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A REMARK ON THE THEORY OF DIOPHANTINE APPROXIMATIONS

(Preliminary communication)

Bohuslav DIVIS, Columbus, Bfetislav NOVAK,Praha

Let /2 be an irrational number and let p =
(1’);-, X;,bj‘_,,,.) express his expansion into a (regular) con-
tinued fraction. For t real, t & 1, put

Y, t) =ﬂ’g’% lg3 -1l
0<cg 8t

and denote
MBY= L mf by (8), @@= Lim sup t oy (t)

The numbers A ((3) which f&rn the so called La-
grange s spectrum, were largely studied in the litera-
ture (cf.,e.g.,(1],(3),{4]). Comparably less studied we-
re the values (a(/.?) (cf.(4]1, p.37). In 1968, V. Jarnik
pointed out this fact in his lectures on the theory of
Diophantine approximations. Discussions between the pre-
sent authors have resulted in theorems brought further,
altogether proved in the first half of the year 1968.

We can easily see that

1
@B =TT
Rp

Rp‘&+w (%3%-17‘"7‘&;)' (bfhfli‘bj‘-fn,‘“)



( ij-;—zo for R = + 00 ). Hence it 13-‘@(/3)5

£1 and @ (3)=1 if and only if the sequence
&;,4;,... is not bounded. For a natural number N , let
&% (N) denote the set of all numbers /3, for which

“,&ﬂwmlf =N; deaignate by M(N) the set of all
with B e & (N), m=NL’J4m(N).So we have

R
"
() <1 if and only it 3 e C?%(N)- A number

x =(a,,2,a,,.)is said to be equivalent to a number
f3, if for some integer m the equality @, , = 4
holds for all sufficiently large natural numbers Jf¢
(we write & ~ 3 if « and 3 are equivalent, and

o & /3 otherwise). If « ~ /3, then clearly A (x)=

=A(B) and w(x)= (.4(/3). We deaignate a period in

a continued fraction as usual, e.g., (1 2)=(1;2,1,2...)=

1
=-i(4+V3) .

Theorem 1 (Divid) ). Let ¢, =1, ¢ = 0,1,2,...,

Ly=0c,5 ¢ ,C),...0 % =(2;C ¢ .0y ), m=1,2,..
Then it holds
3+b’§'

, DIR, < Re,, y9=0,1,2,.. ) lm R, =24/5 .

e emcn e --——-

1) This theorem has been proved independently by J. Lesca
in his paper [5), unattainable to the present authors
till March 1970. Thus, the priority belongs to J. Lesca.
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a) It.R,3< 2 + /5 then there exists a non negati-
ve integer m such that 3 ~ o, -
A certain information about the structure of sets
ML (N)is given by the following two theorems (analo-
gous theorems for values A (3) can be found in [31):
Theorem 2 (Novék). Let ac = (1; N). If B e £ (N),
then Rng R‘ = AN+ = %(N+2+ VN2 + 4N). Moreover,

there exists a positive constant ¢ depending only on
N, that for Be $(N), B * « we have R | 2
2R, +tec .

Theorem 3 (Novék). Let o = (1, N).If 3 & % (N)
then R, & NR = § (N+2+V/NTZ4N). For N > 1 ana
€ >0 there exiat uncountable sets 7t , 7t, c 5 (N)
such that it holds

it B, 7€ N,B+y thenff*y,R,=NR_.,

it p,yed, ,p+y thenpxy R, +R,,
NR,-& <Ry < NR_ .

From these two theorems it follows that, for N >
> 1, the minimums of %L (N) is an Vsolated point of
this set, and the maximum of 77 (N') ie its point of

condensation.
One can show, using the results from [2]) (cf.[1],

p-44), that there exists A, such that the values
A(f3) run over the whole interval [0 ,A,]. An
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analogous assertion of this kind is

Theorem 4 (Divid). There exists a number R
(e.g. R, =23,4) such that (R,,+c0] c % .

Detailed proofs together with further results
will be published in the shortest time.
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