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ON SOME CLASSES OF POINT ALGEBRAS
Marshall SAADE, Athens

1. Introduction. In this note we give a characteriza-
tion of the following classes of point algebras. (See [1],
[2] for a general definition of point algebra even though
it will not be needed here.) Let S be a nonempty set, m
an integer 2 2 and Mk a positive integer such that
24 £ m . Define on S™ (= Sx Sx...x 5, m8' n)
the following binary operations:

(i) Cayy @y, eeny @ ) (Y, 2y, B )

= (&

M= F17°°°2 %v l(b-o-ﬂ 24 ‘b;b-ubv lfu"” ‘b'b) ’

(11) (@, Gy eeer By ) (4, &,..., &)
= (a‘n-h+1v"‘v Qpy Uppgseee s Un-tor Yyyroes %) ?

where, if m = 2% ,the right side of (i) ia (g ..., 4, ,
1; yr+0, X ) « Similarly for the right side of (ii). In
the remainder of this note we will denote the groupoid on
S$™ , where |S| = « , abtained by the binary operation in
(i), by the symbol G (m , e, 4) and the groupoid on S™:
obtained by the binary operation in (ii), by the symbol

H(m, fe, ). It is the point algsbras G (m, fe,«) and
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H(m, 4, « ) that we characterige.

2. The characterizations. We first prove the following

lemma which is also of independent interest.

Lemma. Let G and H be groupoids such that I, and
I, denote the (possibly empty) sets of idempotents of &
and H , respectively. If
(i) esch of G and H satisfies the identity x. Yz = X
(or each of G and H satisfiea Xg .z = X ),
(i) 161 = |HI ,
(ii1) 110 = | L| and
(iv) |G-IG|=-|H—IHI,thCn Ga H .

Proof. (In this proof we assume that each of G andH.
satisfies X:.yx = x ,If each of G and H satisfies
Xep o2 = X the proof ia analogoua.) Define a mapping ©
from G into H as follows. If I .  and hence I , is
nonempty where IG“‘-'{'@J ’JL¢A' and I, = {-0"_ 3.&.’41
then for each a.&c IG let Cwa) ® = .ea . Clearly®|ig
is 1 - 41 and onto IM . 1, , and thus Iu,
is empty this step is omitted. Now suppose G - 1‘, and thus
‘H-IH,ilnonnnt;.hnoutnAtir.xcG—- l, them

2 2 2
X e G - IG and X"+ X° = X , Similarly f,or:yc)(,-.lu.
Thus let I° be an indexing set such that
!

A=fix, ,xz}lyeT} -ndB-iw,.%.’ P RS
are partitions of G =~ IG and H - IH , respectively. If

Of course, if

. . . n z .
T r .th?n let .XTO = 44, and «’,9 - Yy Then
clearly OIG,-—IG is.1-1 and. onto H - I, . Of course
ir G - IG‘ , and thus H - 1" , is empty we omit this step.
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Thus @ is a 41 -4 mapping onto H . Here we note that
for eny X € G, x2@ = (x@)* , Therefore ifx,yg € G
then (xg)O = (x (440 = 42O w (. 0V xO(y 83 0))=x0y.0.
Hence ® is an isomorphism.

One easily shows that G (m, &, w ) satisfies the
identity x -4 2z = x and that H(m , &k,«) satiafies
the identity Xp 2 = X . Furthermore the idempotents
of G(m, 4, ) as well as of H(m,k,«w) are precise-

1y the elements in §™ of the norm, (@y,«r, Qy,Qp , 45-+

m-R 16 x i

Qpoter Aysyeves a,*_) , of which there are .
finite then of course there are 4™ ® (u®_1) non-iden-
potents. If .« ia infinite then clearly there are «¢ idem-
potents and «£ non-idempotents. Thus we have the following
corollary. .

Corollary. Let G be a groupoid of order «™ , where

’
& is a cardinal and m is an integer = 2 ., Aasume @
satisfies the identity x. g% =x (Xg -2 = x) . Also
assume G has w”"b idempotents where & is a positi-
ve integer and 2& £ m , If x4 is infinite assume G

has ¢ non-idempotents,too. Then

G Gm,R,«) (H(m,; S, x)) .
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