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GEOMETRIC OBJECTS OF SUBMANIFOLDS OF A SPACE WITH
FUNDAMENTAL LIE PSEUDOGROUP

Iven XOLAR, Brno

G.F. Lapt&v [4] and Vasiljev [7] have established
some computational procedures for finding of geometric
objects of submanifolds of a space with fundamental Lie
group or pseudogroup. Their papers give an extension of
the methods by E. Cartan and are also written in an ana-
logous form, which is generally considered as unsatis~
factory nowadays. In particular, geometric objects of
submanifolds are defined by some algorithms which are
not deeper justified. In this paper, we present an inva-
riant and exact definition of these concepts based on
the theory of jets. Our approach also gives a true pic-
ture of the following specific property of geometric
objects of submanifoldas. Every such object expresses a
geometric construction which determines a geometric ob-
Ject field on every submanifold of the corresponding
dimension, or at least on every submanifold of some ty-
pe (as hyperbolic or elliptic surface for instance). ’
That s why we define a geometric nnﬂ'-object on the
space of all contact mh -elements, or on some its in-

variant subspace. To be quite invariant, we use a space
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with & groupoid of operators in our definition, but we
also deduce the equivalent form for fibre bundles. We
show in § 1 that the problem is reduced to the construc-
tion of covariant mappings of the standard fibres. For
the sake of simplicity, we treat only transitive Lie
ﬁeeudogroups. At the end, we describe the case of a lo-
calization of a Lie group.

Our considerations are in the category C% .

1. Let § ©be a Lie groupoid over B  with pro-
Jjections a,f* and let G, denote its isotropic group
over x € B , [51. We shall use frequently the following
relation between Lie groupoids and principal fibre bund-
les. For every c € B, §, =160e $,a (@) =c} is
a principal fibre bundle over B  with structure group

G,

c
a principal fibre bundle, then the groupoid PP-! asso-

and projection £ ; conversely, if P(B,G) is

ciated with P is a Lie groupoid over B . Moreover,
if <1> is a groupoid of operators on a fibred mani-
fold (E,n,B), then E is a fibre bundle associa-
ted with ¢, with standard fivre L, =4‘l«-4(¢2); con-
versely, if an associated fibre bundle E (B,F,G, P)
is given, then 'PP" is a groupoid of operators on
E .

Let G- be a group and let F: G—>G be a homo-
morphiem, so that G acts on G on the left by @,3 )"
—9(g)g, ge G, ge G . Construct the associa-
ted fibre bundle P = P> G /G and define a right
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action of G on P by {(u,3)3g’={(w,33"3,
« e?P, g, §,’ e G 5 then we get a principal
fibre bundle P(B,G) which will be called the @ -
image of P. Further, ¢ is extended to a mapping

gz,:'P-—*'E given by @ (u)=1(u,e)i and(g ,@):

:P(B,G)— ’ﬁ(B,E) is @ homomorphism of principal
fibre bundles. Conversely, let P(B,G) and P (B, &)
be two principal fibre bundles and let (q_,,g:): P(B, G)»

d '—P-(B, 5) be a base-preserving homomorphism, then e-

very & € 1—9;‘ is of the form « =@ (w)g, « € ¥,

g € G , and it holds E=gg,(u9’4)9(q)§,, g€G,
so that P coincides with the @ -image of P. More-
over, let { be a Lie groupoid over B, let c e B,
let G be a group and let @ C%-—P G bea homomorph-
ism. Construct the g -image T, of P, and denote
by @: B —> @, the extension of @ , then the grou-
poid § = ‘E ic” will be said the ¢ -image of & .
The mapping @,: & — P, glu)= F)Fw)
is & functor which will be called the extension of @ .
Conversely, let , 5 be two Lie groupoids over the
same base, let g : d— 5 be a base-preserving
functor and denote @ =g |G, | then ® coincides
with the @ -image of ¢ .

The concept of a geometric object field is used
in two equivalent forms which will be called the indi-
rect or the direct form respectively. Let P(B, G)
be a principal fibre bundle and let G act on the
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1eft on F . A geometric object field in indirect form
is a mapping 9" : P— F  satisfying 7‘(41.9,") =
=gy (w) for everyuw € P, g € G ; while a geometric
object field in direct form is a cross-section of
E(B,F,G,P). Let F ve a G -space, then a pair
of mappings (@, §,): (G, F)— (G, F) is called

e covariant mapping, if @ : G— G  is a homomorph-
ism and @ :F— F  satisfies @, (@a)= @(g)qg (»)
for every g € G, » € F . Further, let T’(B, G) bve

the @ -image of P and let @, be the extension of

P to P, then (@, @,) is extended to a mapping g, :
:E(B,F,G,P)—> E(B F,G,P) given by g, ({(w,sM)=
‘{(9% (w), (%))} . The mapping @, carries every cross
section of E into a cross section of i . In indirect
form, let *: P—F be a geometric object field, then
its image ¥ : PoFT is given by o ({(w«,g)}) =
=§.-49° (#(w)) . Dealing with a Lie groupoid  ope-
rating on a fibred manifold ( K, ,B), we define a geo-
metric object field as a cross section of F . Let 6

be esnother groupoid of operators on a fibred menifold

(E ,Ji, B) over the same base, then a pair of mappings
(9,,92) :(p, L) ——*(E,E) is called a covariant map-
ping, if @ : @-——)6 is a base-preserving functor and
R E—E, is a morphism satisfying g?z(e-z)= % @)-
* @, (=) for all composable 8 € P, = € E . Natu-

rally, P, carries every cross section of E into
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a cross section of E, ., Now, suppose ($ , E ) is gi-
ven; let F be a G -space and let(®,9,): (G, E.)>
— (G, F ) be a covariant mapping. Construct the

P -image P of d as well as the associated fibre
bundle E (B,F, G, &, )
to a covariant mapping (@, 9,): (&, E)— ($,E) .

, then (@, %) is extended
Thus, the construction of covariant mappings of a spa-
ce with a Lie groupoid of operators is reduced to the

corresponding problem for a G -space.

2., Let T" be a transitive Lie pseudogroup on
a menifold M, dim M=m.Let TI"(T') denote the
groupoid of all x -jets of the transformations of T,
see (1], and let K,:;(M) be the spsce of all regular
contact m”™ -elements on M , m < m, [3], then

T“(T) is a Lie groupoid of operators on K; (M),

Let ¢ be a Lie groupoid of operators on a fibred
manifold (E, p, M) over M.
Definition. A geometric m™-object (7, J) on

M - with values in E is a covariant mapping of

ﬂTnCT‘), K; (M)) into (d,E ). More generally, let
W  be en invariant subspace of K[, (M), then a
geometric m™-object on M of type W with values -
in E, is a covariant mapping of (TT"(F),W) into
($,E) .

Let V be an m -dimensional submanifold of

M , then V determines at every point X € V a con-
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tact m"-element k: V, [3]. The nnppingxt—-)k:v
is a cross section of K:» (M) V  which can be said
the fundamental field of order % on V, cf.[4]. If
(¢, O) is a geometric m”* -object on M , then

X+ 0k, V) ie a section of E |V which will be
called the field of (¢, ") on V . (In classical
terminology it is said that x +» OCk* V) is a conco-
mitent of the fundamental field of order # on V 2)
Thus, we may also say that (3, 0") is a geometric ob-
Jjeet of order 4 for m -dimensional submanifolds of
M . More generally, a submanifold V' can be said of
type W at xe V, it "‘: V.e W, so that a geometric
m”® -object of type W is a geometr:fc object of or-
der x for nmm -dimensional submanifolds of type W .
Exsmple. In particular, an invariant of order 2
for /m -dimensional submanifolds of M is a covariant

mapping of (TT(T) , K:‘(M ))  into (Id,M =xTR), whe-

re ld means the groupoid of identities on M x R .
These invariants were studied from another point of
view by VanZura [6].

If we take an s -frame A on M,p3h = ¢ , then

HY(T, M) = {@h, O TS (T)} is & reduc-
tion of H* (M) to @ subgroup G of L:’L . Then

K::'” (M) can be considered as the associated fibre

bundle with H*(T, #2) with standard fibre Ki, m =

the space of all regular contact m""-elemen_ts on R™

at 0, i.e. KJ (M) has the symbol (M, K} m
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G,H*(T, #)) . To construct geometric »m™-objects
on M , one have to construct covariant mappings of
(G, K:’m ). For this purpose, the algorithms of G.F.
Lapt&v can be applied. But we cannot explain it in de-
tails here, since it requires many suxiliary conside-

rations.

3. We conclude with some remarks to the case
if T is a localization of a Lie group G . Suppose G
acts effectively on M , then the groupoid mcrH
of all germs of the transformations of T° coincides
with G < M provided that the projections a,,,b' are
defined by a (g, x)=X,4(g,x)=gx,g€CG, xeM,
end the multiplicaetion is given by (g, x7) (g,x)=
= (g’ %.x). We have canonical functor jﬂ: TT"(T") —>

— Tfm( T'). If a geometric m” -object (9,0) on M

is given, then (1‘;3"‘, 0 ) is a covariant mapping of

(T(T), K% (M) . Let ¢ €M end let H be the i-
sotropic group of ¢, then TT:(T‘) coincides with the
principal fibre bundle G/H=G/H (M, H) and eve-
ry geometric object field in indirect form on a subma-
nifold V cen also be considered as a mapping of the
restriction of G/H to V which is nothing but -
the space of all frames associated with V in the
classical terminology. - These remarks also give a
comparison with our direct approach to homogeneous

spaces in [3].
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