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ERROR - ESTIMATES .FOR THE METHOD' OF LEAST SQUARES OF 

FINDING EIGENVALUES AND EIGENFUNCTIONS 

K. NAJZAR, Praha 

In [1},£2J, we considered the approximation of ei­

genvalues and eigenfunctions of a DS-operator. In this 

paper, we shall present a priori and a posteriori error-

estimates for the method of least squares of finding 

eigenvalues and eigenfunctions. Upper and lower error 

bounds are found. 

We assume throughout that A be a DS-operator with 

its domain in a real separable Hilbert space H , i.e., 

A is a symmetric operator in H such that the set of 

its eigenvalues is of the first category on the real a-

xis and the spectrum tTCA) is the closure of this 

set. Let i ^ i ^ be a totally complete system. Suppo­

se A is such that the eigenvalues iXh of A satis-

fy the relations 

<D o< \\\< \xt\ <U$U ... 
and A, is simple. 

Let K^ and %^ be subspaces of H determined 

by functions i^i^mi and. fAY^JJ^ , respectively. 

Let ft be a normalised eigenfunction of A correspon-
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ding to the eigenvalue A * We shall denote the ortho­

gonal projection of ^ on R ^ and H^ by y * * * and 

**V f respectively. By T »• shall mean the restric­

tion of A to R^. Since OM & ( A ) , it follows that 

T and T~* are continuous linear operators on K ^ 

and %mt respectively* 

It has been shown in [13 that g^ia an approxima­

tion to lAjl ; where 

From Theorem 3 of 12) it follows that there exist 

{^o^AtaM 8ucn tDat tne following conditions are sa­

tisfied: 

1) M,m a R^, 144^1 mj f 

(II) 2> M^»'**» * 

4) (^mf%y > 0 for m, ~ A,2f$,... . 

1. In thia section, we shall derive upper and lo-

w*r bounds for 2 ^ - [X^l . Before going further we note 

thia useful fact: 

Since 1 % I * 4 , it follows from the definition 

of orthogonal projection that 

(1, . ' ^ - ^ / - f - i ^ i 4 , 
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Now, we present a group of two results,which is 

useful to have on record for later use* 

Lemma 1. With the assumption of (I), the follo­

wing inequalities are valid for each positive integer 

a) A*.ir-'"'w^l2^2.|"l5l4-i^,l2 • 

b) ia1lir'
,f>,.l> 4-.$}-"*>,« • 

Proof* a) It follows from the definition of ^ 

that 

We have therefore 

(2) ̂ i g ^ i 1 * ; * * ^ . 

The proof of a) follows at once from (2), because 

b) % Theorem 2 of II] we have 

lAu,l> IX^I-I^I tor any u.iS)(A) . 

Letting JUU ** %~&i'T
m4^^fy we eee that 

I-V.I«.,-"V-M«*I . 
whence follows 

It followa from J$| »» .UAH-IA^I'IT"1'*^ I that 

(4) l A J . | T - * ^ l M - l ^ - . \ T - < ' * 9 $ - • 

Now, if wa inaart (3) in (4), wa obtain tha ata-
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ment b). 

Corollary 1* For any /n.,we have|**^l(*£ *9£ • # 

H.nce -11% - «*<fH l
lil?,- qf» I* . 

Proof: By the definition g^, we haye £„,^ l&^\> 

> 0 and 

«>•..,. i r ^ i - t ^ - i ^ i . 

The corollary follows easily from (5) and Lemma 1. 

Remark!. From the totally completeness of iXi^m4 

and the assumption 0 & &(A) it follows that 

Aim,.Iff* H - JUm, I^W I • 4 

and therefore 

J&m, (m\i> m JUmi qtf"* m q> . '-

Consequently, from Lemma 1 it follows it^v '&,/* 

Remark 2« There exists some m.a £ 0 such that 

± v l ^ for ̂ ^ ^ . 

Proof. From Remark 1 it follows that there exists 

m»0 such that l'0fc~*^l ,*'| * ^%^i^% ^ for** £ 

* m^ . It follows that 

When this is substituted in 

we obtain the statement. 

# km important tool in the proof of the next theorem 

is furnished by the following li 

•••-• 466 



Lemma 2. If we denote the product (xt__ _ CP. ) by ot . 

then under the assumption (I) we have 

U.f, J £ 4 ^i ^ 2
 for any /n, . 

(6) 

Proof. By Lemma 1 of [13, we have 

* " w 4 •£ se <f £ 7 * ' 

wher*. xc/?** is the orthogonal projection of it£^ on Jf̂  

and H^ is the closure of linear manifold generated by 

the eigenfunctions of A associated with the eigenvalue 

X - Since 1,71 I > \% \ and lw I •'J- it follows from 

(6) that 

80 that I__* ' I* -M- *~ *< 

Now AJJ^X: (44,̂  <3_.)*0_. and thus the proof is complete. 

The following theorem is of fundamental importance. 

Theorem 1. Let A be a DS-operator and f %?.**»-/ 

a totally complete system. Suppose the eigenvalues IJl^i^ 

of A satisfy the relations 0 <c \X \<\X\& \X\& ... 

and A »is simple. Construct the sequence of numbers 

.0 J* such that 

í_fH--f 

where R ^ _, .J. < IT. Jf>#, 

Let im><gi be the orthogonal projection of a nomaliased 

eigenfunction g^ corresponding to X. on M^ m 
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•^CAiCIT^ and fYi0 be a positive integer such that 

9JL 4s v and 9? » 0 . Then there exist con­

stants C. and £ :£ 0 which do not depend on m such 

that 

for m, * <na # 

Proof. Suppose m, & m^* ^ « n ̂ ^ I # 0 • By the 

definition of g ^ 

(8) <u- ' *, i - c-ri^i*-^ iT-* H? i2; . 
where 

C « IT'1 ̂ l^fl^li-l^l-JT'^ ir* . 
From Lemma 1 and (8) it follows that 

(9) $ * H \ U frr-r^iVi^i1) for ,*, ̂  ^ . 

Since 

I T - " ^ l 
we have 

* ' * « « , 

2^1-ir^V-
From this and Lemma 1 we obtain 

t * -—-—-—"-T-J—rrjr- for ** 2t *v 
2C.1-l9«-c*fyl>1 

Letting 

(i-ti^i-M-i^-^ir1- , 
from(9) and (1) it follows 
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U~\\ ' * Ci'*9i- % " for . « . * ^ . 

To prove the second part of (7) we construct JU.^ 

such that t hecond i t i ons (J) are s a t i s f i e d . Then 

&-A} - tfA^-A^jV^C^-^,^) * 
2> A* I q> - *% Jl2+ 2 PL* Cof>* -1) , 

where *** - (u.^ , fy ) . » 

Using Lemma 2, we have 

whence with the notation 

•x-fcr-V,a.cA*-^)CAJ+Ajr1..a^li^ia, >»2i^i 
one finds 

(10) x t o - * * } * a . 

After some computation we find that the solution 

of (10) satisfies the inequality ,x m a^ — IX I .£ 

Ĉ  » ll%J-(X*-X*)-(5A* + 3X*r4 .. 

Thus the proof is complete. 

Remark 3* Theorem 1 is valid in the case when A* 

is a multiple eigenvalue of A . 

Remark 4. From the proof of Theorem 1 it follows 

that the right hand side of the inequality (7) is va­

lid for any DS~operator such that 0 W & (A) . • 
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2. Bearing in mind the considerations of the pre­

vious section, we now find a priori bounds for the ap­

proximations VL^ to an eigenfunction g> . To estab­

lish these bounds we require the following Lemma 3* 

Lemma 3> Under the hypotheses as in Theorem 1, we 

have for m, -fe *n0 

(a) iA4^-A»1 i i*f«i l
f > -A;) .a»+a;) .a*-A;)- f , 

(b) i ^ . ^ . * * £ < £ - * ; ) « * - * ; ) - « , 

<<=> &-•* ; - - J > - » 9 , - " V 2 , 

where J> = ft* • M - 1$ - "*ty I ) ~ * . 

Proof. In a similar way, by methods analogous to 

those employed in the proof of Theorem 1, we can obtain 

- 4 . z_ it T - * '"fi. »-- #••_-"•'n- • '""tL. a- ' n ) «* -*; *"T ^ r • <*<?p- * % - } 

From Lemma 1 and (1) it follows the inequality (c). 

To prove (a) we write 

IA-v- A*, I1 -* lA-u^IVA;-2C A u . ^, A g> > . 
-q*p-X

l + 2A*C4-«f»>)., 
where * ^ » 0 ^ . fy ) . 

Since ccf-'e <014> , we see that 

l A ^ - A ^ l ^ d - ^ + ̂ . CI-f*^) 2; , 

and the inequality (a) follows from Lemma 2. 

The proof of (b) follows at once from Lemma 2, be­

cause («%*)z& x^0, l ^ l « 4 and H<^ I » 4 . 

The following theorem is a consequence of Lemma 3. 
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Theorem 2. Under the hypotheses as in Theorem 1 

there exist the constants C± and C% which do not de­

pend on m, such that for m, -=* m*>0 

\ \ >' H -**% II -- M-V-Atgfl *£,' 1-$-^ I 

l^-^'ll * ll^-^ll^ Ci-\l%-<«i<pJ , 
c*n.y where cf is the orthogonal projection of Gfy, on 

Proof. The right sides of these inequalities fol­

low at once from Lemma 3* Since A. =# 0 from the de-
1 

finition of orthogonal projection it follows 

l^-^«^B^-«3»^>ll . 
Thus all is proved. 

Remark 5. Theorem 2 is valid in the case when Xf 

is a multiple eigenvalue of A . 

3. In this section, we find a posteriori bounds 

for the errors in the approximations g^ and M.m to 

the eigenvalue X<i 6nd the eigenfunction & 9 respec­

tively. 

Under the hypotheses as in Theorem 1, we construct 

the sequence {^m,i^mi euch that the condition (I) 

is satisfied* To simplify our notation in this section 

let *£ a l A * ^ - *%m 4Lm 1 , where '4tm miff* Xf * 

Our next principal result is Theorem 3* An important 

tool in the proof of this theorem is furnished by the 



following lemma . 
Lemma 4. Suppose m. ia such that «aĉ *t> > 0 and 

' V > « * • Then 

»<& + A*. - A* 
where 3. « 

t-»-&í-«ľ 

(ь) 4.-.V**** > 

where ^ - | C AJ- *J >•&• (ft+&ff + A >* , 

(c) lA^-A^I-r^cT , 

where J>$ - SA^ • ITC A* - A* ) (A\ - £ ) 3' - , 

(d) lA^-Aq-I^JViC , 

where 1̂  - CA* -A* A Z&tAJ+Vii*^!'1- <~^) > 

(e) IVH'*%<£ » 

where J), - 5-1A4 I • C (X\-A* ) CA* - a* > J" * * 

Proof . Since A«« - U^l and fA***"** » *« h a v« 

(i2) M-v«4US' 1 - i^^- / V , ' t r , )» 

,m where o t ™ - K . , 9 , ) • 

If we subtract the following identity 
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- ^ - - v i - C - a e l L f i - * ^ 
from (12), we obtain 

(13) --V^^C^-UJ)-^^*^.!^-^!) , 

where ^ . - I A a * - « £ » $ I - «„• l<3 - -*-, » • 

Since g^ 4 U | , it follows that <y. a 0 and 

Hence we have from (13) 

It follows immediately from Lemma 3 

Using this in (14), we obtain 

a** -sc + irjc , 

where ^ 

After some computation we may find that 

x -fclt'cf2. This proves (a). 

To prove (b) observe that 

(15) < * I A « * - « . f t ^ . $ l * ^ . | ^ - ^ l . 

By the definition of m,m in Theorem 2> we have that 

(ft 3. m.0 . Since g^ £ IA^ I f it now follows froo Lea-

ma 3 that 
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Assume that ^ > \^\, Then, by (15) and (12) 

(16) 

wheгe 

<Ĺ * c 
* ' > 

C--2- \ 51*' л 

Ysţ-яЦ 
\li+ \XJ(Ą 

l\l 
Since ****> 0 , we see from Lemma 2 that 

(17) \\\ M - O 'AJfe^-V* AÍtUJ-L 
y|.l 3 1 .& 4 i « *»» 1 — ar 2 " i , ^ l -
1 «*-'v 1 + aj-aj A;-A; 

The inequality (b) now follows from (16) and (17) in 

the case of %m>> liLI . It is readily verified that 

(b) is also valid in the'case of g^ » IX* I . 
The proof of (c) and (e) follows at once from (a) 

and Lemma 3 because & + IA J & 2 £ ^ 
It is readily verifie^ that 

*Au^-A9ii
z >&-*>>. 2-lty- (<l„- l\\> 

and from (b) it follows the inequality (d). This comple­

tes the proof. 

From Lemma 4 (c) and from <£ ¥-0 it follows 

M m A A A ^ A ^ . Consequently, there exists m^ »uch 

that for m, t m>i 

(18) 4*9*l> ^Ai4,mt44^) m 4*9** fy m € . 

Therefore 

(19) *A^fa+J$m *teHmml(^*&°P* * * "*> ' 

From Lemma 4 and (19) we deduce the following 
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Theorem 3* Under the hypotheses as in Theorem 1 

there exist the constants K^ , K#,-Kj, K.f Kg. which 

do no.t depend on /n, and an integer /n-f such that for 

m, -S /it 

K, • e* -i a - \ \ I * K, • e* , 
it *-• '•*' * • f t * ' 

V ^ * I A i^-A^ ,*x»#^ • 

where e^ » ft^ - I C A X I ^ - U J * ) - . 

Remark 5. From (18) it follows that 

; ^ C * U ' * ^ C A " * f ^ ) J " A* • 

4. In all previous sections we have been concer­

ned with setting up error bounds of approximations for 

\ and ^ . 

In order to obtain error bounds for «&• 9 <L > 1 , 

we shall assume that m 

(III) A* is not an accumulation point of the spectrum 

6-fA) . 

For the sake of simplicity, we shall suppose that 

(IV) * / is simple and 0 I €TCA) . 

Select /tc in such a way that 

1) <c* r * C A ) , 
(V) 

2) l^~4gl<(ft-tl fo* any i # C ( A ) , * * A ^ . 

From Theorem 3 of CI3 it follows that Mm AL. *•'' 
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- fp~A,4f , where ^ m J»ffi^ U A ^ - ^ S .' 

Then fju * g^ or p , - £ ^ is the approximation to A. • 

Denote this approximation by X(^ . Let g^ be a nor­

malized eigenfunction corresponding to <\* , and q?± 

and r g^ orthogonal projections of ^ on R ^ -» 

- * * ^ * £ * . f and G+rXiMt+J&i , respectively. 

If we apply the above results with (A - (U, I ) 

in place of A , then we obtain error bounds of appro­

ximations for «A. and gp. . As an immediate consequen­

ce of Theorems 1,2,3 and the following Lemma 5f we have 

Ifreorem 4« Under, the assumptions (III) - (V) we 

construct i AA*^ 1 ^ ^ such that the following conditions 

are satisfied: 

2) « U " »A^*-\<C*4*<*JI t 

3) <4^,^,> i 0 . 

Then there exist an integer m^ and the constants CA , 

C* i Cf » C* . Cf» Kf :t K* > Kt > ** *nich d0 «ot depend 
on **> euch that for m. fc ^ ^ 

«h.re c£ - I«!t - C * V . t I •*"- ** - -95i - 9 ™ I • 
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(b) X2el *i\-A?l*K,«L , 

lAi^-Ay-I^K^e*. » 

where £„,. - 4 * - ' CA--*,-«--»> -(-* • 

and *!? - (U + j w- A-9*. £ <A.i^l.^1|F) - <«. 3 . 

Lemma 5. Let <*,g,i'*-> be* the orthogonal projec­

tion of 9̂ . on &<f*«.S<<A-(e<,I)1^ •»£,, . Under the 

assumptions (III) - (V) we have 

where 

.5- (T^TI- ** H- -f-i , 

- •"*-(«- i«rtv»> * 

Proof . It follows by the definition of *cp/*'> that 

(20) I g ^ - ^ ^ ' l - /»wi. (-^-(A-ju-I)^! . 

Since 0 7 & (A) and ^ g* ̂ C A ) , there exist A"' and 

CA-(t4l)~ . Then 

where .B»CA-<aI) A~* and I is the identity operator. 

Letting M, mAmi€mty4 • " "̂  ̂  ^ , it follows froa 

(20) and (21) that 
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(22) t9i-«v->- * ' j ^ r ' * **<%-*%« • 

Then, since .A i s a DS-operator, we have 

(23) »B» -1 *ofi H - ~ \ . 
i<oM) t 

(24) l)B<vl £ I v l - i*X N - ~ - i for any i re f tCA) . 

Thus, by (23) and (22) 

•ft-^W^^V^-i-^Vrt • 
It is readily verified that 

(25) Ifli-^^l-^IBCc^.A^Ji-'l-^-: l . 

It follows now from (24) and (25) that 

Remark 6. In the case of multiple eigenvalue Theo­

rem 4 is valid , if AJL^ satisfies 3*) (<*iiff*'avn.f< ' ^ 

& £, > 0 in place of 3). 
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