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11, 2 (1970) 

GEOMETRIC OBJECTS OF SUBMANIFOLDS OF A SPACE WITH 

FUNDAMENTAL LIE PSEUDOGROUP 

Ivan KOI-X&, Brno 

G.F. Laptev 14] and Vasiljev [7] have established 

some computational procedures for finding of geometric 

objects of submanifolds of a space with fundamental Lie 

group or pseudogroup. Their papers give an extension of 

the methods by £. Cartan and are also written in an ana­

logous form, which is generally considered as unsatis-* 

factory nowadays. In particular, geometric objects of 

submanifolds are defined by some algorithms which are 

not deeper justified. In this paper, we present an inva­

riant and exact definition of these concepts based on 

the theory of jets. Our approach also gives a true pic­

ture of the following specific property of geometric 

objects of submanifolds. Every such object expresses a 

geometric construction which determines a geometric ob­

ject field on every submanifold of the corresponding 

dimension, or at least on every submanifold of some ty­

pe (as hyperbolic or elliptic surface for instance). 

That's why we define a geometric m/** -object on the 

space of all contact /m,* -elements, or on some its in­

variant subspace. To be quite invariant, we use a space 
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with a groupoid of operatora in our definition, but we 

also deduce the equivalent form for fibre bundles. We 

show in § 1 that the problem is reduced to the construc­

tion of covariant mappings of the standard fibres. For 

the sake of simplicity, we treat only transitive Lie 

pseudogroups. At the end, we describe the case of a lo­

calization of a Lie group. 

Our considerations are in the category C°° -

1. Let $ be a Lie groupoid over B with pro­

jections as^Jlr and let G^ denote its isotropic group 

over *x € B , t$l. We shall use frequently the following 

relation between Lie groupoids and principal fibre bund­

les. For every c € B , $ e = < 5 e $ , a ^ ) s c ? is 

a principal fibre bundle over 3 with structure group 

G and projection Jlr \ conversely, if V(3?G) is 

a principal fibre bundle, then the groupoid P ? asso­

ciated with P is a Lie groupoid over B . Moreover, 

if $ is a groupoid of operatora on a fibred mani­

fold C E ^v? B ) f then £ is a fibre bundle associa­

ted with cj> with standard fibre E e =• ^t (c); con­

versely, if an associated fibre bundle £ (3,V,G, P ) 

is given, then P P is a groupoid of operators on 

£ . 
Let G' be a group and let 9?* &—> G be a homo-

morphism, so that G acts on ST on the left by ( fy ,^** 

*~* <p (<j<>)tyf ty € (x y q- e G . Construct the associa­

ted fibre bundle P «r P x <SV G and define a right 
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action of G on V by {(u,y,)S §/» {(44,, $,§>')} 7 

-**" e "P» Or ? <&* e ^ > "then we &et a Principal 

fibre bundle V(3,G) which will be called the <p -

image of P # Further, g> is extended to a mapping 

tp:V—+V given by <p^ (u) ** { (u,e)1 and (<p^ ?g?> : 

; P ( B , G ) — * PCB,G) is a homomorphism of principal 

fibre bundles. Conversely, let P ( B , G ) and V ( B , 5 ) 

be two principal fibre bundles and let(g> 7<p):V(3,G)+ 

—* V ( H > 7 G ) be a base-preserving homomorphism, then e-

very M, €. Vx is of the form AA> « g^ (44,)>~i} 44, e V^ f 

fy e. G 9 and it holds AM & g> (44,<f )g> (fr)**}*, g,€G^ 

so that P coincides with the g>-image of P. More­

over, let <p be a Lie groupoid over 3 , let c e 3 , 

let G be a group and let g> •* Gc —> G be a homomorph­

ism. Construct the <p -image P of $ e and denote 

by <p: T| — > $ c the extension of g? f then the grou­

poid $ sr ̂  T*"" will be said the ?̂ -image of $ -

The mapping <p^ : >̂--v cj>, <^ (AJU4J,~*) ** 'dp(44?)§~i (44, ) 

is a functor which will be called the extension of <p • 

Conversely, let <p $ be two Lie groupoids over the 

same base, let g> ; (p —> $ be a base-preserving 

functor and denote g>ssg> \G- then <J> coincides 

with the g> -image of $ • 

The concept of a geometric object field is used 

in two equivalent forms which will be called the indi­

rect or the direct form respectively. Let P ( B , G ) 

be a principal fibre bundle and let G act on the 
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left on F . A geometric object field in indirect form 

is a mapping qf : P —* F satisfying y (AJL <y4 ) » 

s? £ y Co,) for every xt € Pf q, e G *f while a geometric 

object field in direct form is a cross-section of 

£ <B, F, G, P) .Let P be a 3 -space, then a pair 

of mappings C<pf <p0 ) ; (&f F ) —* ((x, F ) is called 

a covariant mapping, if <p : G — • G is a homomorph-

ism and <p0 : F — • F satisfies <p0O^/b)» ¥(&)<&> (*>) 

for every q, e Gf A> € F , Further, let Pf 3, G ) be 

the <p -image of P and let q> be the extension of 

<p to P, then (<pf<p0) is extended to a mapping tp : 

:E,CB?F, G,P)~* %(2>,ffGfP) given by <p2 ({(u,7*W* 

**i(<P.(juu)f <p0(/o))} # The mapping <R carries every cross 

section of £ into a cross section of £, . In indirect 

form, let Qf;P—*F be a geometric object field, then 

its image ^ 5 p—->F is given by ^p (i(AJL, <$, )} ) -=• 

^ ^ ^ ^ ^ 5 ) • Dealing with a Lie groupoid $> ope­

rating on a fibred manifold f£,^v,B), we define a geo­

metric object field as a croas section of £ . Let $ 

be another groupoid of operators on a fibred manifold 

( & , . | i , & ) over the same base, then a pair of mappings 

^ f * ^ P : ^ > ^ — > ( $ , h ) is called a covariant map­

ping, if <p^ : $ — • <|> is a base-preserving functor and 

<-~- ^ .- . .^jr is a morphism satisfying <j| (#*%)« ̂  f#)* 

• $j. (a&) *or a I 1 composable 9 e $ ; t e E * Natu­

rally, 9^ carries every croas section of E into 
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a cross section of E . Now, suppose ($ , E ) is gi­

ven; let F be a G -space and letC^gj,) : (Ge9 Ec)-» 

—• (G9 F ) be a covariant mapping. Construct the 

<p -image $ of $ as well as the associated fibre 

bundle E (B, F, G, $ e ) ; then (g>9 % ) is extended 

to a covariant mapping (^ .J^)» ^$> E ) —* ($, B ) . 

Thus, the construction of covariant mappings of a spa­

ce with a Lie groupoid of operators is reduced to the 

corresponding problem for a G -space. 

2. Let V be a transitive Lie pseudogroup on 
it 

a manifold M, d&m M*? in.Let TT ( V ) denote the 

groupoid of all ft -jets of the transformations of T , 

see fl], and let K ^ ( M ) be the space of all regular 

contact /m? -elements on M * Ml < /vtf £3], then 

TT ( V ) is a Lie groupoid of operators on K ^ CM) • 
Let cj> be a Lie groupoid of operators on a fibred 

manifold ( E, <fi>f M ) over M .. 

Definition. A geometric /m,*-object (iy9 (X) on 

M with values in E is a covariant mapping of 

nr*(P), K ^ (M)) into ($,E).More generally, let 

W be an invariant subspace of K ^ CM ) $ then a 

geometric ftrt0-object on M of type W with values 

in E is a covariant mapping of (TT (F),W ) into 

( $ , E ) . 

Let V be an rm -dimensional submanifold of 

M t then V determines at every point x € V a con-
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tact /m/̂ -element h^ V, [ 3h The mapping *x h* Mx V 

is a cross section of K ^ (M) I V which can be said 

the fundamental field of order H, on V f cf.UJ. If 

(t^1 (X ) is a geometric tm!*' -object on M , then 

X H* (T(M% V ) is a section of £ I V which will be 

called the field of (yf (X ) on V . (In classical 

terminology it is said that x H* (X(A% V ) is a conco­

mitant of the fundamental field of order /£, on V .) 

Thus, we may alao say that f y, (X) is a geometric ob­

ject of order H, for /m, -dimensional submanifolds of 

M . More generally, a submanifold V can be said of 

type V at «x € V , if M*Ve W, so that a geometric 

fYn!° -object of type W is a geometric object of or­

der fo for rm> -dimensional submanifolds of type W . 

Example. In particular,.an invariant of order n, 

for /m, -dimensional submanifolds of M is a covariant 

mapping of (TT*<T> , K ^ ^ M ) ) into ( Id,M xTR), whe­

re Id means the groupoid of identities on M x 1R * 

These invariants were studied from another point of 

view by Vanitura [6]. 

If we take an /t -frame A o n M . / 3 - f e * c ., then 

H*(r,M,) * <6Jh,, 0 e TT^ (V ) 1 is a reduc­

tion of H * (M ) to a subgroup & of l^ . Then 

K^. ( M ) can be considered as the associated fibre 

bundle with H (T9 Av) with standard fibre Km,,** -

the space of all regular contact mv^-elements on TR"" 
Hi Ht 

at 09 i . e . K ^ ^ M ^ has the symbol CM i K/nfm ? 
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Gr f H" ( T7 Jh*)) • To construct geometric rm!c-objects 

on M , one have to construct covariant mappings of 

CCr., K ^ m ) . For this purpose, the algorithms of G.F. 

Laptev can be applied. But we cannot explain it in de­

tails here, since it requires many auxiliary conside­

rations. 

3. We conclude with some remarks to the case 

if T is a localization of a Lie group G . Suppose Cs 

acts effectively on M , then the groupoid "FT CT ) 

of all germs of the transformations of P coincides 

with & x M provided that the projections <xpJlr are 

defined by cuC<^7x)» *?JlrCQ,j&)sTg,Xj q,& Grf x e M , 

and the multiplication is given by (q9
 9 x9) (cy7 .x ) -* 

=- (qf cy.x). We have canonical functor £*: Tl (V) —* 

—* TT (V) , If a geometric m^ -object Cy, CT) on M 

is given, then (y^* (T) is a covariant mapping of 

CTT CD., K ^ CM )) . Let c € M and let H be the i-
x 

sotropic group of C, then TXC (T) coincides with the 

principal fibre bundle G/H ** &/H CM f H ) and eve­

ry geometric object field in indirect form on a subma-

nifold V can also be considered as a mapping of the 

restriction of G / H to V which is nothing but 

the space of all frames associated with V in the 

classical terminology. - These remarks also give a 

comparison with our direct approach to homogeneous 

spaces in [3]* 
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