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ERROR - ESTIMATES FOR THE METHCD OF LEAST SQUARES OF
FINDING EIGENVALUES AND EIGENFUNCTIONS

K. NAJZAR, Praha

In {1),(2), we considered the approximation of eé-
genvalues and eigenfunctions of a DS-operator. In this
paper, we shall present a priori and a posteriori error-
estimates for the method of least squares of finding
eigenvalues and eigenfunctions. Upper and 1ower error
bounds are found.

We assume throughout that A be a DS-operator with
its domain in a real separable Hilbert space H , i.eq,
A is a symmetric operator in H such that the set of
its eigenvalues is of the first category on the real a-
xis and the épectrum 6(A) is the closure of this
set. Let 1113511 be a totally complete system. Suppo-
se A is such that the eigenvalues {2, I, of A satis-

fy the relations

(1) o<|.a‘|<la‘£|§las|<...
and Jh is simple.

Let Rm and ﬂ,» be subspaces of H determined
by functions {¥;3  and {AY ]

g respectively.

-Let ¢, be a norsalized eigenfunction of A correspon-
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ding to the eigenvalue .4, . We shall denote the ortho-
gonal projection of 93, on R, and 8 _ by g,(“’ and
4, , respectively. By T we shall mean the restric-
tion of A to R, . Since 08 6 (A), it follows that
T and T-! are continuous linear operators on R,
and f,, respectively.

It has been shown in [1] that g  is an approxima-

tion to Mﬁl , Where

From Theorem 3 of [2) it follows that there exist
{wy 33, , such that the following conditions are sa-
tisfied:

1) «, ¢R, , lu,lI=4,

(11) 2 Mhuel =90

O lupy,#) >0 for m=1,23,... .

1. In this section, we shall derive upper and lo-
wer bounde tar%- M‘l . Before going further we note
this useful fact:

Since @ 1=1, it follows from the definition
of orthogonal projection that

,9’_9,:..5,1_ - ,%m,l ,
lg, by 1" = 1- 1 1* .

(1)
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Now, we present a group of two results,which is
useful to have on record for later use.

Lemma 1. With the assumption of (I), the follo-
ving‘ inequalities are valid for each positive integer

m
a) .1:' .1 T-" (mb '22 2.'(40” '1 _ '91(“) ,2 ,

B) 1A T g1 3 1-1g -‘("’9; 0.

. U @)
Proof. a) It follows from the definition of %
that ' '
_ g2 - - m)_ 42
!q, g re 'Q' Jl_' T 9, |

We have therefore

(2) 1-1g™ € 4+25- 1T g *-22,:(q, T *g) -

The proof of a) follows at once from (2), because
A, T ™) = (Ag, T ™) = (g, %z )= 1%z 12 .

b) By Theorem 2 of [1] we have
lAwl>1al-1ul for any u ¢ D(A) .

Letting w« = %-.9.11"“'54 we see that
2l 1g-"gl=lAul ,
whence follows

(3) '%_“093‘) lg-.ﬁ‘,'r.’“u%' .

It follows from Ig I € Kau b+ A -IT' Y |  that

4) A AT % 12 1-1g-2, T "™ I .

Now, if we insert (3) in (4), we obtain the sta-
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ment b).

Corollary 1. For any m,we have ¢, 124 1g, .
Hence *llg, -V I* 2 Ig, - ¢ [

Proef: By the definition g, , we have @, % /2 1>
>0 and

-4 (m) 1 . ™

(5) : NT 9&"(’_2.,., I %ll .
Theé corollary follows easily from (5) and Lemma 1.

Remerk 1. From the totally completeness of {¥ i,

and the assumption 0 € 6 (A) it follows that

tom g™ N = Liom 1M [ = 1

m oo
and therefore
& " (), - Lm m) - . o
m oo m oo 4] %

Consequently, from Lemma 1 it follows Lom |2 |-
-1 (m) ; e
AT g A=
‘Remark 2. There exists some m, = 0 such that
2 m 2 ) w2
} 2-l""§,L—-lq" 12 (1-1g,-"g1)* for m 2 m, .

Proof. From Remark 1 it follows that there exists

m, ‘such that Vg, - g i s % g -y I form =
2m..“. It follows that '
2 2 )
g rt2a-3-1g -“g 1 form 2 m, .
When this is substituted in -

. 2"(“6?"2_'9;(0)'22 2”“’% l2_4- 3‘lﬂa" ”2“.”?"__0"&!’1 .2_ 2 ,
we obtain the statement. ,
- An important tool in the proof of the next theorem

is furnished by the rollowihg lemma.
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»)
Lemma 2. If we denote the productlu,,q ) by af™,
then under the assumption (I) we have

22 - 12
(@™ 24 - 2m =1
25 - A2

for any m .

Proof. By Lemma 1of [1], we have’

-4 2
6) 2 _a2 2’_ 2 o)
( L .21:45(7!,‘ DR P74 o
whers .u::”’ is the orthogonal projection of 4, on 5{1;

and H; ~is the closure of linear manifold generated by
the eigenfunctions of A associated with the eigenvalue
A, . Since 1A | > 1A | end Hw H=1,6it follows from
v 2 1 m ’
(6) that
2 2 2 2 2 mm) 2
g”-.ﬂ:’?.(ﬂ,z-iq)('w““—”w4 ) ,

so that

Plu,:"’ 1”2 esq- %73—2—2_'—
Now Mf"’"’z (um,%)'% and thus thez prolf is cﬁomplete.‘
The following theorem is of fundamental importance.
Theorem 1. Let A be a DS-operator ‘and (¥, 17,
a totally complete system. Suppose the eigenvalues f)l’: 5
of A satisfy the relations 0 < l.7t1 | < !.2.216 M.glé
and 11 «is simple. Construct the agquence of numbers

{‘Zn }“""4 such that

€ R
) . fu”-ﬂ:
where R, = .#£1{¥, 3"‘;1 .

Let ""qq be the orthogonal projection of a normalized

eigenfunction @, corresponding to A, on R, =
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=L{A¥I’ and m, be a positive integer such that

11 =1
o) .
“'92, + 0 and

stants (.'1 and (, # 0 which do not depend on m such
that

n-14)
e G, = 0. Then there exist con-

(M lg -y lPlq, ~121%Clg-"5 1
for m 2 m, . _

Proof. Suppose m = m, . Then l"'”gg,ﬂ # 0 . By the
definition of @

)  gn.-I1A % CIG -2 UT" TG 1?)
where
- - - -1
C=UT" g It (1 1+12, 10T D7 .
From Lemma 1 and (8) it follows that

(9)  gu-I2 1€ C-1"g 1+ 1g™1*) for m 2 m, .

Since

. ) ' .

| TR 1A
we have

4 I
C £ - 5
C 21A04T T 0t

From this and Lemma 1 we obtain

.M"I‘“ 3 for m 2 m, .
201-1g,-“g D °

(4

Letting . : .
C=F1al-t-lg-“gNn* |
from(9) and (1) it follows . '
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=11 € C""%—m)gg 2 for m =2 m, -

To prove the second part of (7) we construct 4,
such that the 'conditions (J) are satisfied. Then

2 a2 2, .2 ’

In~ Ay =lAw, ~-Ag N +2A («,-¢,9) =

2 M 2 2 m2
22 g -"gh+22 («™"~1] ,

where d:f’": (Up, ) . \
Using Lemma 2, we have

2 2922y M 42 pa2 2 _a2y.ra2_ o241
QL2222 N~ H2-222 (@2 =22y (A2 -2y "
whence with the notation

2 .2 2 21 12 ™) 42

ng,n—l.?l“l, a-(?tz-.¢.4 )(.Z:-l-.ﬁq) -2.1-'1%- g’u s 1)’-.-2!21|
one finds

(10) X(x+4&)2a .
After some compﬁtation we‘find that the solution
of (10) satisfies the inequality x =g, - ll1l 2
219, ““’?4 i” ’
C, = 2121 (AF-22)-(522 +322)~" .

_ where

Thus the proof is complete. )
Remark 3. Theorem 1 is valid in thg case when JH
is a multiple eigenvalue of A .
Remark 4. From the proof of Theorem 1 it follows
that the right hand side of the inequality (7) is va-
lid for any DS-operator such that 0 go(A) .
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2. Beering in hind the considerations of the pre-
vious section, we now find a priori bounds for the ap-
proximations 4, to an eigenfunction g, . To estab-
lish these bounds we require the following Lemma 3.

. Lemma 3. Under the hypotheses as in Theorem 1, we
have for m 2 m,
(8) 1 Aw,-Ag, 12 &2 -22)-(A2+22)-(A2-22)"" |

(b) lut, - 1% & 2092 -22) (27 -2)" |

(c) 9.24."-1: éD-llg -y 2o
where D = 22- (1-1g - n~* .

Proof. In a similar way, by methods analogous to

those employed in the proof of Theorem 1, we can obtain
2 2 -1 (W -2 Wyl ym) .2
(11) Q"-2.4GIIT 2 e =g ") .

From Lemma 1 and (1) it follows the inequality fc).

To prove (a) we write

MAiy~ Agy I = 1A, 1P+ 23 -2(Ak, ,Ag) =

-qh-2+222 1-x).,

where «(% = («,,q ) -
Since ecf"e €0,1>, we see that »
IAu.,,-Aq,lz‘Qf,-&f+2&5-(1-(cc:”’)2) s

and the inequality (a) follows from Lemma 2.
The proof of (b) follows at once from Lemma 2, be-

)
cause (ocf'")’é uc:“, bu, =41 and g l=1.

The following theorem is a consequence of Lemma 3.
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Theorem 2. Under the hypotheses as in Theorem 1
there exist the constants C& and C; which do not de-

pend on m such that for m = m,
. _m) < - <. _m)
1A, 1 Mg - I £ 1 Aw,~Agll £C,-llg -
™2 AN )
19 -9™ & llu,~g Il £ C- g -1,
where g&”" is the orthogonal projection of q;. on

m
RQ = x{%;‘:‘1 .
Proof. The right sides of these inequalities fol-
low at once from Lemma 3. Since .2.1 %+ 0 from the de-

finition of orthogonal projection it follows

: 2 2, Aun 1, .2 m)y a2
lAw,-Ag I'=21I 7, gl 22-1g9,-"gl
- (m)
lup-gl2lg-g . I
Thus all is proved.
Remark 5. Theorem 2 is valid in the case when 41

is a multiple eigenvalue of A .

3. In this section, we find a posteriori bounds
for the errors in the approximations ¢, and «, to

the eigenvalue J% and the eigenfunction ¢, , respec-

tively.
Under the hypotheses as in Theorem 1, we construct
the sequence {4, 37’ , such that the condition (I)

is satisfied. To simplify our nogatidn in this section
let & =lAu,-€q, 4,0, where € = nign A, . '
Our next principal result is Theorem 3. An important

tool in the proof of this theorem is furnished by the
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following lemma.

Lemma 4. Suppose m is such that 'ac:") > 0 eand
ta,t > Qe - Then
(8) qn.~IAl&D 0l ,
haly + A7 - A
U (25 = @)

where D =

() g.-1a12Da2

where I = §cal-aD)gl. 0T VBP0,
(e) IAiu”—Ath‘D,d; ,

where D, = 523.[(al-aty(ai-giort -
(@) NAu,-Agh2D1d ,

1A,
where I = (a2 -a:)*o LVZIA [+VA2+ 27 37" "g‘,'."i ’

() lu,-gl=Dd ,
|
where D, = s.mzl.[(a:-}\,f)(a:-gf‘ﬂ i,
Eroof. Since Ae = |Al and 1Aw, II=Qn , we have
(12) . lAu“-eq,,,qgl%Zq,(Q,,-M,""‘1”’) ’

where a&:"-(u,,.,?,) .-

If we subtract the following identity
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Ic&-—u,,,ﬂlo qfn =2¢% (1-x™)

from (12), we obtain
13) 2a™g (@ -1 1) =a(y+29 - Mg-u, 1),

where 4 = ﬂAum-eQ”Q’ n-q,- l!q;’-u,@ﬂ .
Since g, = I.21l , it follows that 44 = 0 and

Gy = Aty €00 G+ €20 G- €2 4n 2 4 .
Hence we have fromx (13)

m,
(14) 2@18;1111)4%.(%,_2%."%_“@” )
It follows immediately from Lemma 3

Ln .
la-u-g'l &« 2. \/W "Vgn- I»A’l
Using this in (14), we obtain

ax? £ ¢+ b,

where

x=Vg, - 14,1, a=2g,a™ U= 49,41/&,—-“:’”.
After some computation we may find that i \

ng-q_’. This proves (a).

To prove (b) observe that

(15) o, € NAu,-eQ, ¢ 1+Q,- lg- u,t .
By the definition of m, in Theorem 2, we have that

m 2 m, . Since % = 19\.1| , it now follows from Lem-
ma 3 that ' .

» 2.Vg —_—
"q“‘“"l ! 2 &m‘?i— . Qu - ‘ﬁy' .
1
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Assume that g > I.Q’l, Then, by (15) and (12)
(16) - d, eCVg -l ,
where

N o 2,0 (=-a™)
¢=2 X-A; * \/1 -1al

Smcea. > 0, we see from Lemma 2 that

-o™ 2
an 4+ 1A 14 % ) €1+ Ml(g +IA 1) .2-24-!.&! 2 ‘
L J\.:- 13 A

The inequality (b) now follows from (16) and (17) in
the case of m> l}.ql ., It is readily verified that
(v) is also valid in the ‘case of In = M.’l .

The proof of (c) and (e) follows at once from (a)
and Lemma 3 because m t M.ql €2,
It is readily verifieq that

: 2 2 .

1Au, -Ag I 2 g2 22 2 212, 1- (g~ I2,1)
and from (b) it follows the inequality (d). This comple-
tes the proof.

From Lemma 4 (c) and from oy —> 0 it follows

. LT X ]

&A%-Ag’ . Consequently, there exists m, such

that for m 2 m,

(18) wign (Au, u, )= sign A = € .

Therefore

(19) NAuy- Qa2 = 29, (n~ Aty ) tor m 2 m, .

From Lemma 4 and (19) we deduce the following
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Theorem 3. Under the hypotheses as in Theorem 1

there exist the constants K, , K,, K’ , K,, Kz which
do not depend on m &and an integer m, such that for

m Zm,'
.2
Kg_,'snzz il M M1, €K, 6. ,
K, ¢, ¢ lAu,-Agl=K,-¢, ,
ey, - @, I < K¢ €,
where ¢, = g, - l(Au“,u”)l .
Remark 5. From (18) it followe that

Lm [Qn: rign (Aw, )] =2 .

4., In all previous sections we have been concer-
ned with setting up error bounds of approximations for
}\.1 and @ .

In order to obtain error bounds for 2-1-_ , 4 >1,
we shall assume that #
(II1) .Z.‘-' is not an accumulation point of the apectruﬁn
g(A) .

For the sake of simplicity, we shall suppose that
(Iv) A; is simplg, and 08 6CA) .

Select o~ in such a way that

1) @ TEWA),
(v)

2) l@-2)<lg-t] forany t e 6(A), t A, .

From Theorem 3 of [11 it follows that Lm ¢, =
. = -9 oo .
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=l ;-1;' , where @, 'wm NAw-@e .
lwlizt
Then @ +@, oOr@ - q, is the approximation to A; .

Denote this approximation by 3,2’", Let @, be a nor-
malized eigenfunction corresponding to A; , and g’,-""
and ‘“’9’- orthogonal projections of q’; on R, =

- xngz;" and R, = .‘Z{A‘I’- I:.' respectively.

14 2
If we apply the above results with (A - @ 1)
in place of A , then we obtain error bounds of appro-
ximations for A, and g; . As an immediate consequen-
ce of Theorems 1,2,3 and the following Lemma 5, we have
Theorem 4. Under the assumptions (III) - (V) we
construct {a, 33, such that the following conditions
are satisfied:
1) u, R, , lu, l=1,
2) Qu = MNAu, -cwu,

3) (u,, & y=20 .

9’ ~nei
Then there exist an integer m, and the constants C, ’

C’..,. C, , C" , C‘ , K, Kz., K,, K, which do not depend

on m such that for m 2 m, poy

(a) Gt & 12, -A1 & C o2,

& N, - N & GOf
Cortn € NAu-Ag 1 £C 0, |

where o, = 19; #"%l and x, = lg; - g1 .
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(®) X,el &1a,-a™ <K, ,

'“‘m"%'éxae‘n ’
where €, = @, ~ 1(Au, 4, )~ |
and A = @ + g sign L(AL, u,) -] .

Lemma 5. Let “g be®the orthogonal projec-
. @
tion of @; on R “wL{(A-«D)¥; }L, . Under the

assumptions (III) - (V) we have

Mg, -G N e g -GN ED M T N,

where

A
o || o nf - _“_‘_
'D ’ A;- 'tcﬂA)M t Fy

D= S
) = 2= & ‘“ N ALE |

Proof. It follows by the definition of“q‘.r“’ that
(20) Ag; =% “"l- s hg-(A-@Dwl
Since 0 & 6 CA) and © & S'CA), there exist A~' and
(.A—p.l)".. Then
(21) Mg;~(A-@I)ul=IBlA-D)g - Auwll, w6 R, ,
where B-(A-@LI)A" . and ‘I is the identity operator.
| Letting « -“4"’ ey a—‘:‘:—; ) it follows from
(20) and (21) that -
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(22) Ig; - % ‘“’nsl 24 Ao 1B, - g0 .

“v

Then, since A is a DS-operator, we have

a
(2 < -
3) B t:“f:A)"’ : l .

(24) IBwl 2ol inf 11- 5] for any v e R(A)
te6W t

Thus, by (23) and (22)
@) ()
Hg; - “ly 1 € D, Ig; - ™y, 1
It is readily verified that

(25) lq.- “‘JI- MIBEQ‘ Awll-) -ﬂ.,“u .

It follows now from (24) and (25) that
) _bnaEQp)n > I%‘“QQ - “'?& i,
Remark 6. In the case of multiple eigenvalue Theo-
rem 4 is valid , if 4« satisfies 3%) («,,« ) 2

me+q
2& >0 in place of 3).

References

{1 XK. NAJZAR: On the method of least squares Qf fin-

' ding eigenvalues of some symmetric opera-
tors, Comment.Math.Univ.Carolinae 9(1968),
311-323.

[2] X. NAJZAR: On the method of least squares of fin-
ding eigenvalues and eigenfunctions of so-
me symmetric operators,II, Comment.Math.
Univ.Carolinae 11(1970),449-462.

- 476 -



(3] s.G. MICHLIN: Prjamyje metody v matematiZeskoj fi-
gike, 1950.

(4] N.I. ACHIEZER - I.M. GLASMANN: Theorie der linearen
Operatoren‘in Hilbert-Raum,1960.

[5] A.E. TAYLOR: Introduction to functional analysis,
1958.

Matematicko-fyzikdlni fakulta
Karlova Universita
Malostranské ném. 25

Praha 1, leskoslovensko

%

(Oblatum 26.2.1970)

-479 -



		webmaster@dml.cz
	2012-04-27T19:24:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




