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Comment ationes Mathematicae Universitatis Carollnae

11, 1 (1970)

ON NONPIANAR GRAPHS WITH THE MINIMUM NUMBER OF VERTICES
AND A GIVEN GIRTE

Milan KOMAN, Praha

By the girth of a graph G we mean according to He=J.
Voss [2] the length of the shortest circuit included in
the graph (. According to the well known theorem of G.
Kuratowski [1]1 an srbitrary graph is nonplasnar if and
only if it includes & subgraph which is homeomorphic
with the complete graph Ks (Fig.l)

or the regular bicomplete graph Ka, 3 (Fig. 2).

For example the so called Petersen graph P (Fig.3)




which is not a planar graph contains & subgraph homso~
morphic ﬂth the graph K 3,8 (in Pig.3 the edges

of this subgraph are denoted by thick lines).

:I'he graph Ks is a nonplanar graph with a girth

t (Kg) = 3; the graph K, , 1s a nomplansr graph
with a girth ¢t (K, V= 4. Petersen’s graph P is 2
nonplanar graph with a girth t(P) = 5§ .

Now the natural question arises: Which is the minimum
number 4, (m 2 4) of vertices of nonplanar graphs

G which have a girth ¢t (G) = m .
The answer is given in

Theoren l.The minimum number <, (m Z 4) of ver-
tices of all nonplanar graphs G which have a girth
t(G)= m is equal to ’

v = [2E] . g, (n 2 4)

where

d, =0 1f m % 3(mod 4),;

d. =4 it m = 3(mod ¥) .

"

Proof: a) Pirst we shall show that

Vn§%=[_&";’.—ﬂ2‘+d’ﬂ»'

Therefore we \ahall construct a nonplanar graph
G, of the given girth m which has exactly 4, ver-
tices. The nmumber <, can be expressed in the form
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wy = 64+ 9 [BEE] 4

where
Ry =0 1t m = 0(mod ) ;
Kp =3 it m = 1(mod 4);
Ko =5 it m = 2 (mod 4);
n, =8 it m = 3 (mod 4).

Now let us construct the graph K% 3 (Fig.2). On

each of the edges 4, ,where i =1, 2,..., x

m
we choose [ 'z," ] new vertices. On each of the re-

maining edges: hé (G =n+1,1+2,...,9) let us
choose [-”—"—7:—&-] new vertices., In this way we obtain

the graph G, which hes wj, vertices. The graph K, ,

contdns only quadrangles and hexagons. The quadrangles

of the graph K 3,3 turn into polygons with at least

m  vertices in the graph G, (see Table 1). From

the hexagons of graph K,:h3 circuits of a shorter

length than 6 [—@‘F—J cannot develop in graph G

m
Which is always at least m for m %+ ¥, m = 4 . If

.

m = % , then every circuit of the graph G, which

develops from the hexagon of graph }<.,,,3 has the

length of at least 1l. Besides the circuits which have
developed from quadrangles and hexagons in the graph

Kg,,; there are no other circuits in the graph G, .
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P
So the inequality 1, £ 4w, is proved.

b) We shall prove the equation ay, = 7

5 . We can ap-

perently suppose that the nonplanar graph G,, with a

8irth m  which has the minimum number of vertices

4,, is itself homeomorphic with the graph K5. or K3 5
'y

fable of gl of cixewils im the grapb. G, which
axe imduced by the quadnamgles of the graph K, 4.
Guadramgfs lucsd oy nsg m.al msi m,aZ
|_edges mod mod mod mod
h1h¥h2~h6 m m+ 1 m m + 1
’%2"’9”1'3’”8 m m+ 1 m m
‘“’1"‘@"”:”"5 m m m m+ 1
"”‘o"”%h&}% m m n m
My by By | m m m e
Ay g g by m m m m+ 1
h,,h,,hahf m m+ 1 m+2 |m+ 1
hy, by b by m m m m+ 1
by, Mg by m m m m
Jable 1

Let us first suppose that the graph G,,: is homeo-
morphic with the graph K s - Therefore we can construct
the graph G,’,‘: from the graph Ks 8o that we choose
2, -5 npew vertices on its edges. Then on every
triangle of the graph K5 we mst choose at least
m - 3 pew vertices. In the graph K5 there are, on
the whole, 10 differemt triangles, while every edge be=
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longs to three triangles. So the graph G;: develops
from the graph K 5 by adding at least

[ 40(01.-33) + 2 )

vertices. Therefore

[40(01-3)-0- 2] £y -5 é’&%—5=1+9[ﬂ;4]+¢n"

3

Because the inequality

[10(m.~33)+2L_J =

1+9[24%) 4 n,

has no solution for m = 4 , it is therefore proved
that the graph GX¥ cannot be homeomorphic with the
graph K. .

So the graph G;,: is homeomorphic with the graph
K,,’ 5" In other words it develops fi'om the graph Ks,’
so that we choose 1, -~ 6 new vertices suitably on ita
edges. Simultaneously we must choose at lesst m — 4
new vertices on each quadrangle of the graph K, ; .
In the graph K%ﬂ there are, on the whole, 9 dif-
ferent quadrangles, while each edge belongs to four
quadrangles. The graph G,,"; therefore develops from
the graph Kg,g by adding at least

[9(01—:)-0-3 }

vertices, Therefore

[9(01.-‘;#)4-3} €u,-6 g%-6=9[.”_‘;‘i] +n,

holds. It is easy to find out that
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9[_'1_?_4:_‘!_]_,, x,, - [_M_"_;_ﬂ"l] = dm .

Hence for m 3= 3 (mod 4 ) it follows that
Y, = w, amdfor m =3 (mod 4 ) it follows

that either 2, = ay, or 4, = w; ~1 . We shall

show that v, % a, — 1
(mod 4 ) . Let us, on the contrary, suppose that

holds even for m = 3

a, = ay, — 1. The edges of the graph K,,, which

contains less than | -;,_"3-} new vertices (i.e. verti-

ces which must be added to the edges of graph K.,,,
for it to become graph G* ), induces in K,;, @
subgraph @ which has at least two edges and does not
contain a gquadrangle. For should the graph @ contain
® quadrangle [, then in the graph GY  there
would exist a circuit of the length m - 3 , and that
is a contradiction. It is easy to find out that the
subgraph @ must be isomorphic with some subgraph

which 1s induced by these sets of edges of the graph

K,,; (see Fig.2):
E, = (b, h,i, Eg= i, by, 3,
E‘z- th, hi, E,= Ui, g, 8 s
Ey= o, b3, B i, Ay, A, g3,
E= th, b k3, Ep {h, by, by b5,
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Eg b, b, o], Ba= £y, Iy, b b b3

E. % hyh‘,hyi, E“' {ly,,h,,,h,, I:a.,h’},
w’ﬁ*“:”’b‘“’#’h‘i}i E"ﬂr' {hﬂ )"3’ Mgy My, "‘Iﬂ ""9} ‘

Let us denote by z; (¢ = 1,2,...,9) the num-
ber of new vertices which we must choose on the edge
hv, of the greph K, , if we want to obtain the
graph Gnt . Let us further denote

_[-.@_‘Ei]’ifzi¢a’

Obviously for all permissible 1

(N) x; > 9, Y, € 0
holds. Further
(R) z“za *; +§§G% = ¥

holds. Because on the edge of every guadrangle F of
the graph. K,’ s there are at least m - 4 new
vertices, the inequality

23

z‘,s
z,€F z;eF
also holda. If the quadrangle F 1is induced by the
edges b, , b L, Mg, hw then we shall further deno—-
te the inequality (F) shortly by (mmtu} .

Now we shall show that all 14 posaibilities for the
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graph (@ lead to a contradiction.

1) Let the graph @ Vbe induced by one of the sets of
eages £, , E, , E,, E , E;, E,, E,. Thenfrom
the inequality (R), inequalities (N) and inequalities
(1267),(1468),(2478) we obtain contradictory inequalities

6 £ 2x3+2x‘+2x’ & 5.

2) Let the graph (@ Dbe induced by the set of edges E‘,
Then from the equality (R), inequalities (R) and inequa~
lities (1267),(1345),(2389) we get the contradictory i-
nequalities
&
6 € x +x,+x¢ X XX S

3) Let the graph @ be induced by one of the sets E,,
E.," ,Eﬂ , E‘” E*_ Then from the equality (R), inequali-
ties (N) and inequalities (1468),(1579),(3479),(3568) we

get
242X, £ 2

or X, = 41 . Simltaneously the inequality (1267)
must hold, i.e. the inequality

By + Xy + Yo + oy = 3.
It is, however, with respect to the equality x, = 1,
in contradiction with the inequalities (N),
4) Finally let the graph @ be induced by the set of
edges E.«, - Then from the equality (R), inequalities (N)
and inequalities (1267),(1468),(1579),(2389),(3479),
(3569) we gt |

3 §x2+x*+x5 £ 3
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80 that x, = X, .= X, = 1 . Simltaneously the in-
equality (1345) must hold, i.e. the inequality
Yy + Yy + .x,ﬁ-xsa 3.

But that is, with regard to the equalities xl’ = X, -
= 1, in contradiction to the inequalities (N).
So the posaibility <, = 2, — 1 1is excluded even
for the case m = 3 (mod 4). So the whole thecrem
is proved.

From Theorem 1 the following simple result fol-
Iows:

Regult. If G is an arbitrary graph which has
less than 4;, vertices and has a girth m , then this

graph is & planar one.
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