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Commentationes Mathematicae Universitatis Carolinae

11, 1 (1970)

ON EXISTENCE CF THE WEAK SOLUTICN FOR NCN-LINEAR PARTIAL
DIFFERENTIAL EQUATICNS OF ELLIPTIC TYPE

J. KABUR, Praha

Introduction. In this paper we shall be concerned
with existence and uniqueness of the weak sclution fcr a

boundary value problem of equations of the form

méé.ﬂmpi%(":]’é“) =f,
where the growth of g, (x, ?i ) in ?é is considered
in a wide span.

We use well—knowﬁ methods in reflexive spaces, na-
mely the calculus of variations and the method of mono-
tone operators. These methods are discussed and develo-
ped in the works of Browder [5],[6]; Nedas [1],[2]; Vajn~
berg [8]; Leray-Lions [7] etc.

The mentioned»authore consider the growth frcm be-

low and from above, given by polynomials, having the sa-

me degree, e.g.,

—ere lfITE T fa (x,§)% ¢ (A+IEIT)
m > 1 is a real number.

This qondition can be weakened for the deriva}i-
ves DPu  with 4| < & , because of theorems of im-
bedding.

We shall use the same notations as in [1],(2], as
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there are here many references to those wcrks. We shall

denote

< 141 .. .
D = —qu—-——q , where 4 is a multiindex, i.e.,
‘DX1 vee a.xu

i=(i,...,%,) is avector, 4 for L=1,.. N

N
- i i il = L, < .
are non-negative integers and {4l ‘..21 i e

In the present paper, the growth a, (x, §1- )
in f,-, is described by functions of certain classes.
Let us consider real functions 9'(“,7 , fcr which
there exists a positive number 4, such that
I g)eC(-00,00)n C(u,, @) ; foruu,
g Cw) + .wg,’ (w) is non-decreasing and
“%(q,(u)-bug,’(u)): 00 ; a*g(w) is even

for |l 2 4,

.

II For each £ > 4 there exists a constant ¢(£) such

that g (Lw) £ c(L)-g(u) for each 4w 2 4, -
III There exists £ > 4 such that

g(u) = %9«(1«.) for each & = wu, -
Now, we shall denote 771 mz; m.? the classes
of the functions 9,(.“.) satisfying I; I and II; I,II
and III. Let us have 9 (w) € m1 for all Ii] £ &
&nd 8Uppose g, (w) 2 g4 (w) (resp.gu(u)£gy(u))
for €8¢h 4,4 with |4l ljl £k and wu = u«, -
‘Then the condition for the growth possesses the
fors
laz(-",§é)l £C1 +"%‘~q«"-_ (f, » for lil £ &
and G5 () £min (1g, (1)), Igg(wd1); (el = a,) .
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Thus, the growth a, (X, D) in D':uv is limited
only by the properties of g; («4) and growth
a; (x, D¥w) in D¥u  for i 4 4 is limited by the
functions @; (w) and % (w) in a very simple form.

In this work we find the weak solution even in
such cases, when the degrees of polynomials differ by
estimating from above and from below at the same member.

We construct Orlicz spaces Lé (fl) by means of
functions G; ()= g; () - see Krasnosel ‘skij -
Rutickij [ 4]). Then we construct a space Wéf of Sobo-
lev’s type. in the following way:W;(ﬂ).!{u.e L’;o ),
for which the distribution derivatives D*« € La(n),
lil £ k3.

£l is a bounded domain of R™ ( N -dimensionsl
Buclidean space).

To the given equation we choose g;(«) 80 close-
ly as to obtain even a coerciveness. In special cases,

the algebraic condition for coerciveness is of the form

wEa S a0 63 = ¢ Sig ) -¢ -
When the growth is described by %(M) € ms for

1) « & , then W; is reflexive.
By the class ’m2 we can describe even a very

small growth, e.g.,

a; (x, % )= rgfl An(lg;1+1) . Buler’s equation
of Example a) in §3, being of this type, stands very
near to the equation for minimal surfaces.

By means of the clase 'm‘ we can describe a very
wide span of growths even very fast, e.g.

2
a,(x,§)=§, € 597 . In botn the cases M, eana M,
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the space WG‘? need not be reflexive.

In § 1, a preliminary material on Orlicz spaces
will be found.

§ 2 deals with existence and uniqueness of the
weak solution, if the growth is given by the class ms .

§ 3 involves solving of existence and uniqueness
of the minimum of functional constructed to an equation,
when the growth is given by the class 'mq . Generally,
we work with a non-reflexive space. In the space M%:‘
we define a convergence which is weeker than the weak
one but with respect to which W; is sequentially
compact.

Using Serrin’s result [9], we prove lower semi-
continuity of the funétional with respect to the conver-
gence just defined.

In § 4, existence and uniqueness of the weak so-
lution is studied, when the growth is given by the class

mz . In this case, too, W; need not be reflexive.

§ 1.
We begin by presenting some fundamental notions
from the theory of Orlicz spaces (see [4]). G («w) is
called tc begn N-function if it is of the form G(w)=

-—-{k;l(t)d-t, where »(t) > 0 for t > (0 is a conti-
nuous on the right, non-decreasing function satisfying
A(0)=0 and*% »(t)= + 00 . When H(t) is
a continuous increasing function, let us denote by

N (t) its inverse function and define P (v) =
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=_o/‘mft (£>dt . P(4) is an N-function, too, and is
called to be conjugate to G(w) . In the general case
# (t) is inverse in some sense to A(t) (see [4]).
Further, we shall understand G(«), P(«) - maybe with
indices - to stand for the N -functions. There holds the
Young’s inequality w.v < G(w) + P(v) for «,

a2 0. If Q) is a contiuous, convex and even func-

: . . Q)
> 4 3 —
tion defined for lul 2 w«, and satlsfymg“l_fzz )

= 0o, then there exists an N-function G (w«) such
that

e-lul® for Jul £ u,
G (u,)=/ , where ¢ _oc end &,

Q(ae) for lal 2 “,

are suitable constants (they exist) and o > 1. Q) is
called the principal part of G(« ) and it is denoted
pp.G(a) = Q (). GC(u) eatisfies ‘ A:. -condi-~
tion, if for arbitrary & > 41 there exist constants
¢ (k) and u, such that G(kR wu)<e(R)G () for
each . 2 wu, .

Suppose ) is a bounded domain of ‘R" .

The Orlicz class I"G (L1) is the set of all real
functions 4 (x) defined on () and satisfying

Plu,G) = [G(ulxNdx < oo .

Orlicz space L"é (1) is the set of all «t(x)
on {1 , for which (u,n) =_£u(.x)ar(.x)dx<oo holds
for all functions v(x)e L, () , where P(w) is
conjugate to G(u), with the norm

| F(w,2r)) .
w b =¢(«r,?(s4 ? N »
- 141 -




L; (fl) is a Banach space. EG ({l) is the
closure of bounded functions in the norm of L; ().
If G(w) satisfies Az -condition, then EG(.O.);-:LG(J).)E
= L; (L) .In the other case E_(fl) is a nowhere
dense set in L% (f) andE _(n)c L c L7 (o .

For & € L’; and 4 ¢ L"‘? (G(w), P(ar) Dbeing conju-
gate) there holds the Holder inequality I(,a_,q;—)l <

& Ilu.llG . llnrlP .

Assertion 1. If g (u) € 'm.3 , then there exist
f1,9 >4 ahd constents ¢, ¢,, &, such that
(1.1) c,'lu,l”é ug(u,)é c, lae 1% for wm =4, -

Proof. There exists G(uw ) satisfying A, -con-
dition with p.p. G (w) =ug (w ) . The existence of @ >
>4 and ¢, is_a conseguence of [4] (Theorem 4.1).

Iterating the inequality in III, we obtain

2"g () £ g (L"), (u 2z w,).

If 0 <ex £ 30% 2 , then the preceding
inequality implies
(1.2) %—Zé%ﬁ—)—,wau‘,.

We prove the existence of f4 > 41 and ¢, by contra-
diction. Thus, there exists {um} such that «,— 00

and
. g:(u«!!) ‘
Ma “” = 0 ‘ . ‘ c“)

Let us denote K:‘u“vg}“’) wx - K> 0 (see

I11,1). Every au,, is of the form 4, = 1”"’4,4,,"‘ , where
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, v
“, € (u,,£u,> end m is a positive integer. Accor-

ding to (1.2) we have a contradiction:

0<K,_9'__,m_.4_g_(_f"__g2_ .
W V* o™ ul)* “»»

\-o

Example. g.(u)= " * inPu. (Un lfn-u)q;... em ...lnu.)f‘"’

where w > u o 20 end 7 ,..., 9,  are real num-
bers. Let us extend g («) continuously on (-0, + cO)
to obtain an odd function for lu ) 2 w«, . If & > 0,then
gure M, . 1f o= 0,9 >0, then g(u)e M,

Let us have g, («) € M, = for il £ fe.There e-
xist G (w) with p.p. G () =vu.q¢‘-‘ (ee) . Now, we
construct W" M=4{wel, (),
eLG’_(_O.)} vhere D*w is the distribution derivative

for which D‘:.u.e

and 4 is multi-~index with [{| £ & . We define

LS . .
\A% (MW= WE', =N twe, (intersection) with the

norm "“'w; 4?&,”) | .

Let E(ﬁ) be the set of all functions defined
on (). having derivatives of all orders extendable con-
tinuously on 1L . Let D () be a subset of all func-
tions from € (fl) which have support in (L .

We define W* = M) , Where the closure is

& 3
taken in the norm of WE' .

Lemma 1. Wz; is a Banach space. If g, (w) €
e’m.,3 for |41 € & , then it is reflexive and separable.

% . *
f. (oD
Proo \Mp is a closed subspace ofmlzhLQ‘ )

(topological product of spaces L; ) ).

(]
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Ir g; (w) € m’ , then L;‘ = EG,- is a reflexive
and 8separable space (see [4],Theorems 14.2 ; 8.2 and
10.1).

Let €, (R¥) be the set of all functions from
€ (RM) restricted on J1 .

Lemme 2. Suppose @, (w) € m, for i1 £ 4 .
There holdg 5_171?"") = \\g;' () , where the closure is
taken in the norm of W; .

Proof is very similar to that made in [3] (Theorem
3.1) and thus we verify only the basic points of this
proof. ‘

“m € EG(.Q) possesses the following property:
luw.g(x, Fll < €, if mes F < 0"(E) , where
X (x,F) is the cheracteristic function of the set
F c 1) . Using the Lusin’s theorem, we conclude that
Pe(x+ 2)-f < €, if Izl < 0°CE) .

Let us denote wh(.x) the mollified function of
“
' 1§ - xI?
( =
X)) “ﬁ‘x)'a—ejiz—“’ugf-'zmhw € -xP-Mt w(§)d§ , where

Py - 1812 -
>0, u~|§’{;4w|€|2'4 d.? and 4 (§) =0 for

§¢-Q.Suppose v(ix) e EP(.Q.) and ’O(fv','P)é-4.We
haye

Y= 44 =i , _l_z_’.a;- .
- L () g G- (N x = |£44M A Lo

.-(u.(.x+hx)- .«,c.x)d,x;d,z F3

éi ll .
ae,,ﬁ,,“““{f’ﬁ'j""’“p‘ lulx+h x)- )l dz .
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By reason of the previous fact, (1.3) and llor “P <2,
we obtain Iu,h—u.le—> 0 with h = 0 .
The rest of the proof is the same as that in [3].
Lemma 3. Suppose q(u)e 'm2 . Then g («w (x))
is a bounded mapping from L’; (1) into L; (£1) , where
p.p. G(u) =49 (u) 8and P(u) is its conjugate. This
mapping is continuous if and only if g.(«) € 7723 .
Proof. For conjugate functione Gw), Plw) the-
re holds P( ‘G—(If‘)‘)< GCuw) , (e > 0) (see [41,p.25).
(This is easy to see in a geometrical sketch.)

From this inequality we conclude

1) £ P (Gwy) , or glw)<P(G))

(w = w,),

'P"‘(u), G(w) are inverse functions to Pw),
G(uw) for s> 0. As a consequence of the definition
of the norm, (1.4) and the Jensen’s inequality we have
(1.5) Dg(w (M, -‘-A Plglu(xNldx +1 =

£ ¢ +‘£G[w(x)]d.x s

where (¢ 1is a constant. ]
G(w) satisfies Az -condition and the first part of
the lemma is a consequence of (1.5) (see [4] p.95).

Ifg(w)e mg , then (1.4),(1.5) imply conti-
nuity by reason of [4] (Theorem 17.3)s

In the case g (w) ¢ '"Z3 we prove disconti-
nuity of the mapping @ («c(x )) . At first, from the

Young’s inequality we have

(1.6) G"'(u,)P-“(rv) “ w+ v and hence
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PG wn < 2 S

The fact that g-(w) does not possess III, implies
P(w) does not satisfy A, -condition. From this we
conclude that there exists v (x) € L, (1) such
that llv—v;mlv = d > 0, where

w(x) it lwr(x)ism ,

()7
N 0 it lar(xX)l > m .
We can suppose - (Xx) > AL, , where i = 'P"(G(ab))

end Gluw) = wg(w), wou,.
For a4, (x)= G '[P (v (x) - 2, (x))]  we have

fG(w (xX))dx = 0 and because of A,-
-w-r

condition for G(w), N, . — 0 (see [4],
Theorem 9.4).

With respect to (1.6) we have
a.m ﬂq,(u(x))ﬂv Z%HV”-V"P > % >0.

It ¢ (0) = 0, the proof is finished; otherwise
we prove (1.7) with g*u) = g.(w )~ ¢g(0), G¥w), P*e).
However, L* = L;* R I"P* = L"‘ and, in addition,, they
have equlvalent norms.

Theorem 1. If g (w) € m , then

GLulx)] dx = oo (pep.Ge)=eglec)).

(1.8)'w“ "’m'[ﬂ-' Tal,

If g(w) e m, satisfies
there exist 4,4 >0 such that £-& <1
K
(1.9) and c,,x’-q(u.) £gAL)E Cy A - @ (k)

for A 2 Ao, M = 44, , then

; Gl (x)]
Eise b SEahy dx = @ -
«w '
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Proof. From (1.2) we conclude
L%g(u) € g (™) .
For arbitrary A > £ we find an integer m > 0

such that £* ' A < £™. There holds

(1.10) .9, “"ﬁ_’,;"’(‘ﬂ“"zﬁﬁ’ 2.8"'""‘9&,) -
=qu) e 2 L 2% g ),

where 0 < ot £ ‘&’92 2, & >‘4 being fixed. Suppo-
se Glw)=wg () for lwl2u, >, and let us de-
note /9,(w), for lul =2 «w

* ()= 1
4 N0 , for lul < 23

93"(44,) is an odd, non-decreasing function satisfy-

ing (1.10) fer all A 2 £ > 4 and « = 0.
Now, we prove (1.8) by contradiciion.

Thue, there exists {u,(x)f satisfying llu, |&—} oo

s Gl (x)]

4 N, la

stant. Let ue consider 4, (x)= Z.m v, (x) , where

and dx <« A for all m; A is a con-

ar, l!e =R > 2 and hence A —> oo . Evidently,
~-Cc+ 6= Mq,‘*(,w) £ G(w) holds for each 4,

where ¢ 1is a suitable ccnastant. There holds

AR2 GE“;:“”"‘“ 2 [y 1, GOl g, s, (e llx 2

v

cy Xp ol () 1elQ¥ (o, (x N ldx 2
Z %ﬁ:(/_‘;_ﬁ'[%(xﬂdx-c) .

In regard té the known inequality P(@,G)Z% ll.wﬁe
for IIM.IIG 2 2, it suffices to take R=2(e +4) and

hence A% < -é— 2 (¢ +1), which gives us a contra-
4
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diction. The remaining part of the theorem will be pro-

ved analogously. We set again &, = 4, 7%, ,

G L, (Xx)]
— & = >
jﬂ 1 G (i) ,dx £ A eand v " R 2 .

Ay P
From the first inequality (1.9) we obtain, as in the

previous part of the theorem, the following estimate:

Q1D AL 6 Ly (0] dx-c) £.[ G Lag, (x) Tdx

From the second inequality in (1.9) we deduce
lgwrls °;' lwl® + ¢ for all « and taking
(w).for lw) =
9wy = P | 4
sgm u-g(u), for lwl< w, ,
in account of (1.9) there holds
\9‘*(3'“7|éc91ﬂ9f**(w)| + ¢ forall « and A2
2 A, , where €, is a suitable constant.
Thus, considering the inequality G (u) =< « ¢**(w) =

«Gl)+c for all , We obtain

!Cr[u-ﬂ(.x)J £ A,,,Iqr,,(x)llg-*’(ar,,.f(.x»l' 4
My () A, Y, (x) 2

£19* AV (x Ny 2 ¢, 2% Hg** (v, (x VI, +c <
e, (LG Ly, (x)]dx-c)+ c .

Now, considering R sufficiently large but

fixed, we ccnclude from (1.11) and the last inequality
c- .'7&::'""” < A which gives a contradiction and
the theorem is proved.

Corollary. If g (u) € 'mg satisfies (1.9),

; Llut gy v o, (p.p. 6l w)).
theriww lg.(w&d)l x = oo, (p.p. )cu.q, a_»
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Proof. There exists a ¢ such that [g (w)l £

é|%‘~"~)|+ ¢ for each «¢. We have

f G [Gu(.::l] x < G Lw(x)] dx .
2 '-—T",P+c _n ﬂq(a—)l?
It suffices to know gm || -E‘-i—f"—)- I = 60 . 1If
Heo iy 0 P
G(uw)

| —=—I % ¢, the Holder inequality implies
«w s

S GLuy (x)1 dx=J GLw(x)] il

n Ml IIG 2 wlx) llu.le

dx £ ¢ and hen-

ce we have a contradiction with (1.8).

Lemma 4. Suppose g(w) € 'm,3 and p.p. G(w)=

=u«q«(a_) . Then there exist constants e, C, such that

(1.12) 6 (DuxNdx £, > [G(Dut)dx +e,

o b § ,
for 4 € Wy , vwhere G () = G(w) and il ljil £ k.

Proof. Firstly, we prove (1.12) for «w € & (L)

and to this purpose it suffices to prove

(1.13) £6luoldx$e, T LGIS% Tdx +o .

We imbed f) into the cube "c RN with the
length a of the edge and with a center in origin. Put-

ting @4 (x)Y= 0 for X € RN - N1 we have «

"9, L% ag
(1.24) e lX,yeoy Xy )’_{ ‘83(“'; (£ 13 Xggorrsdy JAE, =4 @ )e =2 _x‘:*g - 1
There hold
° f“'au. d -
. - 3.)( ° ?4
(1.15) G[u(x)]é(x4+a,) G[——-L_x,+a, ), if 0<Xx +a<1

from convexity for G(u) (Glxw)4«xG(w),a< 1);
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% Oue  Su
Cluwol4Gl2a L2BB2h )4 o 6 o giidlfiy o

1 4
it 4 & X, +a £ 2a from A, -condition for G ()
(G2aw) £ c,G(a.) +c for each 4¢ ).
Applying the Jensen’s inequality in (1.15), we

x,
have’ Glu (x)] £ e, ,_/;’G[‘g*f;ld.f" +c and hen-

ce (1.13). P
. ),
The func tional__[ Glu(x)dx -_{u. x)- —m'?—] dx

is continuous from LG (L) into L,‘ (Jl) as a conse-
quence of Lemma 3. If w e We“ (1) , we choose «, €

€ D(L) satisfying nw”-u.lw" ~ 0.

Clearly, we may allow m —+ oo in (1.12) for wu, €

€ D(), and thus we obtain the required assertion.

§ 2.

In this section, we establish two general theo-
rems for existence of a weak solution, where the coer-
civeness is assumed and then we state algebraic condi-
tions to assure the coercivéness in special cases. We
work entirely with the reflexive spaces, except Theo-
rem 4,concerning the compactness of the imbedding.

The boundary 9f) of the bounded domainflc RN
is supposedto be Lipschitzian (see [31).

We shall denofe positive constants by ¢ with
or without subscripts and in the same discussion it may
denote different constants.

Suppose a (x, gi y for (4| £ & real func-
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tions defined for x € f1 eand —oco<§; < o0  with -
141 £ % (4,7 are multiindices). They are conti-
nuous in f?- for almost every x € fL and measurab-
le in Xx by fixed g’— . (By this designation we un-
derstand a; (x, f:"’-_) to be a function of x and
a vector £ = (§,,..., fy ), Where the integer
d € cand {i, 141 £ )k?.)‘

Let us denote K=4i,li1 ¢ I, L={i; 1i]l=t}
and M some subset of K with Ko M oL .

We assume g (w)€ 'm3 , 1 € M Dbeing chosen

with respect to an equation given in such a way that
(2.1) la;(x,§;)1 £¢ (4+3‘ZM @5 (6;)
for all i € M, where ¥; (ulec (-, 00 ) with
A
0« %:; (w)£g,[G (G uN], (lul245),p.p. G;(w) =
= & g, (u) and G;.' its inverse function for «..>0.

If every pair of ggu(u), % (w) fori,jeM
satisfies one of the inequalities %(u.)(z) > (w)
for m = a, , then the condition (2.;) can be rewrit-

ten in a slightly stronger but synoptical form:

(2.2) ‘a._;(-x,e?)l-‘.0(4"“?‘2’4@{4(?4)) ‘!:EM,
whereg«,_—i(a)eC(—ao, c0) and 0<q,‘.’-(u) %
€mim (19, ()], g, (w) 1) for lal 2 «, -

Condition (2.1) or (2.2) involves a;(x,§;) =0
for 1 ¢ M and @, (x, §;) are independent on fe
for all £ €M and i ¢ M.
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To the equation given with (2.1) or (2.2) we con-

[ 3 < .
struct a space \»{9 z&QM WG" with the norm
= i . .
Ilu,lw; 4.2,4 I Dran "G" to which we add n“’"l.,m.) in

the case (0,...,0) ¢ M .

- From (1.1) (Assertion 1) there exist ., @ > 1
such that w;‘(.mc W(; c W: Q) (algebraically
and topologically). Condition (2.1) or (2.2) can be wea-

*
kened by some information of imbeddings of Way .

Lemma 1. Suppose (2.1) or (2.2). Thena?(x,])",a,),
1 € M is a bounded, continuous mapping from V\%:" in-
to L&(.O.) ( P, being conjugate to G, (w) ).

Proof. From Lemma 3,§ 1 and (2.1) we conclude
3, [G (G < B (6, L G;'(6; ) = P'(Gy ()
for each lul 2 wu, -
Similarly as in Lemma 3,§ 1 we obtain from this inequali-
ty that %(.x, D%w) is a bounded mapping from Wa’:
into I..? ({1). The continuity follows from the results [4]
(Lemma 17.2, Theorem 17.3).

Condition (2.1) is stronger than (2.2). Indeed,

we prove min (1 ()1, 1g; ()1 £ 29, [G'(G; (w11
for lul = w . If G;(w) £ Gy (u), then |l £

G;'(G; (w)) end hencelg, ()l g LG (G, ()]
in regard to I. If G;(w) £ G; () (lul = 4,), then
P@) £ %(v) for larl 2 2 (w,) (see (4], Theorem
2.1) and hence P;'(nr) 5‘34(4,-)' (ll 2 ).

Using Lemma 3,§ 1, we have
9 LG7'(G; w1 = BTG, 6] (65 an) =
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-1 ~1
=In'tqgwiz 476G wn > § lg; Gl

for lal 2 «, and the proof is complete.

HavingbLemma 1, we are able to present the defi-
nition of the weak solution of a boundary value problem
(see [2),[3)). Let %) Dbe a linear subset of € ({1)
with P(N)c % c € (ML) . Let us denote \é_’, = 79-,

where the closure is in the norm of W; . Let

w,(x) € WG‘: represent a stable boundary value

condition and g € ( \%., )’ (dual space), g.(@)= 0 fcr
o ’

v € W.a.‘;‘ , the non stable one. (For the Dirichlet’s

L
problem, i.e, Vg)E wi the functional g@. is not

g) ’
given.)
I3 . .
“w € Wg, is called to be a weak solution of
the boundary value problem, if « — «, € Vap and

for all € Vé’

(2.3) f Z Dra; (x,Du)dx= (v f), + (%95,

, .
holds, where f € (\é_,) and (v, Qn.’ (v, 9,)&"_ are
the values of the functionals at the point 2 .,

Using a variational method we shall suppose the

symmetry:
da; . Da, ¢ :
(2.4) —24 (x, £3) = e (X, Fg) in the sense
aﬁc a <

of distribution for all <, LeM . i

Lemma 2. Suppose (2.1),(2.4) and £, g € (VG')‘

Then the functional

- 153 -



1 ) .
(2.5) @v)= fdt [ g“ Diva, (x,D* (4, +tv Ndx -

-(v, flg - (V,9)9,
is continuous on Va, and has a G8teaux differential

at every point equal to
DPv; 7= L ?_"D‘q‘f'a«; (%, D# (u,+ v))dx -

Lod (&, ‘;?“_—' ('ﬁ:, 9/)&& 4

(2.6)

Proof of this lemmg is the same as that in [2]

Theorem 2.1). We use Lemma 1 and Lemma 2,§ 1, only.
Now, monotonicity conditions and a general con-

dition for coerciveness will be written:

. 1 é 3 =
(2.7)”4’%#‘&."“—'“‘“. 4 EMD'V‘@‘: (‘X,D (“-a‘f'?r))dx = oo
(coercivegese).

(monotonicity).
(2,8 a) ‘:‘Z" (f;'b"l;)[%(’"fé)‘ofi(x;%) 1>0
for §=G= m .

fg [fnm;fd):"z =(7,,..., ) are real vectors

with d = cand M .

i &
is called to be semi-convex (see Browder [6]), if it

A functional ¢ (w«,1) defined on V, x \é_,
is ccnvex and continuous at .« by each 2 fixed and
if 4y — 2~ (weak convergence), then @ (w,7v;,) —
—~—» #(«,n) uniformly for . belonging to a boun-

ded set.
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Theorem 2. Suppose (2.1),(2.4),(2.7) and one of

the following conditions: i) (2.8); ii) there exists

a semi-convex @ («,2) where @B(w, )= @ ()

is from (2.5). Then there exists the solution of (2.3).
If (2.8a) is satisfied then the solution of (2.3) is

unique.

Proof. Let us define

¢ -
MW:‘R iy 4 £ .20 vra,; (x,D%(u, + v Vdx

= A (R) .

A(R) is measurable and £m A(R) = co on the
R ~¥ oo

ground of (2.7). There holds
R
$e)2 fR-AURIGE-CR=R (G LA do-¢) ,

where

and

R
“Vlwa‘,' = R. But fim if As)ds = co

Roa R
hence tm @ () = co. V, is reflexive and i)
ﬂ'v‘w‘;ﬂ» ¢

or ii) 1mp1y the lower semi-cocntinuity for ¢ (w) and

hence there exists a point v € VE’ at which @ (w)

attains its minimum.

If we construct a G8teaux differential at the
point 27, we find - with respect to (2.6) - that o +

+ u, is the solution of (2.3). Uniqueness is clear
from (2.8a).

Now we shall apply the theory of monotone opera-
tors - see e.g. Browder [5],[6], Leray-Lions L7]. Let
uaasau‘meM=M4uMz with M,‘ 2 L.

(2.9) The imbedding W — 1), WS is compact.
{3 4
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(2.10)‘;‘2‘”1({4-7¢ Ma; (x, §x, T )-a(x, T, A0) I

if ? 4 7 ; almost everywhere in 41, Wwhere o« € M9
and B e M, .

(2.11) “%1& 0y (X, §4) /(3 VE 14, 5, 9y (507

if 3 1§, 1— oo , uniformly for £, tem-L
“~ 6L ’

from a bounded set and X & fL, wher® Gy, («) are

from (2.1).

(2.11a)“£mqf¢a.¢(x,gé)/g_‘zbl§‘-I+“gtl%cg)l)—>oa ’

it 1€, 1 uniformly for Lem- from
‘:a f‘ -> 00 Y ft ’ M-L
a bounded set and x € 2 .

Let us denote (w, A(‘"?""))‘(_sznq 4 Dbwra, (x ,
Dwa, (x,D v, Dtu, +a)d s+ T [ Dwa, (x, D urur)dx,
2

where ct € M, and 3 € M,, |31 £ R

Theorem 3. Suppose (2.7) and (2.1) (resp.(2.2)).
If one of the following two conditions i) (2.8), ii)
(2.9),(2,10),(2.11) (resp. (2.11a)) is satisfied, then
there exists the solution of (2.3). If (2.8a) is satis-
fied then the solution of (2.3) is unique.

Proof. It is sufficient to verify the hypothe-
ses of Leray-Lions Theorem L[71.

The operator A (u,v ) is continuious and boun-
ded from Vo x Vo into ( V&’ )’  because of Lem-
ma 1. If (2.8) holds, then Mlzﬁ‘ and the mentioned
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hypotheses are verified.

In the other case we must verify:
1 if w, =« in Vo end («, - «,
A, ,u,V-Au, 4,))—>0 then A(v, «,)—

—A(r,u) in (V&,)’ for all v e V, ;

2) if w, —~u and Alw, u, ) — o’ in(\é_,)’,

then (w,,, A(w, 4, )) — (u, v’ , for allwve \C'

In the case 1) we can prove from (2.1),(2.10)
and (2.11), resp. (2.2),(2.,10) and (2.11a) similarly
as in [7)(see [2] Lemma 3.2) that it is possible to se-

lect a subsequence still called {«,% , satisfying
Di'u.,,,_(ad ~ D w(x) for |i) £ Mk almost everywhere
in ) ,For 4 € M we have

(2.12) @ (X, D¥(w,+ 4y ) = Q; (X, D? (w4 )

almost everywhere in (L . From Lemma 1 we have

(2.13) fa; (x, D’" (a, +“’m)”‘P¢ L ¢ forellm.
1f ¥ € % , then we have (2.13) for

D¢¥a, (x,D¥ (s, + 4, )) . From the Young’s inequa-

lity and (2.13) we conclude

“7;,24112; [D*%a; (x,D¥(uy+ apNIdx = C

for all m .

As a ccnsequence of the Valleé-Pousin’s theorem (see

£43,p.113) D'¥a, (x,D# (u, + 44, )  have uni-

formly absolutely continuous integrals and thus from

(2.12),(2.9) and Lemma 1 we conclude (¥, A(vy4, )) —>

=+ (S,ACv,u)) . Onaccount of (2.13),(2.9) and

Lemma 1, IlA(v,am)ll‘v’), < ¢ holds. U = Va,
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implies A (ar, «,,)—> A (v, ) in the space (L,
for all 6 V, .

In the case 2) we obtain
(2.14) [ EM‘D‘(%-u)a,‘(.x,D'(u, +u,Ndx —> 0,

. i .
because D (wy, - u,l“,‘ ';;-V” 0 and lla,.; (X,D’Tuo-i-

+u.”))ll& = C for i € M, .

,{; f‘i“zD"'u a;(x, D"(a., +4,,))d.x = (U, Al )~

-_,£ En,p’:“‘ a (x ,D“(ub+v),12’3(u,+%))dx 2 w,v) -

—{gnn‘u a; (x,ﬁ‘(u,+v)’1>’{a,+u))dx .
From this and (2.14) we conclude

(2.15) ,[1 &a})ﬁcﬁ @, (%, Dty +0), D+ oy N d x> (at,07) ~

- £ 3, Duay o, Paa+7), D+ N dox .
4

But
_A%M‘D"Zq,,a,‘-, Co¢,D*Cutyy + v ), Dty 4 14, W dxx —»
—4{.35, Diu ay; (x, D%, + ), PPy + ) )d x
holds as a consequence of 4, —> 4 in VE’ and
(%, DTty + 2, PPt ae, N>, (%, DTy +97), DBras, +40)
in the norm of the space LP‘, , because of (2.9) and
Lemma 1. Thus, from (2.15) we have
(i y A (v aty ) —> (s, v’ .

In the next we shall establish some sufficient
conditions for coerciveness, compactness of imbedding

and equivalence of norms.
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We shall use the following condition for coerci-

veness: v
(2. 16) Z?a (X Zc,,ing,'-_q«,‘(ﬂ')-c.

2,17 2 Ea(x,m) 2 ¢, .5 §:.9,(0)-¢c.

In the case of non-Dirichlet problem we suppose
(0...0)e M .

Lemma 3. Suppose (2.2),(2.16) and letgﬁ(Ao)e‘NQQ
satisfy (1.9) for 4 € M . Then (2.7) holds.

Proof. From every sequence llrtr,’,t‘”wé, —» 0o it

suffices to select a subsequence V”"b satisfying
(2.7).

According to (2.16) we have

£ 2 Dvna, Dy, Ndx=f E D (v va,)ay (x,

D*(u.,«mr Nelx - f &lﬁ])*ﬁ,a‘. (x, D# (s, v Ndx >
2c = LG (DU, +yNdx -

1ieM D
-e, Z gy (])"(u,-rv,;,))lt,,_:— .

Let us divide this inequality by Nwv;, + «, "w . If

(2.8) gy (DCety+ 2,0 My,

teM Nvm + 46, 1l
is bounded, then the assertion for 4; is true as a
consequence of Theorem 1. Otherwise the fraction in
(2.18) converges to infinity for a suitable 1;'_“ .
Then, with regard to (1.9), the corollary of Theorem 1

ives us :
& Fu oG Dyt vy )
S NG D (4, v, Ny e

oo .

Q\P
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Lemme 4. If we substitute (2.7) by Condition
(2.17), Theorem 2 remains true. o

Proof. From every sequence % "W; - 00 1t
suffices to select a subsequence “tlefyms
@ (V""h)—’ 00 . Let us Qdefine F'(h)-fg'(i')d-t ’
g(ure M, . G (u) is increasing to infinity be-
cause of I.

The following estimations hold:
Fs)=F(s,)+ .[rg-cwd,t = PR+ 6g (»)
for » 2= 4, , where 4, is a suitable positive number
and hence F (4) £ 2 59 - (») for A 2 .
g (w) is an 0dd function and thus F(=») £ 259 (»)
for 5 2 5, . On the other hand,

Fin)= F(/,,)+fq,cudt 2Fs, )+4 gat24-24(%)

2
for » = b’a and F‘(_,,)>2 I Q,(Q ) forh%b’

(%, , 5y 5 By, P, 8T suitable positive numbers.)
Thus, there exists a constant ¢ such that

—e+-4i -g q,(-?: )4F M) 2269 (s)+e, ve(~00,c0) -

From this est:.mate and (2.17) we obtain

P 2c ,uZM dfo"qrq,‘ (D (uy+tv ) dt -
D ity O+ V(X))
-c ﬂvﬂw; czc,u%fdx/ g'(/a)dk—

—clvl g-c2e = [ G(Du+vNdx -
- “a.“"lw; -c ,
where the inner integral has a definite sense for al-

most all X € f)L . By reason of this inequality and
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Theorem 1, Lemma 4 follows.
0,01 will denote the bounded domains of RW.
Let T be a mapping from (' onto Jf1 . We shall call
T regular, if it is of the class C‘ and a 1-1l-map-
ping (" onto fL . Let us denote D_. the Jacobi’s
determinant of T,
Lemma 5. Let G(«) be an N-function and w &

& L’; (N). If T is a regular mapping from ¢ onto

LN with ¢, £ ID ()] £ ¢, in (, then v»(y)=
= (Tny) belongs to L% (0') and H»v'l%m,).‘.-c "'u'ﬂl..a(m’

where ( is independent on 4¢ .
Proof. Let us assume ¥(g)e E (o, .{:PL'.Y('y.ﬂdfyé
< 1. We have
- -
Loy vipdy = L ST (TR, (x)ldxt
P (O P PAITR
1

On the other hand, we have

LPILIT CONdxm L, PILGIID, Gp)ldy < 0, [PLSYIIdy -

From both inequalities and [4] (Lemma 9.1) we conclude

[ ] < > .
anam) = c,ﬂu,l‘_sm) for each u,eL.G o)

Lemma 6. Let T be a regular mapping from ("
onto f) with ¢, £ )‘D_r (,y,)l £c, in O and
G(w) N -function. Suppose 4¢ € W‘: () . If rg)=

=w (Ty),then v € W; () and ll'v"wa,w) <e ﬂu,/l%,m) .

1 1
We recall W_(N) = k%, where G, («) =

=Gw), il £ 1,
Proof is the same as that in [3] (Lemma 3.2).

We use only Lemma 5 and the fact that
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7w
Nawy~ ac e 755> 0, foreach 2% c n,

where 44, (X) is the mollified function of .« ()
(see the proof of Lemma 2,§ 1).

Lemma 7. Suppose ML € C! . Then for each
bounded domain fN* 5 f1  there exists an extension
for functions from \A/; (f)) to functions belonging
to W’ (N*) and

L W ear) £c '“’“w"(n) ?

where ¢ is independent on « .

Having Lemmas 5 and 6, the proof of Lemma 7 is
the same as that in [3] (Theorem 3.9).

Theorem 4. If 0 € ¢! and G is an N ~func-

tion, then the imbedding W; () — EG(‘Q') is com-
pact. .

Proof. Let {u, 3 Dbe a bounded sequence from
W (), i.e. l“’n'w" £ . Let us take an arbit-
rary .n.* o 1 . We extend every 4, to a function be-
longing to Ws (n*), still called «, with

Iu,m_ “w"(n‘) < ¢, because of Lemma 7. We can suppose
onx* Lipsch:ltzlan. For a smooth function.« GW ‘caxy
and Ll = th, = dist (I ,0.0%) we have

4 N
wloxa I -aa o) = [ gg (x+thrdt

where X € .. ,Supposing 2 (x) € E‘, () and

H

4?[1)’(&)1(1.)& & 1 we have

(2.19) f"’(-"’f“fawh>—w(.x):ldx =
i“' fd-*ffv(.x)g— (x+thddx .
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(2.19) holds also for 44, (x) by Lemma 2,§ 1. Using
the Holder s inequality in (2.19), we have
N

(2.20) f v (3) [y (x4 B)-4t. (NI Ak & 101 2, 2,
.ngi (xsthILdté - Ll Iy hyrine, < € 101 -
Taking supremum in (2.20) with respect to 2-(x) we
obtain lu,, (x -f-J'»)--.«,,»(.mr)l6 = ¢ +|4| .From L4] (Theo-
rem 11.4 and Lemma 11.1) the compactness in E (1)
follows.

Corollary. Let us have N-functions G, («)
for every 4 € M satisfying G; (w) = Gy (w) for
u 2 4, and H.l > |g ! . Suppose 80 € C” . Then

the imbedding w — A W~ is compact.
ieM-L G;

Assertion 2. Let G; («) for each i€ K satis-

ty %L‘Q € M, eand
(2.21) G, (u} 2 G, () = G,— (w) for (w = ),
where 4] = M, Izl < 4 .

If there exist numbers 4%, , @, from (1.1) cor-

responding to G, (w) and satisfying

N
(2.22) .
L <" N-n,
then lu n‘%’ c(z 1D I + luw “G, ) and the
imbedding b" o) — w is compact.
Proof, WG’ c W‘f:: (algebraically and topo-
logically).

Using the known imbeddinge we have
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1D% I, <e IDul, 2 c-lul o forlil< f.
""o

There holde (see [31] § 7

hulyn 2c(Z D%l + flacll, ) . From both in-
f“o ‘ﬂ'.

equahues we obtain the requlred inequality.

1 1
Finall w ‘and the imbeddi
s G, < wf“. . ne %o -

-—PL (n.) is compact.

aaertlon 3. Suppose (2.1),(2.7),(2.9) and (2.10),
where the equality is admitted. If a, (x, §,' ) is inde-
pendent on ft for all € € Mz , L€ M1 , then there
exists the solution of (2.3).
Indeed, the hypotheses of Leray-Lions Theorem are evi-
dently satisfied.

Assertion 4. If (2.1),(2.4),(2.9),(2.10) (the e-
quality admitted in (2.10)) hold and a,; (x, ??') is in-
dependent on §, for all 1 € M,, £ e M, , then the
functional from (2.5) is semi-convex.

Proof. Let us define

N 4 . .
G, =‘2'741 Jdt [D*ua, (%, DF (u,+tuNdx +

fd.t LDva, (x, D (urterNdx + (f,v) +

LGM,

""9’1"")&&' - ¢1(M)#¢2C0) .
@, (w) and @ (v) are continuous and bounded
over the space VE’ " as a consequence of (2.1), Lemma

351 and Lemma 1. Regarding the properties of a.‘.'(x, f’)
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and (2.10), the functional ¢ («) is convex (see [61).
By reason of (2.9) nad Lemma 1, @, () is continuous
with respect to the wb‘eak convergence in VE,’ .

Assertion 5. If the stable boundary value condi-

tion «,(x) = 0 in the problem (2.3), then (2.7)
follows from Conditions (2.16) and (2.1).

Indeed, we use Theorem 1 in the estimate

'jv_'w & Z,Dva, (x,DPwrdx 2

Gy LD wr (x)]
2Cq 5w Ja —'-nn:f—d“- ¢ -
In many cases the weaker conditions than (2.16)

and (2.17) will be sufficient.

(2.16a) “2;4 §iaq (x,65) = c‘,“zl_f,-q.,- (f-c

for almost all x € N2 .

(2.17&2&&@#3{,‘7})2 c,,_zb §:9: J+¢, £,9, () - ¢

for almost all x € fl ,For the Dirichlet’s problem the-
reis ¢, 2 0.

One can see easily that one of the conditions
(2.16),(2.17),(2.16a),(2.17a) implies Condition (2.1la).

Assertion 6. Let us have g, () e m, for
all £ € K and suppose @y () = @ () = g5 ()
for m 2 «, ,where £ € [, ,jeK~L . Suppose g, ()
satisfies (1.9) for all 4 € K , If (2.2),(2.16a),(2.10)
and (2.22) hold, where M1 = L ,M, = K-1L , then there
exists the solution of the Dirichlet’s prcblem (2.3).

Proof. We define A (v, « ) as in Thecrem 3, put-

tingonly M =L M, = K-L .
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Condition (2.9) is a consequence of Assertion 2.
If we have @2 € C?, we do not need Condition (2.22),
because (2.9) is a consequence of Theorem 4.) One can
see easily that Condition (2.16a) implies (2.1la). Thus,
it suffices to prove coerciveness of the operator

From (2.16a) and Lemma 4,81 we conclude

(v, Alw)) 2 ¢, &%x./-“ G; [D*(u,+v)1dx -
"‘5“%,"%@4(“#‘"”"7;‘3 2 6;4'2"."/,;6’- [D%(uq+v)]dx -
—e, S gy (D (uprwNly, —c” -

Similarly as in Lemma 3, we deduce froam the last inequa-

lity ‘(1’—7—4—('4:—)—)— ~—% oo ,if Il»u-ﬂw; ~ o0 .

Uar i,
The rest of the proof is the same as that in Theorem 3.

Remark. If the stable boundary value condition

a4, (x) = 0 ,then in Assertion 6 we do not need Condi-
tion (1.9) for g .(«), i € K , by the same argument
a8 in Assertion 5.

Assertion 7. Let us have g, («) € M, for
all 7 € K and suppose Gp () 2 % () = g4 ()
for & > «, , Where L e L ,3 € K-1L .Suppose (2.1),
(2.4),(2.17a) and (2.8). For non-Dirichlet problem sup-
pose, in addition, (2.22). Then there exists the solution
of (2.3). ‘

Proof. It suffices to prove @ (v) —» oo , if

flv ~» 00 ,where ¢(1r) comes from (2.5). Similarly
as in Lemm® 4 we have
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)z c, T L GID u,+)ldx +

+Cy Jo GLlu,+rldx—-c- llvllw; -c.
If (2.22) holds, then the required result will be ob-

tained from Assertion 2 and Theorem 1. We use Lemma
4,81 for the Dirichlet’s problem, and
Plr)zc 1& KfG:;fD‘(.u.+dr)Jd.x cllvl,-c’
holds. The assertion follows from Theorem 1.

Examples. Suppose g, («) € ’)713 for all
1 €M and let £(x) , 9,(,3) be measurable boun-
ded functions defined on .Q., 2. . Let us consider an
equation of the form
(2.23) | F -1Vl gy (D1 = £,

where £1 (x) 2 ¢ > 0 are measurable bounded functions.

U, € Wg, and @ (A) give the stable and non-stab-
le boundary value conditions.

a) If g (w) 2 0 for w e (-o0,00) and for
all 4 € M, end if the imbedding W —», r\ w" is

compact, then there exists a weak solution of the equa-
tion (2.23).
) Ket @ () & 0 for «u € (-~ 00,c0) end
i1l = & .
For |{| < 4 we assume @ () 2 0 for «« >0 and
[ (x) £ 0 for . < 0. Then there exists a weak so-
lution of (2.23). -
¢) If g; () >0 for me(-00,00) and for
all £ 6 M , then there exists the unique weak solution

of (2.23).
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The cases a), c) are evident from Theorem 2 and Lemma

4. In the case b), if 77, ~— 2~ in Wc;' , then for

4 , ,
$wr=Z 4t LliGe)Dv g, (D (u,+tv ) d x
holds.

@y (v) £ A‘zy_’:"(nf @, (v%) , where 2 is a
suitable subsequence of {1;‘ ¥ . Indeed, it is possible
to select {1)'”*? from {2, 3 satisfying D{%"‘b (x)—>
-~ D"'"v' (x) ferallieM-L ,almost everywhere in

A
N and 0$F‘(/s)=_a/9.(t)dt for »€(~co0,c0).

Thus, Assertion b) is a consequence of the Fatou’'s

lemma.
The concrete exemples of this type are

- +g ) = £,
N 8 . 3 & ny . 3«.
& I e I T gy e DL = £

where m, > -1 and m; > 03 m;,m; real num-

bers.

§ 3.
Now, let us consider a wide span of the growths
(2.1) given by the class 'm,1 ., If q,(u.) does not pos-
sess Condition II, then @ (<t (X )) is not a mapping
from L’;(.ﬂ) into the dual space L’; (L) , where p.p.
Gu) = 4 g («). Indeed, in such a case there exists

vix)e Lz(ﬂ) such that oo = .A'G[er(.x)]d..x £ +

+.[,_1r(x)g,(1r(x))d.x, ¢ being a finite constant.
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g (v (x)) ¢ L: n) because of the Hilder ine-
quality. Thus, the method of monotone operators is not
directly applicable as in § 2. In addition, we must ad-
mit the values + co for a functional from (2.5) if
we intend to use the calculus of variations. Fii\ally,
if the functional from (2.5) is finite at the point 7,
it need not be finite at the point 2 + 4’ and thus
there are difficulties with the Gateaux differential.

The weak solution for special cases of this di-
rection was obtained by M.I. Vi3ik [10], by means of
the Galerkin’s method.

We shall solve the Dirichlet’s boundary vaelue

problem for the minimum of the functional

(3.1) @)= [ £(x,D*w)d x+f g lx, D% ddx + F (v)

?

£
-g‘—:-é— =g—v%- on o')_ﬂ,’ for £=0,1,...,J¢-—1,

where 1 is an exterior normal, £, 3 are multi-indi-
ces with 141 = ke, |§l<hk . «,& wj‘rn) satisfy-
ing @ (u,) < 00 gives us the boundary values. F (o)
is some linear functional.

Let M, M“Mz, K and 1, be from § 2.

1) £(x, §;) 2 0 is continuous in all variables

(3.2) x e fL,I§,I<oc0 forieM, and (0,...,00¢ M . -
2) £(x, §;) is convex in £

3) 180x, §) -y, 5015 A Clx-ng N L1+F(x,§),
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where A ( is a positive function with & =0.
r o) i po G%a(w 1)

(3.3) gAx, §5) is a real-valued function for

x €0, l§3-|< oo with 9.'5Ma. . It is continuous
in f; for almost every x € fL and measurable in X

by 54 fixed.

(3:4) 1g.x, 501 £ c U4, 2 Gz (g -

(3.5) §(x, §;)+qg(x,§;)2¢, . G;(%) -c,
where X > 1 is constant.

(3.6) —G—"'-Ei'-)—e m, for all i € M, and -—G‘—(i"—)—em
“ “u 3

for all 3e& M, .

Let us construct a space WG; (N)= {wel (2);
£

D“:u, e L;. (213 , where D‘u is the distribu-
b 3
tion derivative, 4+ € M . Let us denote wc;’ =

= ‘ ; - <
1‘.94 WG} (£1) with the norm "“!”5 o, 1D ”q ,

to which we add f« il in the case (0,...,0) ¢ M.

L, ()
b <
. : —_
(3.7) Let the imbedding Wﬂ A .Q‘zwo‘ (1) be compact.
Let us choose 41 £ f1; for all €1 € L. such that

e
lawwl™ &« G; () for wu = u, (the case " 11 are lar-

ger" is of more interest) and denote f1=mim {fr; <€ Lj.
(3.8) F(r) € CWP"’)' (dual space) ;

(3.9) $4x, §;) is strictly convex and g (x, §;)
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is convex in f§ .

Theorem 5. Suppose &ML Lipschitzian for 2>
and dn e c? for o= 1. If (3.2) to (3.8) are sa-
tisfied, then there exists a minimum of (3.1) in wé: .
If, in addition, (3.9) holds, the minimum is unique.

At first we prove two lemmas.

Let us define \:I; ={w € WG"; , for which

dtu

L =0 omdn for L=0,4 M -13.In this

ge ey

case D(N) = W need not be true. \:f"’ is e-
& o
. i
vidently a closed subspace of Wa.;‘ .

We introduce *X convergence in the space Wé,;

by the following way: 4, -;)T‘ U, AL, , 4 € WG‘; R
1 S Du,, (0 D xVdx — [P0 0 d x|,

for all v(x) € E, ()  and for each i€ M
P; being conjugate to G; .

In general, w;; ~ need not be reflexive and *X

convergence can be weaker than the weak convergence.

Lemma 1. Wé‘“ is compact with respect to *X con-

vergence; more exactly, from any bounded subset B ¢ w"'
{ 4

&

it is possible to select {u,m} cB and « € W;;

such that “""—;7\ w . 1£90n ecC! for =1,

(-]
then WE_’%: is closed with respect to *X convergence.
Proof. The space L’:.' (), G being an N -
function, possesses the properties (see [4],Theorems

14.3 and 14.4):
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1) From any bounded subset A c L; (N) it is pos-
sible to select fu, 3 € A we L; (N) such that

(3.10) 2{u,,,,(.x)v'(x)d.x — {a«(.x)v(.x)d.x

for all w(x)e€ EP (n);

2) whenever (3.10) holds, then there exists ¢ such that
e b, € c .

W“' is a closed linear subset of [1 L* ()
[ i6M Gy

(cartesian product). By a successive selection we find
“, € B and M‘“e L;_ (L) for all ¢e M satisfy-

. . 4 . )
ing Jf D%, v Uxrdx — Lo vFixrdx
for all %) ¢ E,?,(.Q.) and for each £ € M . There ex-

L 3

ists w(x) e L;1 (n) such that «,, T “ -
We find easily that D%w (x) = u™(x) for all<eM.

and thus the first part of the lemma is proved.

Now, suppose « -;'-x—-> p7a for «, € \A'/G; 5

“ € Wg . In accordance with (3.10) there exists ¢

such thet fw, 0 . € ¢ and hence «, — « in

the norm of the space W:'4 (fL) . Thus, we have

Mu
3oL =0 on 0N for £ = 0,1,...,k-2. Now,

let us suppose o = 1 and ANe e? . Using the
Green’s theorem, we obtain for each Y& € (1)

{nD‘»a,.%¢db=£1>“14-n¢4“+-£1’;“4‘g,% dx |,

where 131- is ; -th component of the exterior normal »
and £+ 1= ¢+ (0,...1,...0), 1il=te-1.
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From *X convergence we conclude
(311 S D, 3 ds — L Durngd, |

Let us denote Fm. @) = ﬁp'“ﬂﬂ’:?db and simi-
larly (@) . There holds

(3.22)If, @ 4e "“h'wgg’”'cmé ell oy, Pec.

Restrictions of functions from E&(@A) on on
form a dense subset in C(@41) . (3.12) holds for
f(p) , too. We can uniquely extend £, > f  on
C(dR) and thus £ (@) —> (@) for each Pe
&€ C(PAR).In (3.11) we substitute & = LY, ye
& C(AN) and then we sum up (3.11) through 2=1,2,..
<., N . And hence

- .
(3.13) {a]).a,”zrd/a —_ .gn]) wyds
for 141l = #-1.

From (3.13) we deduce

h~4“

L Po%-1 ¥ds=0 forall ye C(PN) and thus
& € Wa‘; .

In the case ;2 > 4, dN is Lipschitzian. Sup-

pose 1< 5 < N—"!—q—,/ac_’-,ﬂ,.r‘or M E Wé:t we have

DY

at least D' v € Lg'(é.ﬂ.) , where -'QL’ =

-1
~N-T)s @nd lil= A-1.For ge EC) there
holds (3.13) and .
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where g" + 2’"1 = 41 . Restrictions of functions from
E () are dense in Lg, (A N) . We can uniquely ex-
tend £, . f on L%, (P0) and £, (¥) — £(F)
for each @ € Lz, (&) . From this we deduce

%1 o
a,,&.--v =

Lemma 2. Let us assume (3.2) to (3.4) and (3.6) to

O on &N egain.

(3.8). If w, —=x T w4,

@ (w, + ) £ Lom mf Plu,+u,) .

°, fo
, 4 € WE-'! > then

Proof. u,n —*.’.(-—y «w , where A

plies “, —r in the norm of the space W:"’ . The

“ e W'é; im-

’

results of J. Serrin [J] can be extended to the higher de-

rivatives and hence

L# 0, D, ra dx & Lim, gnf S #(x, Dty 4+ 44, Nl
The functional 49,(&,177'“):1« is continuous

f WG: into L1 () as a consequence of (3.3),

rom, /)

4‘"1
(3.4),(3.6) and (3.7) and with respect to [4) (Lemma 17.2
and Theorem 17.3 where we set Mz (w)= w4 ). The functio-

nal F () is continuous because of (3.8). Thus, we have
(3.14) Placy +w) & Lim inf Jy #Ct, DMty 4+ ity Nl x +
+ fum, 4 @0, D¥uty +at,, el x + tim Flu, + w,) &

< Um inf @ (u, + wp) .

m ~y oo

Proof of Theorem 5. Let us consider P (e, +4)
over the space W‘_;; . We admit the value + o0 for

@ («, + 4) . From (3.5) and (3.8) we conclude
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Pluy+ulze, = > 4G; (——&‘-"—“—) czllu,-rwl‘, -c .

On the ground of the prcperty of .n  we have

fG (-P—@-"‘—t&))d.x 2c, ﬂu,...uﬂ'"

Cn the other hand, b, +u.lvlv.,, = cﬂu +u.€v%
holds and Hul, = 2 { G (e (x)) ol for faeh, “2 2,
(See [41,Theorem 9.5.) Thus, we conclude that from any
sequence lu,, I —> o0 it is possible to choose a

subsequence 44, ~ for which ¢(u¢°+.w%)m co and

hence B(u,+w)— oo if lwll o —* 0o .

The last statement is true in the case fp =1, too, by
reason of the inequality Gy (—:‘i) - lul2 e" G; (%)—c,
for each |ils & ; for suitable constants c‘,{, °nd ¢ .

Let {u.“i be a minimizing sequence for the func-
tional @ («, + 4 ) . By reason of the previous fact the-
re exists ¢ such that I, I w%. £ ¢ ., Using Lemma 1
we find W« € Wa and a suitable subsequence still

called 4, such that ., -;;‘—-r 4¢ . With regard to Lem-

ma 2 we have
% @ (w, +v7-¢(u,+.w)‘r m«w¢(u,+u ).

vae Wa.i and ———“zf- on 2.0

for £ = 0,1,..., -1 ,then ¥ = v-w, + &4, 8&nd

v -, € \'\’/3‘,: and hence @(u,+uL)& Fln).
If (3.9) holds and 4, , 4, are two points of mi-
nimum, then we have forug=tw, +(1-t)w,  te(0,1)

LDEF0x, Do) + (1= £)£ (x, D%, )= (x, Dougy )1 dx +

+ Lo Ct g (x, D)+ (1- £)glx, Dty 1-gho, Do, 1 1dx = 0
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end thus D"u,,, = D‘a«z for |il= & almost everywhe-
re in () . Considering the Dirichlet problem u,(x)=

zuz(.x) almost everywhere in A2 .

Remark 1. Theorem 5 remains true if we substitu-

te (3.7) and (3.6) by

(3.15) ¢ (x, §?- )2 O almost everywhere in f) for
. G (
all |§;1l<o0, €M, end ——’:;-‘f’-’—cm‘, for all

4 eM.

?

Indeed, if Mn-—;i-—) “w,

°. &
u € W@" then
a suitable subsequence still called «,, D’:.a«”(.x) —

— D u (x) holds for all ¢ 6 M - L , almost
everywhere in Jf),Using Fatou’s Lemma, we obtain
.{q«&,b‘(ugu))dx £ 4:::';4:! Aq(x,p?'(“#,u,” N dx
and hence Lemma 2.

Remark 2. In the case & = 4 Condition (3.2) can
be weakened to (3.2°) with respect to the results of J.
Serrin [9] (Theorem 12)..
(3.2 1) P(x,w,§;) 20 is continuous in all
variables, |4l = 1 .

2) f(x, .w, §:) is convex in §  for each
X€nN, lul< co.

Without loss of generality it is possible to sup-
pose in (3.2) or (3.2°) f(x,§;) 2 ~ ¢ only.

Examples. Theorem 5 is applicable in the follo-

wing types of examples:

a9= £ V(S 2152 1110 (G 2n2 321410+ ke ly
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~fu-fdxdy .

b) ¢(u)=£_/(g—;‘ )’lm’(la“l-bﬂ*l a; dxdq—fu.»fd.xdy

Q

»,
)P(uwr=/ V2 atxata, o fdxday .

D)= [ [ 1+ () et (x,y)-utldxdly

where 0 € b (t) e 'm4 .

§ 4.
in this section we establish a weak solution of
those equations when the growth (2.1) or (2.2) is given
- by the class m,_ , We shall consider 8.2 € C7 . Let

M“, e WE‘: give us a boundary value.

Theorem 6. Suppose (2.1),(2.4) and let the func-
tional from (2.5) have the form (3.1). Suppose (3.2) to
(3.5),(3.7),(3.8) and g, () e m, for all 1 € M2
Then there exists the weak solution of the Dirichlet’s
problem (2.3). In the case (2.8a) the solution is unique.

By reason of Lemma 3,§1 we must prove at first that

(2.5) defines a functional over Wa’,"

. (.x,D'(u-,+ tv)) are measurable functions on
L x<0,4).Using (2.1), we have

(4.1) Z ID‘vlla. (x, D"(u. +tv))l"c(Z ID% | +
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+€,§-¢M lD"quga‘.‘é (D’(u,-f-tv))l .

Let us consider some member from the right side of (4.1)

by t fixed. Using Lemma 3,§1, we obtain successively

(4.2) 4 ID*rligg (D?up+tv)) Idx &

2 1D% 19, (D% Cuy+ tr N by, & 1Dl (14

+ [ R Lgs; (D*(ustvNldx < 1D, (o +

+'/_;Gé (Dt tv)dx £ 1D% IG'(c +.J/;G’- (2D%,)d x +

+£G; (ZD"v)aL.x) .

Thus, on account of (4.1),(4.2) and (2.1), the functio-

nal (2.5) is well defined over W: . In eaddition, it
G

is bounded on the bounded sets, because of Lemma 3,§ 1.
By Theorem 5, the functional (2.5) attains its

minimum at a point 2 e wh |

-4

We shall construct a Géteaux differential 4 only in

some directions; precisely, we shall prove

(4.3) tim BWrFI-g®@W) _ g ¢ eachFed(n).
T->0 T

We use the idea of [B8] (Theorem 5.1) and [2] (Theorem
2.1). Let us denote a;, (x, f, ) the mollified func-
tion of a, (x, ‘fé ) in §1- by x € f) fixed
(see (x) of Lemma 2,§ 1). Let &1 £ #, be fixed. There
holds

-1
(4:0) lagy, (5016 (14,5 g, (66, 2§40 1)
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for all € e« M .

. . o -1
(4:3) 1oz 0 4§50 1% c ORI+, = g, T6] G 25, 01)

la. (X )

where @, s, (X, §,) = oF
#

for all ¢, 4,
LeM.

By means of %, (x, §?.’) let us define the func-
tional ¢h () from (2.5). Similarly as in [5], we ob-
tain, with respect to (4.2),(4.4) and (4.5),

4 . .
(4.6) @ (v + P)- @, () =fds [ 2 D'Fa,, (x, D, +
+v+rIfN)dx - F(P) .

The inner integral is a continuous function in A,
because of

aq'."(x,b’.(uo'l-‘lf‘* »EFN 55 aa.(u,D’(u,-o-v-o- 4, L))

for almost all x € (L and
(4.7) ua,u(x,p*'m,«wmmn% <c

for all » € €0,1) .
Using the Valeé-Poussin’s theorem analogically as in
the proof of Theorem 3,§ 2. ]J"S’azh(x,])'.(u,-r v+ r?))
have the uniformly absolutely continuous integrals.
( h,¥(x) being fixed.)

Thus, for suitable A, 6 & (0,1)

¢,~(4r+9")- ¢(1r)=“ZM éD"'?a-‘-,,(ar,D"(u,q- v +

+ 5, Ndx -~ F(L)
holds and hence there exists a derivative in the direc-
tion &, from which

(4.8) B rYL) - By ()
‘ T
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r . .
=1 [dt [5 D'day (x,D¥(u,+ v4tdNdx ~FN.

a,“._h(x,b'(u,+v+tﬁf’)h—:-5> Q;, (x,D¥w,+ v+t F))
holds almost everywhere in £ .

By the reason of (4.1),(4.2) and (4.4) the Lebes-
gue 8 theorem gives ¢h(fv') oo’ @ (v) . Now, we are
allowed to let /o become to infinity in (4.8). The inner
integral in (4.8) is again continuous at t = O . Thus,

in the point 24 of the minimum we obtain
[ntgnib‘?a,,- (%, D¥(uy+v Ndx- F& = 0

for each Ye¢ D(N). But, D (N) = \:'c_;‘ and the theo-

rem is proved.
Exemples. a) Let us construct the Buler’s equation

to @(e) from Example a),§ 3. This equation possesses
a weak solution,

b) Let us ccnsider the example from § 2, where @, («) €

e mz and 0N € C7 . There exists a weak solution of
(2.23) in Case b.
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