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AN EMBEDDING OF GROUPOIDS AND MONOMORPHISMS INTO SIMPLE
GROUPOIDS

Jaroslav JEZEK, Praha

1. Introduction. By a type we mean a family (m,‘)‘:“

of natural numbers my 2 0 . By an algebra of type

(PRI we mean an ordered pair A = (A, (f;); 1>

where A is a set (called the underlying set of A )
and f; (for every 1 € 1 ) is an m;-ary operation in
A . The underlying set of A (of B, ..., resp.)

is denoted by A (by B ,... , resp.). If 1 con-
sists of a single element i, and m; = 2 , then alge-

bras of this type (’"'12 ) are called groupoids. A

i€l
groupoid A is thus a set A together with a binary
operation in A; this operation is denoted by x.ny -
An algebra is called simple if it has no non-tri-
vial congruence relations. We shall be concerned with
the following question: given a type (m; ); .1 , how
large is the class of all simple algebras of this type?
Let firstly my £ 1 foralliel. If A isa

simple algebra of type (my,) then A\ is generated

iel 7
by each at least two-element subset of A and thus
Conol A € max (55, ,Candl 1) : if B is a subal-

gebra of A , then the relation 6 defined by
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{%,4>e 6 if and only if either (X, 4 >eB =B
or x= €A is evidently a congruence relation of
A . This shows that the class of all simple algebras

of such a type ('"'15) is not too large.

161l

Let secondly am,> 2 for at least one tel.
The class of all simple algebras of type (m, Yie1
sufficiently large in the following sense: the catego-
ry of all monomorphisms of algebras of type (m;); .y 18
isomorphic to a full subcategory of the category of all
homomorphisms of simple algebras of type (m, )¢ - This
statement will be proved only in the case of groupoids
(see the Theorem below); the general case is an easy
generalization.

For some theorems and methods concerning full em-

beddings of categories of algebras see [1] end [2].

2. An suxiliary comstruction. If ¥! is a class

of groupoids, then we assign to ¥ +two categories:
(i) M (€) is the category of all groupoids
from ‘L , morphisms being the homomorphisms;

(i) (L) is the category of all groupoids
from ¥ , morphisms being the monomorphisms, i.e. in-
Jjective homomorphisms, i.e. isomorphisms into.

The following three classes of groupoids will be
spoken of:

(i) % is the class of all groupoids;

(ii) ‘9.«' is the class of all groupoids A sa-
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tisfying X ((X.X)e X))o X for ell X € A. Notice
that every A e %’ is a groupoid without idempo-
tents. (An element X is called idempotent if X« X=
- X.)

(iii) %, is the class of all simple grou-

poids without idempotents. Notice that S (G, ) =
= « (‘6'» ).

Lemma 1. (%) is isomorphic to a full sub-
category of w (§’) .

Proof. Let us assign to every groupoid A a
groupoid ¥ (A\) with the underlying set (Ax{03)u
v(A x {13) in this way:

a,,0>:<a,, 0> =<a,-a,, 1) ;
<a1,4)'<a,z,4>= <a'1' Q, )0>$
(a,,D)-(a,aA)g <a,,1><a,,0>=<a,,0) .

This ¥ (A) belongs to G’ ,as X-((x.x)« x) € Axif}
for all X € A x{03 and x.((X-x)-x)e Ax{03 for
all x € A x {11.

Let us assign to every monomorphism ¢ of a
groupoid A\ into a groupoid B a monomorphism ¥ ()
of ¥(A) into ¥ (B) in this way:

¥(p) Ka,0>)=<L9p(a),0>;

¥(p) Ka,1»)= <P @),1> .

It is easy to prove that Y(y) is really a mono-

morphism. ¥ is evidently a functor and it is an iso-
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morphism of .« (%) onto a subcategory of  (G');
it is sufficient to prove that this subcategory is full,
Let A and B be two groupoids and Y a monomorph-
ism of ¥ (A) into ¥ (B ) ; we are to prove that
there exists a monomorphism @ of A 1into B
that = ¥ (p).

such

As y«a,00 -y Ka,1)=yKe, 0 <a,1)) =
= ¢ (<a, 0)),we have evidently ¥ (<a,0>) € B x {0}
for all a- € A . Define a mapping ¢ of A into B

by ¥Ka,0>)=<pla),0>.

From % (<a, 0)) -y (Ka,1¥)=y(Ka,0>) we get
yKa,17) € Bx{13. Put ¥ (a,1>) = <£,1>. we
have < &,0% = (@ (@) 0y - <, 1> = ¥ Ka, 0> -

yKa,1¥) = y(Ka, 0> <2, 1> ¥Ka,00)=(p @), 0> ,

eo that & =g(a), sothat ¥(<a,1>) =<g@),1?
for all a ¢ A..

It remains to show that ¢ 1s a monomorphism. We
have <@ (a,-a,), 0>= y (Ka,-a,,02) = y(a,,1>:<a,,1>) =
= ¥ (Ka, 1) ¥y Ka, 1)) = P (a,),1)-<g(a,), 1> =
=< (a)-@(a,), 0>, 8o that P (2, a,)= ¢la, )"

- g(a,) forall g a € A . The injectivity of
@ 1is evident.
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3. A full embedding of the category of monomorph-
isms of groupoids into the category of homomorphisms of
gimple groupoids without idempotents. If A is a set,
then put F(AY= A,UA v A, U ... where
A, = Ax {03 and for every m > 0, A, is the set of
all ordered triples (X, ,m > such that x and g a-

re different elements of A, v ... UV A  at least

?
one of them belonging to A@_q .

If » is an injective mapping of a set A intc a
set B, then define a mapping F’(g:) of F(A) into
F(B) by

F(p) Ka,0)) = (g (a), 0> ;

F(g) K x,%4,m)) = < F(g)(x ), FlgXy)ym > -
It is evidently again injective.

If A is a groupoid, then define a groupoid
$ (A) with the underlying set F(A) by

a,,05<a,,0>= <a,-a,,0>5;

{X,04,m>+ (a,0)=<Kx,y,m)> ,

<.x,a#,m«> X,y my = X ;

XK, s> = oy

oS X,M m>=0c for all & € F(A) aatis-
fying o« ¥ <X, Y, mYand oo #* X .

Lemma 2, If @ 1is a monomorphism of a groupoid
A into a groupoida B, then F(¢) is a monomorphism

of & (A) into P (B).
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The proof is evident.
Lemma 3. If A is a groupoid, then @ (A) is
a simple groupoid.

Proof. Suppose that 8 is a non-trivial congruen-

ce relation of & (A), There exist three different ele-
ments X, 4 ,% € F(A) such that <x, %> € &

and <x,ZY¢ 0. Let m be the least natural number
such that 4, & € A,U...U A ; we have{y,z,m€

meq ?

€A, . ke (x,y>e 0, weget (XX, 2,m>s %"

Ky,z,m»€ O . If x =<y, z, m), then

{xe gy, m >, Yol z,m D=y, 25,18 x % {y, 2, M,

then (X« <y, Z,m D>y 4 - {Y%,2,mXH=<x,z>.1In both

cases we get a contradiction. .
Corollary. Every groupoid A is a subgroupoid of

a simple groupoid B ., If A is infinite, we may demand
Card A = Card B .

Lemma 4. Let A € & ., Then § (A) is a simp-
le groupoid without idempotents. If o« € F (A), then
ox.((x-c6) c)= o6 if and only if o« ¢ A, -

Proof. It is sufficient to prove o ((ot- % )-at)=
= o for all o« eF(A)XA .ye have
(x, g, m > (({X,p,m>  Kx,p,mDP) X, g, m>) =

= <X, g,m > (X<, g, m N = {x, gy, m Doy =<x,y,m).

ﬁm 5. Let /\, Be 4 and let ¥ be a
monomorphism of ¢ (A) into @ (B). Then there exists
a monomorphism @ of A jinto B such that r=F(g).
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Proof. If x e F(A) (x € F(B), resp.), then
X-((X.X)eX)= X if and only if X ¢ A, (x € B, ,
resp.). From this it follows that the monomorphism ¥
maps A, into B, and F(A) ~ A, into F(B) - B, .
Define a mapping ¢ of A into B by ¥ (Ka,0)>) =
=<¢p(a), 0>, This ¢ is evidently a monomorphism of

A into B . It is sufficient to prove that ¥ coin-
cides with F (@) on A, ,h for all m .This is evident for
m=0.Let m >0 and let the assertion hold for all
natural numbers smaller than m. Let<x,y,m> € A, _ .
Evidently, <x, 24, m> is the only element o of F(A)
with the following properties: ot ((;x-ot)rax) = o ;
X-X=ng; X # o« . Similarly, <y (x),¥y(y), m?>
is the only element 3 of F(B) with the following pro-
perties: 3 ((BBrA)=PBy (X): =y (y); Y () #+[3 .

As % is a monomorphism, ¥ (<X, 4, m>) has the three
properties of 3 and we get y ({X,q, m>)=<y(x),

Y(yg),mI)=<KF(@)x), F(@)y)md>= F(@)(x,y,mn>).

Theorem. « (%) is isomorphic to a full subca-
tegory of w (G,) = A (%) -

Proof. By Lemma 1, @ (%) is isomorphic to a full
subcategory of v (47) . By Lemmas 2,3,4 and 5, @ (4")
is isomorphic to a full subcategory of Ga)= N (G,).
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