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Commentationes Mathematicae Universitatis Carolinae 

10, 4 (1969) 

ORDER OF H0L0N0MY AND GEOMETRIC OBJECTS OF MANIFOLDS 

WITH CONNECTION 

Ivan KOlift, Brno 

Our considerations are in the category C°° . The 

standard notations of the tneory of jets are used through-

hout the paper, see [32. 

1. Let PCB?fr) be a principal fibre bundle with 

base B and structure Lie group G and let $ » pp-* 

be the groupoid associated to P- Let H be a closed 

subgroup of Or . let F * G/H be the corresponding ho­

mogeneous space and let E » E C B, F, <x7 P ) denote the 

fibre bundle associated to P with standard fibre F'7 

so that $ is a groupoid of operators on E . Let ~fx-

be the canonical projection fi: £ ~> B ; we shall write 

E^* fC^CcCl, xe B . 

Q*C$) or 5^C$) or Q*-C$) means the fibred 

manifold of all non-holonomic or semi-holonomic or holo-

nomic elements of connection of order K, on $ respec­

tively, see C4l. A non-holonomic or semi-holonomic or 

holonomic connection of order K. (shortly: an /c-con-

nection) on $ is a global section C : B — • Gt* C$ ) 

or C .' B —» Q^C^) or t * B —> Q*C§) respectively. 
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Let V be a manifold, let .£ cJ^CV, E) and let X e 

e Q* (<$) such that <fc* X =<fi(fiZ) « * . Then the develop­

ment X~*(2) o£ Z into E^ by meana of X ia defined by 

X^tZ)* (X-\2)-Ze3K'(V, E^ ) , 

where • meana the prolongation of the partial composi­

tion law ($9 x ) H-» ftfc, 0 e $ 7 x, e E 7 see jC4i. 

(We remark that Ehresmann uses the term "the absolute 

differential of 2 with respect to X M for X' (Z) .) 

Obvioualy, if £ € J*CV, E) or J W , E) andXeQ^CJ) 

or «*<:$), then X^(Z) e Dfc( V, E^ ) orJ^C^E^) 

respectively. Furthermore, if f * j£ & 7 where & is a 

local 8ection in £ . then we write X"" (& ) in8tead 

X" (fr* & ) and X* (&) ia called the development 

of & into E^ by means of X * 

Let C be an tt-connection on $ , then C means 

the prolongation of C} which is an (tv+4) -connection 

on $ ? see [43* The .4t-th prolongation of C ia defi­

ned by iteration Cc*') - (j-*-*)' # Every 4 -connection 

C determines a sequence C- C', . . *̂  CcMt,)
7 ... of 

semi-holonomic connections. The terms of such a sequence 

are called simple connections. 

Definition 1. A space S/7 with x -connection is a 

quintuple if ** £f(B, $ , E , &, C ) ; where 6 is a 

global section in E. and C is an /t-connection on $ • 

Remarks. For Jto * 4 7 our definition is equivalent 

to the definition of a space with connection by A. Svec 

111. The sequence ̂ " C B , f , E, tf, C<*"")*, ft * <f, 2, ... , 

of spaces with simple connections is canonically associa-
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ted to every space if(&7$7L7&7C} with connec­

tion of the first order. 

2. A (holonomic) contact element of dimension rrrv 

and of order H, (shortly: a contact tm/^-element) on a 

manifold V at a point x e V is the set X L ^ , whe­

re X is an rrtS0 -velocity on V at X . Such a contact 

element is called regular, if nm, < rn,» ddm>V and if 

X is a regular velocity. The fibred manifold of all 

regular contact nn -elements on V will be denoted by 

K*' (V) . Let li be another manifold and let 2 e 
<yf\s 

€ J ^ C V U ) , then Z determines a contact m, -element 

Jft(H) on U at (hi, Jk(Z.)=2.HL* 7 where to, is a 

(holonomic) K -frame on V at ooZ • 

A manifold IM together with a left action of a 

group 6 on N is called a 6 -space, see e.g. ClJ, 

p.31. A mapping g> of N into another O -space is 

called a G -mapping« if p C^*)-* ^9>c .x) for every 

,* c Hjfrt (T . Let F be as above, then the action of 

G on F is canonically extended to an action on 

K £ C F ) ? so that K^(F) is a G -space. 

Definition 2. A geometric nm!* -object Of on F 

with values in a & -space S is a G -mapping of 

K ^ ( F ) into S-. More generally, let W be an inva­

riant subspace of K ^ ( F ) , then a geometric nm!^ -object 

on F of type W with values in S is a Cr -mapping 

of W- into S . 

Let M be an /in -dimensional submanifo3Jd of F , 

then M determines canonically a contact rm.*- element 
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A ^ M at each point x € |M and (f(Jh,*M)£ 5 will 

be called the value of (f for M fit ^ » T n a t ' 8 w h y w e 

may also say that tf i s a geometric ob.iect of order A, 

for (Ytl -dimensional aubmanifolda of F . 

Remarks. We shall show in a next paper that our de­

finit ion gives an invariant and deeper explanation of the 

so-called "method of prolongations and outflankings" by 

G.F. Laptev, [63 . We shall also show that a modification 

of our ideas enables to define geometric objects for sub-

manifolds of a apace with fundamental Lie pseudogroup. 

3 . A semi-holonomic contact /m/* -element on a ma­

nifold V i s the set Y L ^ , where Y i s a semi-holono­

mic /m!*0 -velocity on V * Such a contact element i s 

called regular, i f tm <• rrL^dumV and Y i s regular; 

the fibred manifold of a l l regular semi-holonomic contact 

wv -elementa on V wi l l be denoted by KJ^CVO , Let U 

be another manifold and l e t ZeD*'(V, U) ; then E 

determines a semi-holonomic contact ffi -element JeCZ) 

on U .it(,£)*£itL^ where A i s a semi-holonomic 

/t-frame on V • 

Definition 3 . Let F be as above. A semi-holonomic 

geometric tm, -object on F with values in a Cr -space 

S i s a G -mapping of K"^C F ) into S * 

Remark. Analogous definition relates to the non-ho-

lonomic case as well . 

Definition 4. A space tfCB, $ ; E ^ , C) with Jt-

connection wi l l be called a manifold with ft -connection, 



if it holds 
a) rm ** dirm. B *< m, - dunm, F ; 

b) C~1 (x ) C & ) i s regular for every x c B . 

We shall also say that rrrv zscLvrrvB i s the dimension 

of if. 

Remark» A manifold with a i-connection i s local­

ly equivalent to a submanifold of a space with Cartan 

connection, c f . t23 . 

Consider an rwi -dimensional manifold with a eemi-

holonomic ft -connection and le t (F be a semi-holono-

mic geometric <rri' -object on E^ x e B • The develop­

ment C (x)(&) of 6̂  into E^ determines a semi-

holonomic contact /nt*-element Jk/CC (x )(&)) on E.^ 

and 0'(Jv(C~'l(x)(&)) e S wi l l be called the 

value of (f for if â t x e B } so that a semi-holono-

mic geometric /m, -object represents a geometric ob.iect 

for /m -dimensional manifolds with semi-holonomic Jt -

connection* Moreover, i f if ( Bp $ 7 E ? ^ C ) i s a 

manifold with 4 -connection, then 0* can be applied to 

the associated manifold tfC*-^ (B , $ , E , 6, C c*'"*'0 ) 

with semi-holonomic rt -connection; that's why a aemi-

holonomic geometric nm, -object may also be considered 

as a /geometric object of order H, for /m -dimensional 

submanifolds of a space with Cartan connection* 

4. A semi-holonomic contact rm^-element Y l - ^ 

wil l be 88id holonomic, i f i t contains a holonomic W*-

velocity. 



Definition 5* A manifold tf C B ? §, E. , 3% C ) with 

semi-holonomic ft -connection is called holonomic at *xe 

€ B ? if the contact element JfeCC'Cx )C^ )) is holo­

nomic • 

Let (T be a semi-holonomic geometric /m/^-object 

on £.< f then the restriction of C to K/W> C E^) is a 

holonomic geometric tm -object on £^ since K^CE-^ 

is an invariant subspace of K ^ C E ^ ) # This proves the 

following 

Theorem* If a manifold \f with semi-holonomic ft -

connection is holonomic at .x s B 7 then the value of eve­

ry geometric object for tf at X coincides with the va­

lue of a holonomic geometric /m -object on &x • 

We can also restate this theorem in the following 

more intuitive way: if a manifold with semi-holonomic /t -

connection is holonomic at a point, then all its geomet­

ric objects at this point coincide with the geometric ob­

jects of order it of an im, -dimensional submanifold of the 

corresponding homogeneous space* 

5* A manifold fcf CB ? $ , £, 0T, C ) with a A -

connection is called ft -holonomic at x e B ? if the asso­

ciated manifold if'*-*"0 C B , $ , E. , ^ , C'*^ ) is ho­

lonomic at *X # In this case, our theorem gives the con­

ditions that every geometric object of order A of a 

submanifold of a space with Cartan connection coincides 

with a geometric object of a submanifold of the corres­

ponding homogeneous space. 



In 151, we consider a surface in a 3-d imensional 

space with p r o j e c t i v e connection from t h i s po in t of view 

and we t r e a t the cond i t ions f o r rt-holonomy geometr ica l ­

l y in f u l l d e t a i l s . 
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