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Commentationes Mathematicae Universitatis Carolinae

11,2 (1970)

REMARKS ON DOUBLY SUBSTOCHASTIC RECTANGULAR MATRICES

Pavel UIHAKX, Praha

In the present paper we show applications of doub-
ly stochastic unit matrix E of the type (m,m ) in-
troduced in [1l], to doubly substochastic matrices. We
obtain a generalization of some results due to L. Mir-
sky for the case m = m (see [2-7]).
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1. Orderings and doubly substochastic matrices

Suppose /., m are two positive integers.

Let R» be the euclidean space of the dimension

”
Define B.np = 2 bony for U,y eR, ,

a%ciff a, £¢ , a,%c,...,a, ¢£c, for
a,ceRkR, , :
+

+ + + - - - -
2r=(2 ', %,,...,Z],) end 2z =(z ,2;, .., x%7)

for z € R, .
If Z is a subset of R, then we put:

Z*wiz’;xeZ} Z ={feR ;f-220 for all ze Z?
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and i*——:ffeRm; f-2 =0 for all z e 2*7.
(1.1) Proposition. Let V, = {#eR, ;& > & = ... 243,
Supposs ¢'= (1,21, 0,...; 0), ¢*= (0,1,-1, o...,o yerey €2 (0,...,0,1,4)

and ¢™ = (0,...,0,1) are elements of R, . Then the con-
()
vex cone V,  is generated by the elements ¢! , oz, cee
o
ooy c¢™! and the convex cone (A is generated by
1 2 n-1

the elements c', ¢*,...,e"" , ¢™ .

Proof. According to [1] d e 17,,:' (d eV, resp.)
if and only if d +d, +..-+d, 20 for nw=41,2,...
ceegm (for n =4,2,...,m-1 endd +d,+... +

+d,_ = 0 resp.). Hence d € “’,,t (de \7,,, resp. ) if

and only if there are nonnegative numbers s ns---
«-. 9» (nonnegative numbers 7,, 9;, ---, % , where
T = 0 resp.) such that
-1 n
d=gcdegycds..+q ™+ e .
(1.2) Definition. A matrix § = (,o* ); fo of the type
(m _,m ) will be called doubly substochastic iff
=20 Zb. = 1 andi-gb-éi for
ah ? R=1 m 353 Tk m
}*",2,...,/”‘& and A = 4,2,...’01--
The set of all doubly substochastic matrices of
the type (/m ,m ) will be denoted by 5,,,, »
(1.3) Definition. Suppose S = (/o 'b € J.),,,l » and
T= () € ?J:m m -+ Then we define the following
orderings on the set 3,”,,.
£ ,< and

1° S & T iff 4, <4, for all 7 and k.

I\

» Wwhere
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® S5 £ T iff SA&.x £« Th.x for all
xeV, and eV, .

3 8 £ T ire S.x £ TH.X for all

xeV, anda &eVl.

(1.4) Lemma. If S 2 T (S £ T resp.) then S £ T.

(1.5) Lemma, Let S e ﬂm,,n . Then there is a doubly
stochastic matrix @ € .D,m,,,, (see [11) such that
S£a .

Proof. This lemma follows from Lemma 9.1 in [3].

(1.6) Theorem. Let E be the doubly stochastic unit

matrix of the type (m,m ) (see [1], 5). Then SLtE
for a1l S e B

m,m

Proof. Let S eﬁm’m.Then there is a doubly sto-
chestic matrix Q € I, , such that 5 &« G by (1.5).

According to Theorem (5.3) in [1] @ = E .Hence S &

LQtE by (1.4) end S 2 E .

(1.7) Corollary. Let U=1{x@® &; x €R,,, X, > X, >... >x >0,

eR, b >8 >...58,>0% (see [11,5.5). Then E

is & = U-exposed element of the set ﬁm,” ,

Ef.x >S&.x for all x€R, , L e R, eand
S e 5,,,,’,,,

Xy > Xy S>>, > 0,1(1>%>,..>l;‘>0 and S F.

i,e.

such that

2, Doubly stochastic and substochastic maps

Suppose @ is an element of the set V, and &

is an element of the set V, .
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Let E be the doubly stochastic unit matrix of the
type (m,m) .
(2.1) Lemma. 1° The following inclusion holds:
RL UV, Vo, |

2° Eb*- aeVf &> E,b"-—af'e\?: .
(2.2) Theorem. The following conditions are equiva-
lent:

1° There is a doubly stochastic matrix Q € Buym
such that a < Q& .

X Et-ae \7,,,’,',

3° a.v® & &.w® for £ =4,2,...,m , where
the vectors o™ and a” are defined in [11.

Proof. 1°= 2°: If a = Q&-, where Q€ Dp,m ,
put d = QL. Then d - a € RY, and E& -deV, by
(5.3) in [1]. Using Lemma (2.1) we obtain Property 2°,
2‘0__’ 1°: Let E & - a.e:\z,: .Put ¢ =E% and & =
=0e, ,Ch ey 4, &), where & =, +a,+...t Qp=C,-

=€ =-.-¢,,-Then & € V,, ; further & < c and

¢ -ae ‘2, . Therefore there is a doubly stochastic
matrix R €D, ,,  such that o = R& by (6.3)
in (1),

Hence a =« R¢ £ Rc = REL and @=RE €D, , by
(2.2) in (13,

%=y 3°: Et —we\.(_,‘"’ () @.x & Efr.x for all

x eV} .sSince E&. v*= L. E*v " =tr.w* for 1 =

=41,2,..,m and since the conus V,} is genera-

L. d

ted by the vectors o' , »v’, ..., »™ we obtain
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the equivalence ci’ the conditions 2° and 3°.
(2.3) Theore.. ™iere is a matrix S e ﬁm,w such that
a = S¢ if and only if E&*- q e \7”; .

Proof. 1° Let o % St , where S Gfm,m_ « Then
there is a doubly stochastic matrix @ 6 D,,,» 8uch
that S < @ by (1.5). We obtain the following inequa-
lities: a = S& < Sp* < Qa* .

Hence E&%- a € \7,,,': by (2.2).

2° Let E &* - a €V} . Then according to Theo-

rem (2.2) there is a doubly stochastic matrix Q € 1},",”

such that a % Q&% .Define S = 0% n € Pmym

B = qvé*,(%,.z 0 resp.) if 4 €{41,2,...,m1},
h ef1,2,..,mland L, > 0 (& = O resp.). Then
Q&*=S4-, Hence a = 54 .

(2.4) Note. If a e V', 6 #eV, and E,ﬁr’-a.e\of,,’;

then there is a doubly substochastic matrix
-~
S=(#;0%m € D,n such that a =S4, where 4., =
=0 if je{1,2,..,m3}, hef1,2,....,m7 and
L, £ 0 or ay =0 .
Proof. Suppose that a e V,, , & e V,  and

+ 7+ v
E:t:' —a €V, . Then there is a matrix R= (x;, )., €
e D,m,,,, such that @ = R4 by (2.3). We can suppose
that sz, =0 if B, < 0 for all 7z and R ..

a-
Put A; = ——— (A. =0 ir 4 €41,2,... m?

ra h%"‘.*,‘b’“ -4 t A 2
and ay = o ), D= 2.‘-/(,4,’ and S = (4,‘,. )z'»,h for

all 4 end k.Clearly, 0 € A, =1, S e 3 , ana
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Q = 51)’ .
(2.5) Corollary. Suppose a € V,, ~ and & € V¥, . Then

there is a doubly substochastic matrix S e B such

Do, m
that @ = SA& if and only if E&L*-~ a € V. and

EHEL  +a)e V} , where E} is the conver-
se-permutation matrix of the set .‘D,,,,',,, (see [17,4).

Proof. 1° 1f o = 8%, where S € ﬁ‘m,,,, then
E,, (- @)=E, -a)=E; SE. (E, ¢¥),E} a)eV,, end
E!, (-&)e V, . According to our theorem (2.3) and to
Theorem (5.8) in (11 E&* - a € V¢  end
E, (E& +a)= EE,(-#)* - E, (-a)e V!

2° Suppose that E&* - a € \o/ﬂ; and E,’m(EZr’-;-
+a)e Y} .Men E&* - ate U end ECE) (-&)*-

o,
-E,,a € V.5 by (2.1). Using the note (2.4) we ob-

tain substochastic matrices R = (n;0). 4 and T =

= (t;.) 4 in fm,m such that o= R, o = T(-4&),
where %, = 0. (t;, =0 resp.) ifje€61,2,...,m},
keil2,.,n? and f =<0 or ay £0 (g =0 or
a; = 0 resp.).

Put S= R+T . Then S e ﬁm,w and

a=a*-a =(R+T) & = S&.

The proof is complete.
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