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Commentationes Mathematicae Universitatis Carolinae

10, 4 (1969)

ORDER OF HOLONOMY AND GEOMETRIC OBJECTS OF MANIFOLDS
WITH CONNECTION

Ivan KOLAR, Brno

Our considerations are in the category (< . The
steandard notations of the tneory of jets are used through-

hout the paper, see [31.

1. Let P(B,G) be a principal fibre bundle with
base B and structure Lie group G and let § = PP"’
be the groupoid associated to P. Let H be a closed
subgroup of G, let F = G/H be the corresponding ho-
mogeneous space and let E = E(B,F,G, P) denote the
fibre bundle associated to P with standard fibre [;
so that ® is a groupoid of operators on E . Let 1T
be the canonical projection f1: E->B ; we shall write
E, = 41,"4_(“), X€eB.

0%(3) or G*(d) or Q™(®) means the fibred
manifold of all non-holonomic or semi-holonomic or holo-
nomic elements of connection of order £ on § respec-
tively, see [4]. A non-holonomic or semi-holonomic or
holonomic connection of order 4 (shortly: an X -con-
nection) on § is a global section C : B ~ Q% (&)
or C: B —G%(3) or C: B — Q%P respectively.
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Let V be a manifold, let Z €J*(V,E) and let Xe€
€ 6’*(@) such that w X = (3Z) = X . Then the develop-
ment X~(Z) of Z into E, by means of X is defined by
X"Z)= (X" Z). Ze T (V,E, ),
where » means the prolongation of the partial composi-
tion law (6, x)+—> 02, e  , x€ E, see [4].
(We remark that Ehresmann uses the term "the absolute
differential of Z with respect to X " for xX1(Z).)
Obviously, if Z € 5"(V, E) or J™V,E) and X € G% ()
or Q*(3), then X~"(Z)e J®(V, E,) orJ*(V, E,)
respectively. Furthermore, if Z = ;’._':6’, where 6 is a
local section in E , then we write x=1ce) instead
X“(;':e’) and X~'(6) is called the development
of 6 into E, by means of X .

Let C be an # -connection on $, then C’ means
the pz;olongation of C, which is an (x+ 1) -connection
on &,  see [4]. The Je-th prolongation of ( is defi-
ned by iteration C®’ = (“*-")" _ Every 4 -connection

C determines a sequence C, C’, ..., (g of

) oo
semi-holonomic connections. The terms of such a sequence

are called simple connections.

Definition 1. A space ¢ with 2 -connection is a
quintuple ¥ = &(B,$,E,6 6, C) , where 6 is a
global section in E and C is an n -connection on &.

Remarks. For s = 1 , our definition is equivalent
to the definition of a space with connection by A. BSvec
(71. The sequence ¥* "B, §,E, 6,C*"y, n=1,2,...,

of spaces with simple connections is canonically associa-
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ted to every space Zf(B, $,£,06,C) with connec-
tion of the first order.

2. A (holonomic) contact element of dimension m
and of order » (shortly: a contact m*-element) on a
manifold V at a point x € V  is the set XL , whe-
re X is an m®-velocity on V at X . Such a contact
element is called regular, if m < m = dim V  end if
X is a regular velocity. The fibred manifold of all
regular contact /m"'-elementa on V will be denoted by

K:D(V) . Let UL be another manifold and let Z e
€ J*(VU), then Z determines a contact m® -element
R(Z)on U at BZ, k(Z)=ZhL:; , where fv is a
(holonomic) n -freme on V at < Z .

A manifold N together with a left action of a
group G on N is called a G -space, see e.g. [11],
p.31l. A mapping ¢ of N into another G -space is
called a G -mapping, if @ (g X)=g@P(x) for every
x €N,geG. Let F be as above, then the action of
G on F 1is canonically extended to an action on
K”’:CF'), so that K% (F) is a G -space.

Definition 2. A geometric m™-object " on F
with values ina G -space S is a G -mapping of
Ky (F) into S.. More generally, let W be an inva-
riant subspace of K:»( F), then a geometric /m™ -object
on F of type W with values in S is a G -mapping
of W. into S.

Let M be an m -dimensional submanifold of F ,

then M determinea canonically a contact m™- element
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A:M at each point xe€ M and ("(RiM)e 5 will
be called the value of ( for M at X . That’'s why we
may also say that (¥ is a geometric object of order x
for m -dimensional submanifolds of F .

Remarks. We shall show in a next paper that our de-

finition gives an invariant and deeper explanation of the
so-called "method of prolongations and outflankings" by

G.F. Laptdv, [6]. We shall also show that a modification
of our ideas enables to define geometric objects for sub-

manifolds of a space with fundamental Lie pseudogroup.

3. A semi-holonomic contact ™ -element on a ma-
nifold V is the set YLY , where Y is a semi-holono-
mic m”® -velocity on V' . Such a contact element is
called regular, if m < m=dimV and Y is regular;
the fibred manifold of all regular semi-holonomic contact
m'™ —elements on V will be denoted by E:,(V) .Let U
be another manifold and let Z & J®(V, L) , then Z
determines a semi-holonomic contact m" -element S (Z)
on U, k(Z)=ZhL"
/t -frame on V .

Definition 3. Let F be as above. A semi-holonomic

, where M is a semi-holonomic

geometric m® -object on F with values in a G -space
S is a G -mapping of E:,'L(F) into S .

Remark. Analogous definition relates to the non-ho-
lonomic case as well.

Definition 4. A space F(B, $ E, 6, C) with x-

connection will be called a manifold with /X -connection,

eL£n _



if it holds
a) m=dimB<m=dmF,

) ¢Tex) (6 is regular for every Xe€ B .

We shall also say that m =odim B  is the dimension
of ¥.

Remark. A manifold with a 4-connection is local-
ly equivalent to a submanifold of a space with Cartan
connection, cf.l21]. _

Consider an m -dimensional manifold with a semi-
holonomic / -connection and let O  be a semi-holono-
mic geometric mm” -object on Ey, x€ B . The develop-
ment C"'(Xx)(@&) of & into Ex determines a semi-
holonomic contact m”-element & CC™'(x)(6)) on Ex
and O'Che (C(x) (6N e S will be called the
value of 0" for ¢ at xe B ,s0 that a semi-holono-
mic geometric /m"-object represents a geometric object
for m -dimensional manifolds with semi-holonomic % -
connection. Moreover, if J( B,d,E,5,C) isoa
manifold with 1 -connection, then (& can be applied to
the associated menifold ™"’ (B, & ,E,6,C ee=1y
with semi-holonomic 1 -connection; that’s why a semi-
holonomic geometric m"-—oba’ect may also be considered
as a geometric object of order » for m -dimensjonal
submanifolds of a sgacé with Cartan connection.

4. A semi-holonomic contact m™-element YL,
will be ssid holonomic, if it contains a holonomic m™-

velocity.

~ra



Definition 5. A menifold ¥(B,®,E,6,C) with
semi-holonomic A& =-connection is called holonomic at Xe&
€ B, if the contact element k¢ (x)(6))  is holo-
nomic.

Let 0 be a semi-holonomic geometric m”-object
on E, , then the restriction of & to KECEL) is a
holonomic geometric m™-object on E, , since K. CEL)
is an invariant subspace of E:'n (E,) . This proves the
following

Theorem. If a manifold ¥ with semi-holonomic « -
connection is holonomic at & € B, then the value of eve-
ry geometric object for & at X coincides with the va-
lue of a holonomic geometric /m."'-object on E_x .

We can also restate this theorem in the following
more intuitive way: if a manifold with semi-holonomic %« -
connection is holonomic at a point, then all its geomet-
ric objects at this point coincide with the geometric ob-
Jjects of order n of anm -dimensional submanifold of the

corresponding homogeneous space.

5. A manifolda (B, $,E,6,C) witha 1-
connection is called rt -holonomic at x € B, if the asso-
ciated manifold Y7 (B ,9,E,6, c* ") is ho-
lonomic at X . In this case, our theorem gives the con-
ditions that every geometric object of order sz of a
submanifold of a space with Cartan connection coincides
with a geometric object of a submanifold of -the corres-

ponding homogeneous space.



In [5], we consider a surface in a 3-dimensional
space with projective connection from this point of view
and we treat the conditions for s -holonomy geometrical-

ly in full details.
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