 

československo 

(Oblátům 15.7.1970) 

- 5 1 -


		webmaster@dml.cz
	2012-04-27T19:50:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




