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GRAFHIC ALGEBRAS

Ladislav NEBESKY, Praha

In this article, certain abstract algebras defi-
ning undirected graphs are considered. It is shown how
the relationship between those algedbras and graphs is
changed when further conditions are ilpoud_ on those

algebras.

1. We shall say that an ordered pair (V,G) is
a graphic algebra if V is a non-empty set and @ is

a ternary operation on V such that for every o, £,
ceV

(1) G(a,a,) = a
and
(2) Q(a,c) = Qla,b,e) = Qla,c,¥) .

Let A= (V,Q) be a graphic algebrea and G =
- (\Q,E) an undirected graph ([2]). We shall say that
G is thegraphof A if V =V and for every a,
eV it holds that
(3) Gla,¥c)efa,&ri forevery c eV if

end only if (a,&)c E .

Proposjtion 1. The graph of a graphic algebra
contains no circuit of length 3.
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Let A = (V,Q) be a graphic algebra; we shall
say ‘that a mapping L : Vx V— ep V  is a locali-
sator of A if for every a,l,c € V it holds that

(4) Lia,8)An L(4e)nLia,e)= {QCa,b;c)} .
Proposition 2. Let A1- (V,a1),A2= (V, Q)

be graphic algebras having a common localigator I, .
Then A = A,

Proposjtion 3. Let (V,E) be the graph of a
graphic algebra A having a localisator L . For eve-
ry a,be V it holds that {a, &1 cL(a,t) .Moreo-
ver, {a, &} = L(a,#) if and only if (a,&) e E .

Lemma 1. Every graphic algebra has at most one lo-
calisator.

Proof. Let (V, Q) be a graphic algebra with loca-
lisators L, and L, & L . Without loss of generali-
ty let us assume that there exist a, 4, ¢ ¢ V such
thatce L (2, &)2L,(a,6). Thus L, (a,8)A L, (4c)n
nl,(a,c)={ci+L,(a,b)nL, (fe)nL(acuhich is a contra-
diction and thus the lemma is proved.

2. Ve shall say that a graphic algebra A.= (V, Q)
is normal if for every a,.l,c,d € V it holds that

(5) G(Q(a,#¢),b,d)= Qla,b,R(c, L,d)) .

Proposition 4. In a normal graphic algebra (V, Q)
for every a,d,ceV
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(6) B(R(a,&,¢c), b,ec) = R(a,e)
holds.

Theorem 1. The graph of a normal graphic algebra
contains no circuit of length 5.

Proof. Let (a,,2,),(a,,a,),(a,,a,),(a,,a), (a,,a)
be a circuit of length 5 in the graph of a normal graph-

ic algebra (V,6) . Further, the operations * + " and
"-"on {4,...,57 mean the operations modulo 5. From
(3) it follows that a, = G(a2_4 » @, ;) , for
1441 €5,

Let 144 £5.1¢ o, = Q(a

¢ 5 %11 Uss ) am

Q,

a«-+2 - G.(a.. e

4 ies s a,;-) then by (2) and (5) we get

a,'- = G(a

’,a’.’s,a(a’-,aén,a,-,_,)) = G(a.,-,aé,,,, Q(a.’o,a.’-,_,,a;“))g

=Gy, a’?‘H,af,'“)- @;,, ,vhich is a contradiction. Ana-

logically, if a.’-“

a(a'a'-) e Vges ) + e

= Q (a.’,a«i“, @j,,) , then
. Thus, we shall next assume

that G (ay, ay,,,

3 -b
a;)

(- TP ) = Qy; if and only if
@ (a‘iﬂ 1 %ge2s Gira -

Without loss of generality let us discuss the case
Q(a,,a, a)=a,; thea d(a,, a,,a,) = a, . Let
@la,,e,,a,)=0a ; it Qla;,a,,a,) = a, , then
Q(a_’ )@y, @) = a, , which is a contradiction; if

which

@la,, 2, a,) = a, , then Q(g,, 2,,a,) = 2, ,
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ie also a oontradiction. Let Q(a,,a,,a,) = q, ; if

@la,,a;,0,) = a, ,

which is a contradiction; if Q(a,’,a.;,az)- @ ,then

then d(a,,2,, 2,) = a, ,

@(a,,a,, a.) = a, , which is a contradiction, too.
Lenmg 2. Let (V,3) Dbe a normal graphic algeb-
ra, a, &, c,deV. '
(1) If Q(a,c,d) = A (L, c,a), then G (a,b,c) =
= Q(a, &,d) .
Proof. A) Let 12,Q, 2, r€V and Qip,x,4)=
=G (qg,%,»). Then

Qln,q,n) = Q(s,8(n,q,x), Alp,q,k)) =
= §(s,0(n,x,q), B(2,Q(x,n,9), 1) =
- Q(Q(»,8(p,2,q),n),8(1, ), ) =
= Q(Q(R(s,p,n),q, 1), (1, p,9), ) =
= Q(Q(g,,n,a),p,a(n,ﬁ,g) -
- QUR(A(g, 2, A), p, 1), 1, 0) =

(+) = QAP A, 2,1, Q) =
(++) = Q(A(Pyq, %) 1, A)
- QAR %A1, Q) =
(++4) = Q(Qr1%, %)y ¢, ») -
B) Let t’“’v,wav ad QA(t, v, w) =

= Qlu,v,w) = w - Ten by (+) G(t,a,v) =
’ .

= Q3 Ct, w), t,u)m= Q(tu,w) .
) Let Q(a;"d)’ Q(v,e,d) . hen by (++)
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and (+++) Q(w,d,G(a«,b',c))=G(b;d,0(a,b;c)),a(¢,’1,;c)_
From B) it follows that Q(a, &, d)= Qla,¥, Rea,8,c)=
a G (a,#,c) and the proof is complete.

Iheorem 2. Let (V,3 ) be a normasl algedra, a, £, ¢,
d,eecV. When Q(a,d,e)=Q(4d,e)= €, then
G(G(a,#ec),d,e) = ¢ .

Proof. According to (7) Q(a,£,d) = Q(a,d,e) .
From (1),(2) and (5) it follows that G(Q(a,&,c), d,e) =
=Q(6(a,¥,c),d,R(a,d,e)) = Q(G(A(a,d;c)d,a),
d,e) = R(G(Q(a,#,d),c,a),d,e) = Q(A(Q(a,l,e),
e,a),d,e) = Q(G(R(a,b,c),e,a)d, e) =
=Q(Q(a,b;c)e,R(a,dye)) = Q(R(a,l;e),e,e) =¢ .

Theorem 3. Every normal graphic algebra has a
localisator.

Proof. Let A =(V,@) be a normal graphic algeb-
ra; as J we shall designste the mappingV<V—recn V
such that

Jin,g)={rneV]ir=QRip,g,n)} tor every n,2€ V .
Leta,c,deV , d= Qla,&,c) . By (6) Rla,t;,d) =
=Q(a,c,d) = AL, c,d)wd.Tus Rla,&e) =d €
eda,b)nde)AJ(a,c), Now, let ¢ € I(a, &)

NI(e)ndla,ec). Ten e =Q(a,b,e),

Q(d,c,e) =Q(a,c,e)= € ; thus, by (6) d =
=QCa,t,c) = Q(a,&,¢) = ¢ . This means thetJ
fulfils (4) and the proof is complete.
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Lemma 3. Let (V,3) be a normal graphic algebra,
m21,al,....., 5,6V and let it hold
that
(8) it 0 <m & m , then 4, =Qly, & ,a)+b .

M1

m
Then the elements & .....,6 &  are different from
each other.
Proof. The case when m = 1 is obvious. Let
m >4 and let for 4, %, _, be proved that
they are different from each other. Let us assume that
there exists kb , 0 & 4o < m -1, such that 4 =
= a(r*_ . Then
Ly, = QW _ &, a)=QQC0 ,,0, ,a)4, a)=
= QUAC.. 00, 4 ,a),...,4 ,a) L , a) =
= Q(AC.. QL , by, q50),..., 8, ,,2), 4, ,a) =
-QU..0L , b, ,0).., 4, ,0) b,
which is a contradiction and thus the lemma is piovod.

Theorem 4. The graph of a finite normal graphic

9 *°*°

algebra is connected.

Proof. Let (V,3) be a normal graphic algebra,
(V,E) ita proper graph and V - finite.

"A) Let us assume that there exist a, & € V ,
@ % L, such that foreveryc eV, c=Q(e,%,c),
it holds that (a,c) ¢ E . Then there exists an infi-
nite sequence 4y, &, ... of elements of V such that

r, = At L, a) =ty

Meqg? " m -9

se V is finite, then from Lemss 3 it follows that
is a contradiction. Thus, for every a, > eV, a & 2,

for every m = 4 , Becau-
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there exists ¢, ¢ = G (a,#;c) such that (a.,c)é'E. .

B) Let us assume that there exist o, &, ¢ V
such that there exists no arc connecting @ and l’o .

Then a == 1)‘; and there exists an infinite sequence

&, b., , 15_, of elements of V such that
(%-4’ 4, )'eE and aufn-, y Y 1) = &, for eve-

ry m = 4. From A), Lesma 2 and the finiteness of V
it follows that it is a contradiction. Thus, for every

e, €V there exists an arc connecting o and £ .

3) We shall say that a graphic algebra (V, 4)
is simple if for every a, &,c,d,e €V it holds that

(9) G(@(a,&e)d,e)=@(@(a,d,e), &,8(c,d,e)) .

Propoeition 5. Every simple graphic algebra is nor-
mal.

Remark, Algebras with operation of median (see (1],
pPpP.137-138) and tree algebras (see [3), pp.19-22 and al-
80 [4]) are simple graphic algebras. In [3], Lemma 2 and
Theorem 2 are proved (but in a more special context and
by a rather different way), Lesmas 2 and 3 in [4].

Let G = (V, E ) be an undirected graph. As
d, (a, £-) we shall designate the distance between a
and &, For every a, & & V , such that d_(a, &) <

< + o0 , e shall denote

(10) D ta,4)=(ceVid (a,e)+d, (4c)=d, (a,t)} .
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Lempa 4. Let (V,G ) be a simple graphic .lkib-
ra, G = (V,E) its graph, a,lr,ceV,dG(a.,b')<-a°o
ed ce D (a,&). Then c = Q(a, #,c).

’

Proof. Let us denote r:Lo (a, &) = m . The Cage
when m € 1 is obvious. Let m > 1 and let for o_
very &, & € V, such that d (@, %)< m , the dpgee
has been completed. Evidently, there exists an arc

(¢,,e,).00500, ,,¢c,), ouch that ¢, =a, ¢, = ¢
and ¢, = c for some fo, 0 £ 4 £ m .The case
when & = 0 or k=m is obvious.

Let us assume that 0 < & < m and that
GCa, e, ) # e, . Por every i, 0 < 4 <m ,we shall
designate Q (a, L, c;) @ e . If e =c¢ , then

2, = G(a,bc,)= A (a,t, @, ce, b V= A, ,,R(c,,2,0)=

&
= Q(c,“,v,c ) =c¢, , which is a contr-diction; thus

we shall assume that e, =a and analogically that en "=
=&.If 0<i<j<m and e, =¢, then by (6) ¢, =

= C; 6 which is a contradiction; thus €,,¢€,,..., €n_, ,

’. H
€, _, are different from each other. Let. 0 < j < m -1;

2 & V; then by (9)G(e; ¢, ,2)=R(Q,b,¢), 80,854, x)=

, if B(C;,C5p> %) = C5
=0 (@, 050,200, s B QG =

25,0, 4 §(e, 0, 0,2) = Cjas

c
This means that (¢ 2,),...,(e, ,,¢,.,) isan s
connecting @ and £ and thus dG(a,b)ém-Q,m”



is a contradiction. Thus the lemma is proved.

Lemma 5. Let (V,Q ) be a simple graphic algeb-
ra, G =(V,E) its graph, o, fce V, 4 (a, &) <
<+, 0, byjc)=c., ™en c €D (a,®) .

Proof. The case when d_(a, &) € 4 is obvious.
Let us assume that ol (a, &) >4 and that for every
a@,b eV suhthat d (3,%) <d (a,4),c =
= Q(z, E:, ¢ ), it has been proved that c & DG(E,E) .

Let us denote
X={xeD(a,b)l(x,a)eE],
Y= {geD(a,b)(y,b)ekE}

From Lemma 4 it follows that Q(a,x, &)= X, Qla,y, &)=y,
for every x€ X and 4 e Y .
Let us assume that c ¢ D_(a, %) . If there ex-

iste X, € X such that §(a, X, c)m X, then ¢ =

= Q(a,#,e) =Qx,&c) end thus c € I, (x,, &) c

02772
€ D, (a, &), which is a contradiction. The case when
there exista 4, € Y such that Q(a, %,C) = 4,
is analogical. Now let G (a,x,c)= a, 0(!}’,@,(2)= & tor
every x €« X and g 6 Y.If x e V , then by (9)
QCe, 0 (0,x)2)=R(G(a, L), Q(He,%),2) =

=c, it Qa,x,2) = @ .
= — ¢ re
Q(G(a.,.x,z),fr;c)\. Q(Le,x), 1f 8@,x,x)=x.

Thus, (¢, R(L,c,x)) € E ; analogicall¥:

(c,@(a,c,4 ) e E . Because R, e,x) +c &
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+Q@,c,g) and Q(Q(He,x),c,R(a,e, ) =
=Q(A(Q(&,c,x),¢,a),c,4) =8(R(Q(a,c,x),
c,),e,q) = 0@ (a,c,x)e,dCL,c,4)) =
= Q(a, &,¢) =c, then (A, ec,x)c) ,
(e, @ (a,c,n)) ie an arc. If there exists x, € X
such that Q(l;c,x,)= &, thenceD (4, Q(e,c,y)c

c D, (a, &), wnich is a contradiction. Now, let for eve-
ry x € X hold that Q (&, x,e) + £ . Obviously,

Q(Q(a,c,y)0a,d(,x,e)=Q(@(a,qy,8(c,a, R(8; x,c)))=
=0(Q(a,y,8(,x,Ga, #,¢)))=Q(a,c,y) . Becauae

d,(a, @y x,c)) < dyla,®) , then Q(a,y,c)e
€D (a,8(f,x,¢)) . This means thatce D (a,R(L, x,

¢ c D, (a, &) , which is a contradiction and the
lemma is proved.

From Lemmas 4 and 5 we conclude:

Theorem 5. Let A be a simple graphic algebra, G
its graph. Yhen G has a finite diameter, then De is
the localiszator of A .

Corollary. Let A and A, be simple graphic al-
gebras with the common graph G having a finite diame-
ter. Then A, = A! .

Example. let a,&,c,d,e Dbe different from each
other; let us denote U=1{a,&¢c,d}, W= Uuiel.

Let (uU,q,), (U, 8,7, W, 0.’), (W, G‘_) be graphic algeb-
ras such that
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Q,(#e,d)=a, Qlc,d,a)=b, 8 (d,a,&)=c,B (a,t;c)=d;
QZ (a,,b, el= a, Qz(a,,lr,d.)z »ff, Qz(ll}c,d-)u c, azfa,&,d)rd;

Q(a,t,d)= 0,8, (a,b;c)=b; Q(4e,d)=c,8le,d,a)=d;
B,(a,2 )= b =Q, (4 e,c), A (a,d,e)=0(c,d,e)=d,
Qs(*e’,€,'4)- Qa(a, e,c)=¢;

0 (a,,e)=Q (a,4,d)= @ (a,t,e)=0,Q, (b cd)=

=Q, (&e,e) =B, (a,c,d) =¢, 8, (a,d,e)=0,(4;,d,e) =
=GB, (c,d,e)=d, Q,(a,c,e)=a .

Then (11,Q,) does not have the localizator and ita
graph is non-connected; ( U, az) has the localizator
and its graph is non-connected; (W, 03 ) does not have
the localizator and its graph is connected; (W, 0.4 )
has the localizator and its graph is connected but it is
not normal; moreover, (W, Ql’,) has the same graphs as

the simple graphic algebra (W, Gs ) such that
@ (a,c,e)=c, andiffa,c,ed*ix,gy,zicW,

then @, (x,4,2) = Q (x,4,z) .
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