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FACTOR-SPLITTING ABELIAN GROUPS: OF RANK TWO

Ladislav BICAN, Praha

In this paper we shall give a structural description
of factor-splitting torsion free abelian groups of rank

two.

Throughout this paper by a group it is always meant
an additively written abelian group. A torsion free group
G 48 called factor-splitting if any its factor—group

G/,  eplits (see [3]). We shall use the following no-

tation: If 9 is an element of infinite order of a mixed
group G then ”"1; (g-) denotes the j -height of g
in the group G (see [2]). {HLG‘: denotes the pure
closure of a subgroup H in the torsion free group G.
Instead {§h} l: , 4 € G we shall write simply
u»;ﬁ . R‘p will denote the group of rationals
with denominators prime to . Other notation will be
essentially that as in[1].

It will be useful to formulate the following state-
ment (see Theorem 2 from[2])):

Let G be a mixed group of torsion free rank one.
Two following conditions are necessary and sufficient
for G to be split: ‘

(¢) If T is the maximal torsion subgroup of G ,
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thentoany ¢ € G = T  there exists an integer
m # 0 such that mg has in G the same type as

9«+T’ in G/T .

() Toany g 6 G = T there exists an integer

m # O such that for any prime fr with xn,ﬂ (g+T)=o0

there exist the elements h™ = mg , h‘f) , h;m, vee 9

) )
suh that phi, = by, m=0,1,2,..

Now we are ready to prove the main result:
Theorem 1: A torsion-free group G of rank two
is factor-splitting if and only if:
(1) For any two linearly independent elements g, b €
€ G there 1s ({gls +ihi) ® Ry = G @ R,

for almost all primes .h with by, (@) # h,(h) .

Progf: Proving the necessity let us suppose that
there exist elements g , 4 6 G which do not se
tisfy the condition (1), Without loss of generality we
can assume that there exists an infinite set T’ of pri-
nes with b, (g) <, (h) and(igli+ini))@R, £ 6o R, -
For sny prime f1 € ' there is h,(h) < co (in the
other case it is easy to see that ({912 + Lh!f)@ Rﬂ =

=GR, ). Let us denote £, = hﬂ(h)—-?ﬁ(g,) and

let Ay be the solution of the eqations f2"x = A
In view of ({gJs +{hIg 1@R, S GB Ry the-

re exist elements 9;', and non-zero integers oy, with

Y4 d
1"‘"""0' - %= a+a, «h;‘ . Hence }}‘(g-r{h}). hfy(g,)



bt b, (g +ihig) = K, (@) + 1 such that &g ;

does not satisfy the condition (oc) and hence does not

splite.
Now we shall prove the sufficiency. In view of Lem-

ma 2.6 from [4] it suffices to prove that for any L€ G
the factor-group /(g7 splits. Let g6 = sh 1l
be an arbitrary element. Let

m = inih,@)=h,0h)3 ,

T, = {n; either by, (g)>h, (h) or B, @G)< b, (h) and

Ugh+hEIB®R, = 6@ Rpt

T, = {p, by (@) < b, Ch) and (gl +{h3)I @R, GOR,3.
Then T, , T, , T, are disjoint subsets of the set TT
of all primes whose union is TT. The set Tfa is finite
by hypothesis and it was mentioned in the proof of neces~
8ity that %ﬂ(h) < 00 , Let us put

T ﬁh,,un—n,, Q@)
peT,

Now we are going to prove that

(2) m =

G
(3) ,%4’ (mg +fh1)-,h1,(rm9, +1{h3))
holds for any prime f2. For f2 € T[, we can assume

hy,(g)< 00 (1f h,(g)=H (k)= 0o then (3) holds e-
vidently). Suppose that the eqation ﬂ.h"(?”h-x =

=g + 4’ 1s solvable in G  where eh = 64’ for
suitable relatively prime integers (o, 6 . Then (6, )=
= 4 (in the other case there is.f,(h") < A, (3) and

the given equation has no solution). For suitable inte-
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gers X,/ there is 6x + 11,";‘3-)4-&& -4 and

*
1t holds p‘*"” (RX +Prg)mqg+orh .
Hefice
(4) By (g+4{h1) = by (g + 13T ) .

In view of (p,m)= 4 the formula (3) is va-
114, too.

Simllar calculations show that (3) holds also in
the case peTl, , h ) > A, (k) and in the
case f € Tl; . Finally, let p e'ﬂ;’ h'p(9” < hl’,_(h)
s (igdy +IhI@RL = GO R, . For b (R)=00

it holds (4) and hence (3) evidently. Suppose that

h‘"(}n‘ 00 . Let the emationp“x=9+h',he{h!‘:

have a solution in G . In G there exists an element
g.' with p‘*"’gf- g . It is casy to see that any
G
element of iglx @ Ry, 1% of the formg’@ &, x € R, .
Now we have p“(.xeﬂa- 4:.".‘(@4::791 + 21 .

By hypothesis there exists an element q—' @ oc in

gl @ R, for which Mg @x)=g@1=g'® 41.""0"’.

Hence 9.’8 (,fz"ap - ,p"‘""’) ‘= @  and then 4;""0(, =
2
g , which implies o < f2, (@) -We have shown
My () < Iy (h), (1g 35 +H{NI)IOR, =GOR, =

=» h,',(g,+{h§f) = h, ) .

Fow it is easy to derive the validity of (3) which

(5)

shows that the oonditi\on (ox) 4s satisfied.

.Now we are proceeding to the condition (/3). Sup-
pose that b, (g +{hif ) = oo . At first, letpel
be such & prime that h‘v (g) 2z Ay, (h ), Then there
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exists a 1 -adic integer U = (™))  with
4“.“"&‘ g,+a,d",h solvable in G for any b =

'4, 2, eo o (89. [5]). H.m. nk(ﬂxﬂfl - xh') -

= (@™ - d‘“)h such that fi(x,,+i{h})=Xg+{h}.

B m 1is defined by (2) then clearly the same holds for
mg and mX, .
[
In the case of h,(g) < A, (h) amd ({gly +

+{MIgI@R, = G@ R,  there 18 M (g+(hI]) =

- h«” (g) < o0 by (5) and hence there is nothing to
prove. Finally, for f1 € T, there is My, Gmg )=t (h)

and it suffices to repoatvthe first part for mg and h2.
Hence the condition ([3) is also satisfied which finishes
" the proof of our Theorem. '

Theoren 2t Any honbgenoous torsion free group of
rank two is f_actor—sputting.

Proof: The condition (1) is clearly satisfied in
this case.
‘ The following Thecrem shows that there is a great
variety of factor-splitting torsion free groups of rank
two. For any subset TT'c T!  we shall define the group
RTT' as the group of all rationals with denominators
relatively prime toany n e 117 .

Theoren 3: Let TT, , nz be disjoint subsets of.
T  such thet M= (T, v T, ) 1is finite and let G
be a torsion free group of rank two.

If G ® R1r1 is completely decomposable and

-5 -



G ® R,-,-’ homogeneous then G 1is factor-split-
ting.
Proof: If T’ 1is any set of primes, then

(6} Ay, (§)=t,(g®1), e T’ and the second
height is meant in G & R, -

Clearly, hﬁ@,)e h,,(g« ® 1) . On the other hand

let 4,2 g, @ -”-'5—).. ¢@1, (b, p)=1.1¢ we

put p = by Ay e ... b, we have (b, p)=1
and
m [ L, b
Pt (ZgO )= (2 4= @)®1=sg @1,
2 LA

therefore 4;{% -g:— g; = A9  and hence the equa-
tion »p“.x = g is solvable in G .

Now let g, # be any two linearly independent
elements from G . Then in view of homogeneity of

G @ Ry~ and (6) it holds My, ()= My (A) for
almost all primes f1 € TT, . Suppose that f € m .,
(@) # by, (h) and({gi,+{hif®R, § 6@ Rn .

It may be eaally shown that there exists an elemeRt
“e1eG@R, - (gif + thISI@® R, with
pw@1) e (g3 + Thi )@ R, . Hence pudie1)

lies in (g3 +{hiy) @ Ry ® R,  and iP View
: 1

of 6) u @1 @ 1 does not lie in this grouP* But
this can occur for a finite number of £ € T, Ny in
view of the complete decomposability of G & Rq, ,




Theorem 3 from [4) and Theorem 1, Hence G satisfies
the condition (1) and our proof is finished.

Let T’ be any set of primes. We call a tor-
sion free group G .homogeneous with respect to m’
if the types of any two non-zero elements from G res-
tricted on IT° are equal. Now it is emsy to see that
Theorem 3 can be formulated in the following way:

Theorem 3°: Let G be a torsion free group of
rank two and x; , X, 8 its basis. Let us denote
by TT,, the set of those primes fr for which the f1 -
primary component of G/((.x,, !f + (.xzif ) vanishes.

If G 1is homogeneous with respect to T, = T “  whe=

re TI’ is finie and TTstTLT[' then G
is factor-splitting.
Remark: The speclal cases of Theorem 4 are the

following: 1) If T, is finite and G 1is divisible

with respect to T, =~ T’ then G 1is almost divi-
sible (see [31,Theorem 5). If T, = T = I, is fi-
nite then G 1s primitive (see [3],Thecrem 2).
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