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Comment at iones Mathematicae U n i v e r s i t a t i s Carollnae 

1 1 , 1 (1970) 

ON N0NF1ANAR GRAPHS WITH THE MINIMUM NUMBEE OF VERTICES 

AND A GIVEN GIRTE 

Milan KDMAN, Praha 

By the g i r th of a graph Or we mean according to H.-J. 

Voss [2 3 the length of the shortes t c i r c u i t included i n 

the graph &. According t o the we l l known theorem of G. 

Kuratowski [ 1 ] an arbitrary graph i s nonplanar i f and 

only i f i t includes a subgraph which i s homeomorphic 

with the complete graph K 5 ( F i g . l ) 

or the regular bicomplete graph K (Fig . 2 ) , 

For example the so c a l l e d Petersen graph p ( F i g . 3 * 
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which ie not a planar graph contains a. subgraph homeo-

morphic with the graph K* * ( la Fig.3 the edges 

of th i s subgraph are denoted by thick lines)* 

The graph Kg Is a nonplanar graph with a girth 

t C Kg,) * 3 • the graph K 3 3 i s a nonplanar graph 

with a girth i CK^ $ ) * 4 . Petersen's graph P i s & 

nonplanar graph with a girth t CP ) - 5 . 

How the natural que at ion arises: Which ia the minimum 

number i/^, ( ^ S 4 ) of vertices of nonplanar graphs 

O which have a girth t CG-) • f t . 

The answer i s given In 

Theorem l.The minimum number ifa (m, £ 4 ) of ver­

t i c e s of a l l nonplanar graphs G which have a girth 

t C G*) -» (Yt i s equal to 

where 

<L^ » 0 i f m, ^ 3 C ûrott 4 ) j 

ct » 1 i f /n s 3 Crnuri£ 4 ) , 
•11** 

Proof: a) First we shall show that 

Therefore we shall construct a nonplanar graph 

G^, of the given girth m which has exactly v&, ver­

tices. The number tt^ can be expressed In the form 
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-«+* I ^ J + <-* 
where 

n^ » O i f /n, s O ř/wuni>) j 

/t^ » 3 i f m, s 1 (madL 4-); 

^m, * 5 i f /n s 2 Omxnx 40} 

^ s í i f /Kl s 3 (/ntoti 4-). 
•>f* 

Now let ua construct the graph K„ „ (Fig*2)# On 

each of the edges A^ , whers i * ^ 7 2 , . . . , /c^ 

we chooae [. ^ j new vertices* On eaoh of the re­

maining edgesB M,L ( £ » ru^r A ; /^+ 1,,..; 9 ) l e t us 

choose: [ ^ 7 * j new vertices . In this wsy we obtain 

the graph G^ whleh has i ^ vert ices . The graph K3?t, 

contatos only quadrangles and hexagons* The quadrangles? 

of the graph K 3 ^ turn into polygons with at least 

(Yt vertices in the graph G^ (sea Table 1># From 

the hexagons of graph K 3 3 circuits of a shorter 

length than 6 [-%-] cannot develop in graph G^ * 

which is always at least m for m 4* ¥f nrv -= 4- . If 

ret * ¥ , then every circuit of the graph G^ which 

develops from the hexagon of graph K ^ -, has the 

length of at leaat 11* Besides the circuits which have 

developed from quadrangles and hexagons in the graph 

K 3 3 there are no other circuits in the graph Ĝ  . 
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So the inequality V^ s <ur/tv i s proved* 

b) We shall prove the equation rur^ * %^ * We can ap­

parently suppose that the nonplanar graph G£ with a 

girth m which has the minimum number of vertices? 

i / ^ i s i t se l f homeomorphic with the graph K- or K ^ 

%&&, of JЫmqthљ oţ ùűьaмLtь Ju tto <#uüfđъ G^ nvЫcßv 

OЛJL Ájndiшud Jbџ, ІJҺÉL çшъcbuvnęùљ oţ flhь guъftfъ KЪf$ * 

QшuŁмъњqûьь 
i 4/ndUьcмdL Ьц* 

гdc&ь 

( s 0 
ďruнL 4-

( з 1 
rìtuycL4-

( m 2 
rmùdL 4-

nъ a 3 
mod 4-

\ w\ ( < + Ą Г ҐYЪ + 1 

\W\ tYЪ r + i r m 

\ Ьbą, $ g <\ (YЪ r m fYЪ+ 1 

\ v̂ \ \ nrъ m n < 

\ \ \ \ r m m <YЪ 

\ w\ ( r m m + 1 

\ \ \ \ m \r + 4 ( + 1 ( + \ 

1 \ \ \ \ m Г m m + 4 

\ \ \ \ m \ r í m f 

Let us f irs t suppose that the graph G£ ia homeo­

morphic with the graph Kff • Therefore we can construct 

the graph G* from the graph K r so that we choose 

1 ^ - 5 new vertices on i t s edges* Then on every 

triangle of the graph K* w e wixat choose at least 

m - 3 new vertices* In the graph Ks there are, on 

the whole, 10 different triangles, while every edge be-
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longs to three triangles.. So the graph G* develops 

from the graph K ^ hy adding at least 

f 10 Cot-3) 4-2 1 

3 

vertices. Therefore 

"3 
[J01«t^П±Ã.]é^_sâvz-5=U9L^Һ*ln-

Because the inequality 

has no solution for rn> £, 4 • i t i s therefore proved 

that the graph G„J cannot be homeomorphic w2th the 

graph Kg. • 

So the graph G*̂  i s homeomorphic with the graph 

K,j - . In other words i t develops from the graph K3>3 

so that we choose n^ - 6 new vertices suitably on i t s 

edges* Simultaneously we must choose at least <ri - 4-

new vertices on each ojuadrangle of the graph K3 )-, * 

In the graph K^ ^ there are, on the whole, 9 dif­

ferent quadrangles, while each edge belongs to four 

quadrangles* The graph G* therefore develops from 

the graph K ^ by adding at least 

f 9(<n~ k) + 3 j 

vertices. Therefore 

holds. It ia easy to find out that 
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9[i&^]+^-['<% + >+'}-4*. 

Hence for <u # 3 (<moc£ k ) i t follows that 

i£. » WL and for m> ar 3 (/m-oti 4- ) i t follows 

that either ^ ** 44& or i £ -« <i^ ~ 4 . We shall 

show that 4C. # **£ - 4 holds even for *t ss 3 
ft? ' fir 

irnv&cL k ) • Let us, on the contrary, suppose that 

rt m if - 4 . The edges of the graph K - - which 

contains less than [ -r-J new vertices (i#e# vert i ­

ces which must be added to the edges of graph K^3 

for i t to become graph G* ) , induces in K^ a 

subgraph & which has at least two edges and does not 

contain a ojuadrangle* For should the graph Q> contain 

a quadrangle F> then in the graph <J* thera 

would exist a circuit of the length m - 3 ; and that 

1m a contradiction* It i s easy to find out that the 

subgraph G must be isomorphic with some subgraph 

which i s induced by these sets of edges of the graph 

* S , 3 (see Fig .2) : 

E3* ̂ , 4 ^ 1 , Ey O ^ A 9 < W # 
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V <~V-V-W» **-"f *-» *tAt\A >, 

^^AVV* &i" ^ . V r ^ ^ N 

V fyAfVWf E<*" li,,n -*»» H6> **, *"$, V • 
Let us denote by *^ (i - 4, 2 , . . . 9 9 ) the num­

ber of new vertices which we must choose on the edge 

H- of the graph K,. a i f we want t o obtain the 

graph G* . Let us further denote 
fit 

i d - «*- -^if-4- , -f *i e « • 

Obviously for a l l permissible •£ 

(N) *i> 0, «j,.±0 

holds* Further 

holds* Because on the edge of every; quadrangle F of 

the graph K. - there are at least /n - 4- new 

vertices , the inequality 

x4eF *i*F 

also holds. If the quadrangle F i s induced by the 

edges M,^ , Jh^ t Jh^ 9 Jh,^ then we shall further deno­

te the inequality (F) shortly by (Hhtin ) . 

Now we shall show that a l l 14 poss ib i l i t i e s for the 
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graph A lead to a contradiction* 

1) Let the graph Q be Induced by one of the sets of 

edges E i f E 2 , E 3 , E^, E^ , E^, E # . Then from 

the inequality (R), inequalities (N) and Inequalities 

(1267),(1468),(2478) we obtain contradictory Inequalities 

6 & 2 x 4- 2 ^ + 2x t f a? 5" , 
Z 9 9 

2) Let the graph ft be induced by the aet of edges E 

Then from the equality (H), inecjialities (N) and Inequa­

l i t i e s (1267),(1345),(2389) we get the contradictory i -

nequalltles 

6 .£ ,x4 + *s 4- ^ 4- x^ -*• x f -*• x 0 tw 5" . 

3) Let the graph Q be Induced by one of the sets E 

EL. - E .̂ . EL £_*.. Then from the equality (R), inequali-

t i e s (N) and inequalities (1468),(1579),(3479),(3568) we 

get 
1 £ ±XZ & 2 

or -X. » 1 . Simultaneously the Inequality (1267) 

must hold, l»e* the inequality 

' ^ l * * A • ' V f c • • ' w > * " 3 # 

It i s , however, with respect to the equality -x^ « 4 , 

in contradiction with the inequalities (N). 

4) Finally le t the graph fl be induced by the set of 

edges E .̂ - Then from the equality (R), inequalities (N) 

and inequalit ies (1267),(1468),(1579),(2389),(3479), 

(3569) we get 
3 & Xz + ^ 4- * 5 £ 3 
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so that x 2 ** Xt » -X- » 1 . Simultaneously the in ­

equality (1345) must hold, i . e . the inequality 

But that i s , with regard to the equalities x. -» Xm » 
*t s 

* "/ - in contradiction to the inequalities (N)« 

So the possibi l i ty v^ » njUfa — 1 i s excluded even 

for the case m, s 3 (/m<*£4-). So the whole theorem 

is proved* 

From Theorem 1 the following simple result f o l ­

lows: 

Result* If (r i s an arbitrary graph which has 

l e s s than %^ vertices and has a girth at , then th i s 

graph i s a planar one. 
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