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Commentationes Mathematicae Universitatis Carolinae

11,3 (1970)

CON NECESSARY CONDITICNS OF OPTIMALITY IN LINEAR
SPACES

Milan VLACH, Delft

1. Introduction. The approach of the present com-

munication to necessary conditions of optimality is
based on the fact that the optimality of an element
can be expressed by stating that certain suitable sets
have an enpiy interoecfion. Therefore, the following
scheme is adopted.

Let G be a set, let co be a subset of G and
let R be a reflexive and transitive binary relation
on G. An element x of G will be called 6ptimal
with respect to w 8and R - or more briefly (w,R)-
"optimal - if

(a) x € w,

(b) 4 e w ond YRx = *Ray -
This scheme is clearly general enough to include both
the problems of constrained optimization under scalar-
valued criteria,and the problemsof constrained optimi-
zation under vector—valuéd criteria.

For x € G let 'G: -mean iy 6G: gRx and
= xR#4y}.We notice that

(8) iGN+ @ then x is not (w,R)-opti-
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mal,

(b) if G:nw =@ and if x € w then x is
(w,R)-optimal.
If we are interested only in necessary conditions of the
optimality of a point x of ¢ then it is sufficient
to have at our disposal an "approximation"” A(x, @ )
of the set oo at the point x and an "approximation”
B(x, G: ) of the set G; at the point x posses-
sing the property

wNGy = = Alx,@)NB(x,G =7 .

If we are interested also in sufficient conditions of
the optimality,then, of course, also the converse impli-
cation is important. Without additional mathematical
structures we can hardly construct suitable "approxima-
tions" different from the trivial ones, as for example
A(.Sc,w)-w or perhaps A(Xx,@w) c @ .

In what follows we are going to present a rela-
tively simple realization of the idea in real linear
spaces. Nevertheless, a number of the known neéeesapy
conditions of the optimality are consequences of theo-
rems, obtained by this approach. A rederivation of both-
classical and more recent necessary conditions will be
the subject of another paper. Here, only simple illu-
strations are included for the reader s convenience.
Moreover, the reader will find in (1] a suitable back-
ground for the present communication.

Finally, for the reader’s convenience and to avoid

misundeérstandings, we recall some definitions and re-
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sults from the theory of linear spaces. Let L be a
real linear space. A surrounded point of the set

Acl is a point x € A possessing the property
‘that whatever the element & ¢ L, some segment [ x ,

X+ awul, where o« > 0, is contained in A . Here

?
the segment [x, x + cw ]l is the set of all points
y eL which are representable in the form 4 =
= (1-A)X+A(x+oxw), where O£ 2 € 1. A cone

in 1. is any set A c L satisfying the condition

XeA, ©« >0 = axeA .

A linear functional is an additive and homogeneous
functional. The set of all linear functionals on L will
be denoted by L*, If L. is a real linear topological
space then the set of all continuous linear functionals
on L will be denoted by L™ ,

Lemma 1 ([2], Chapter 3, Section 3.2, Theorem 1).
Let M, N be convex subsets of a real linear space
L and assume that N has a surrounded point but no
point of M is a surrounded point of N, Then M ,N
can be separated, that is, there is a nontrivial linear

functional £ and a real number A such that

X6 M =) f(x)& A,
x eN == f(x)S A .

Lemma 2 ([3], Chapter I, Paragraph 4). Let L be
a real linear topological space. If £ & L* and if

there is a non-empty open subset U of L. and a real
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number ¢ such that f(x) # ¢ for all x € U , then
felL™

2. Conical approximations. Let L. be a real li-

near space, let 3, be a subset of L. and let X be a
point of L . We define approximations C (x, Q) and
K(x, @) of the set @ at the point x as follows:

4 €C(xQ) em>ueL and Y i'i.“,n:x-t-au «Q ,

“weK(x,Q)emdbuel, and 3 V :x+xu6eQ@ .
8>0 «e(0,8)

We notice the following properties of C(x, @) and
K(x,Q):
(a) K(x,8)c C(x,Q),

(b) C(x,Q) and K(x, @) are cones in L ,
(e) K(x,Q,N0@Q) = K(x,8)NK(x,R,) ,

(@) C(x,8,NQ) > K(x,8)NC(x,8,) .

Theorem 1. Let G be a real lineay space. Then
a:nG: = 0 = [Cix, )N XK(X, G:)JU
VIK(x, @) 0 CCx, G ] = 4 .
Proof. If 4 € C(x,w) N K(x, G}) then.
‘-Eo ‘V.“M t X+ K € 6: . At the same time
there is «’ € (0,8) 'such that X + &’« € & . Thus
M= x+ a'« Dbelongs to @ N G5 . IfueKixawlN
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Ne(x ’ G: ) then the similar argumentation completes
the proof.

Illustration. Let xRq mean £(x) & £(g), where
€ 1is a functional defined on a real linear space G
end let w c G . .

(a) If there is an element « € K(x,@) such that
the limit

' . flx+acar)= £(x),
f(x,w)-“f:r&- =

exists and is negative, then at is not (w, R)-optimal

(since there is € > 0 ‘such that f(x+oxu) < £(x)

for all o 6 (O,e), 80 that « belongs albo to

3 R
Kix, 6,) e C(x, 6,)) .

(b) If £°(x, ) is defined (£’(x, ) need
not be linear) for all 4 ¢ K(x,w ) and if

nf £ (x,u) # 0 then x is not (@w,R ) -optimal
« € Kix,a) ?

(xew = 0 e Ki(x,w); #°(x,8) =0 .

(c¢) (See £41,p.77) Let the functional £ be de-
fined on a region @ of a real Banach space G and let
X, be an interior point of ¢, at which £ has a line-
ar Gdteaux differential. Then in order that the point x,
be (cw,R)-optimal, it is necessary that qruadf (x,) = 6
(gradf(x,) s @ == gradf(x,)(w) < O for some w & G,

K%, @) = G ).

The approximations X (x,Q) and C(x,Q) are
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insufficient in some\ important cases. However, more
accurate approximations require beside the linearity
also a convenient topology, as a rule. Thus, it is
natural to consider now real linear topological spa-
ces. For the sake of simplicity we consider first the
case of real nbrmed spaces.

Let I, be a real normed space, let @ be a sub-
set of IL and let x Dbe a point of L . We define ap-
proximations M (x, @) and N(x, @) of the set G

at the point X as follows:

weM(x,Q) ¢t wuel, andV 3 :x+avel,
£>0 we (0,8
V& 0sye)

“weN(X,B)ém> el and3V :x+aveld.
§30 x6(0,8)

€ Oluye)

Here O(w, &) denotes the set{wveL:lv-wl<e},
Let us again notice a few useful properties of M(x, Q)
and N(x,Q):

(8) N(x,®) e Rex, @), Clx, @) € M(x, Q) ;
(b) M(x,Q) is a closed cone.in L
N (x, @) is an open cone in L ;
(e) N(x,8,08,) = N(x,&) N N(x,8,) ;
1 (@) M(x,8,08,) D N(x,8,)N M(x,@,). .
Theorem 2. Let G be a real normed space. TPpen

wNG =g = [Mix,0)0 N(x, G311 U
ULN(Gx,@)NMx, G =0 .
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Proof. If 4 e M(x,w) N N(x, G:) then there

is g, > 0 such that ,

e €(0,€,), lw-wl<g mdb x+axvre G': .
Since w € M(x, ) for every € > 0  there are 3, €
€ (0,e) end w; € 0Cu,e) such that x+fB3,w; € @ .

Consequently, x + 3, w; € w N G: . If w € N(x,w)N

NM(x, G®) then the similar argumentation completes the
7 "X

proof.

Remark. It is not difficult to verify that

wNGR g = Rix,@) N R(x, 6 = O .
It is obvious that |

WN Gl = fms M(x,0) N N(x, Go) = 7 .
However, there are G, @, R and x such that

©NG, = @ and M(x,@) N R(x,G5) % £ .

Illustration. Let xRy again mean £(x) & £(¢),
where 8¢ is a functional on G . If at a point x €
cw f’(x,’u,) exists for all 4 and if £'(x,-) is not

only continuous ‘but the tpnctions %, () where

’

f(x+aun) = £(x)+ xf'(x,u)+ 0, , () ,

On (ec) =0,
<0+ P

satisfy also the condition
(e)
\4 T AL
>0 ?»o ub;co,n : .4 I <e
ve0u,d)
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then

.

mf
«© € M(x,d)
For other examples in real normed spaces we refer

to [1},[5]) and [6].

P Ux,u) % 0 = x is not (w,R)-optimal.

3. Convexity. Since the necessary conditions of
the optimality aaaeét that an intersection of some sets
is empty, it is possible, in the case that the sets w
and G: or their suitable approximations are convex,
to use various separation theorems. With regard to the
properties (c) and (d) of the approximations C(x, Q) ,
K(x,®), M(x,@) and N(x, Q) and with regard to the
fact that the set @w is often given as an intersection
of some sets (for example, as the set of all solutions
to a given system of equations and/or inequalities), it
is _desireble to develop separation theorems for the ca-
se of finite families of convex sets. Some theorems of
this sort have been stated in [1] and [ 7]. These results
are straightforward consequences of the following theo-
rems. -, s

Theorem 3. Let A, be a non-empty convex set of
a real linear space L . Let A ,A,,..., A, be convex
sets of L such that every A; (i = 4,2,...,m) hes
a surrounded point. If ‘ﬁ A,; =g then there are li-

near functionals £, £ ..., f, and real numbers A4, ,

Agy seey Ay 8uch that
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) = £, = 6 and not all f; are trivial,

~nv
) 22, &0,

=0 v

(3) xe A, = £;(x) & A, for < =0,1,...,m.
Proof. Let us define
N =A1KA2X...’<A”" )

. M ={(x,%...,x): xeA 3 .
Since M/ N are disjoint non-empty convex subsets of
L xLx.,, xL and since N has a surrounded point,

it follows from Lemma 1 that there is fe (L <L x .,

...» L)* and a real number A such that f # & and

(a) xe N = £f(x) £ A

’

(b) X e Ma=sd £(x) 2 A .

Since (L x Li> ... » L)* is isomorphic to L*x L*x...
...> L% there are £,8,i00, 8 6 L* such that

faf+ f,+ ...+ £, . Denoting Ai..' ‘m £, ()
(i=1,2,...,m) we obtain ¥4, ¢ A  and xe A, =
‘-‘ ‘ . 1

= f;(x) & A, . We complete the proof by defining
f,= -8, A, m -2 . '
Theorem 4. Let A, be a non-empty convex 'ut of
a real linear space L . Let A,;’At, eesy A,  be non-
empty algebraically open convex sets of L . If there

ere £, ,f ,...,f ¢ L* and real numbers
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Aoy Ayyeery Ay such that (1),(2) and (3) from Theorem 3
m
are valid, then LOo A, =2

m "
Proof. If x ‘aO.Aa then 0-‘5& (x) €

g
€T A 50 and thus f;(x) = A, for

i1 = 0,1,...,m . However, this is impossible, since the-
re is 4, € {4,2,..., m} such that f;_. = 0 and sin-
ce A‘-' is a non-empty algebraically open set.

(]

Theorem i'. Let A, be a non-empty convex set of
a real linear topological space L . Let A A ..., A,

be convex sets of I. such that every A‘. (i=4,2,.,m)

”n
has an inner point. If "OoAi = ¢ then there are

£,,2,..,£ 6 L* and real numbers A,,A,,..., &, such
that (1),(2) and (3) from Theorem 3 are valid.

Proof. Every inner point of A; is a surrounded
point of A; . Hence there are f,,f,, ..., f, € L* and
A,,A‘,..., Jtmv satisfying (1),(2) and (3). Since
£,(x) @ A, for x 6 A; (¢ =1,2,..., m) there are
non-empty open sets U, and real numbers t; such that

Yy eU, =bf ()t <=4,2,.... m .
Consequently, by Lemma 2, £; is continuous for i = 1,
2,...,m. .Tt.m functional £, is also continuous, since

N3
£ = -4.?1 o -

Theorem 4°. Let j-\° be a non-empty convex set of a
real linear topological space L. Let A ,A,,.., A, Dbe

non-empty open convex sets of L. . If there are such
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f,.44,-+-7fp € L™ 2nd such real numbers 2,> A ,..., A,

that (1),(2) and (3) from Theorem 3 are valid, then
.(3A4=l .

Proof. The sets A, ,A‘2 A are algebraically

27y m
open.

Remark. We have already mentioned that the cor-
responding assertions from [1) and 17] easily follow
from the theorems of this section. During preparatibn
of this text some other results of this sort were pub-
lished ([8]); Also these assertions are straightforward
consequences of the theorems presented here.

Corollary 1 [8]. Let A, be a non-empty convex co-
A, be

ne of a real linear space L. Let A/, A,,..., A,

non-empty algebraically open convex cones in L . The in-

m
tersection &ﬂa A, is empty if and only if there a-
L 3

re additive functionals £,, f (not all tri-

o s ey Em
vial) such that ‘En £; = © and xe A, = £,(x) & 0

for 4 = 0,1,..., m .

Proof. We use Theorem 3 and notice that @ is not
a surrounded point‘of LN\ A‘-_ . Hence ovvery A;_ is non-
negative and thus A; = 0 for all 4 .

Corollary 2 [8]. Let A, be a non-empty convex co-
ne of a real linear topological space L . Let A" A‘,.;.
vony A” be non-empty open convex cones in L. . The inter-

m
section &ﬁl A is empty if and only if there are
-

continuous additive funet'ionnlq f,,f,,00, £, (not all
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m
trivial) such that | J £. = O and x 6 A =)
im0 v hd

- £. (x) & 0 .

1}

21

31

[4]
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