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Commentationes Mathematicae Universitatie Carolinae 

10, 3 (1969) 

HIGHER ORDER DIFFERENTIABILITY OF NONLINEAR OPERATORS ON 

NORMED SPACES I x ) 

M.Z. NASHED, Beirut 

1. Introduction. This paper is concerned with several no­

tions of higher order differentiability in the theory of 

nonlinear operators on real normed spaces. We broaden the 

concepts of higher order differentials of Gateaux and Fre"-

chet and introduce new variants of such differentials. We 

also study higher order strong differentials, Hadamard, 

Peano and Taylor variations and differentials. Various im­

plication relationships among these variations and diffe­

rentials are obtained. Sufficient conditions for the exis­

tence of these differentials are also established* 

A differential of order *ri may be defined in two 

way8. We may define it directly without reference to lower 

order differentials, or we nay define it inductively assu­

ming the existence of differentials of order less than <m. 

These two approaches may lead to different notions. We 

shall distinguish between eight notions of Fre*chet (Ga­

teaux) differentials of order rm and establish continui­

ty implications of these notions. 

x) Communicated at the seminar on Nonlinear Functional A-

nalysis at the Mathematical Institute of Charles Universi­

ty on June 22,1968. 
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We remark that for the differentials considered in 

*,his paper, the existence of a differential of order fn, 

implies the existence of all lower order differentials. 

This property is not possessed by all definitions of dif­

ferentials (for instance, Riemann differentials and diffe­

rence-differentials L13). 

For an exposition of calculus in normed spaces, we 

refer to Dieudonne* [2], Liusternik and Sobolev 13], Vain-

berg 143, Kantorovich and Akilov C5J, Michal £63, Nashed £73 

and Rail [83, and to the older work of Graves and Hildebrandt 

19-113, FrSchet L12,133 , Gateaux [14-163, Levy £171 ana 

Kerner C18-20J. 

All the limits in the definitions of differentials 

in this paper are taken in the sense of the norm, and not 

in the sense of the weak topology. The latter leads to no­

tions of weak differentials. 

2. Multilinear operators and differential forms. 

The study of higher order Fr^chet and Gateaux diffe­

rentials essentially involves the approximation in various 

senses of the difference f Cx0 +Ji)-f(oc0) by abstract po­

lynomials. This leads to consideration of various notions 

of continuity of mappings from a subset of a normed linear 

space to a space of multilinear operators, which we shall 

discuss in this section. 

2.1. Let E4, BXJ...7 E ^ and V be normed real li­

near spaces and let TT denote the product space E 1 x Ê xr 

x... x £ ^ equipped with the usual product topology indu­

ced by the norms on £4, , i • Afl1...9 m .We write 
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X • ( * 1 f « . , ^ ) e TT as x 1 . , . x^ and l e t Ixf -

s-vfrtffx "«X̂  I * We recal l that an operator L/m, : TT-> y 

i s called multilinear or ort - l inear i f i t i s separately 

additive and homogeneous in each of the variables. For a 

multilinear operator L and for each x^7 ...7x^^^ 7 

*Jk,+<\i'"7 *<m> w e d e s i ^ n a t e ^y S-lc/ t h e l i n e a r opera­

tor Xj^—> l-/m'*1 -̂ 2 '*' •̂ ir.u o f t h e 8 P a c e £&, * n t ° ^ # 

We say that L/rrv i s separately continuous i f for each 

* 1 0 *' • 7 *M-<\ f **,+*> —' *<m> * w h e r e * * , e B4*. » t h e ° ~ 

perator S ^ i s continuous for Jk, -» 4^ . . .^TO- , L ^ i s u-

niformly separately continuous (bounded) in x ^ i f the 

linear operator S ^ i s continuous (bounded), uniformly 

on the set 11.x, II « . . . - Hoc- II « lltf* . . fl-.•.-arl.otMI I - 4# 

Finally by a continuous multilinear operator we mean a 

multilinear operator which i s jointly continuous in a l l 

the variables, that i s , continuous on the product space 

TT , We shall need certain implications among these no­

tions and characterizations of continuous multilinear o-

perators which are stated in the following: 

Theorem 1» Let L ^ be a multilinear operator on 

TT into Y . Then the following implications hold among 

the following statements: 

a,.-.-.> Jbr=$ c ==-><£ «---> e-=£*F ? 

•f s-> a, if the space TT is complete ; 

(a) L ^ is continuous on TT . 

(b) L _ is continuous at the point *ero £L •<« 0 

(c) L.^ is bounded on each bounded set of TT . 

(d) L.^ is bounded on TT , that is there exists a con­

stant M it 0 such that for all ̂ 1 ... x ^ e TT ., 



(1) II L^*C, •• • *** • * M " ^ " '•• " x*~ " .* 

(e) L ^ is uniformly separately continuous (bounded)in 

Xjĵ  for some fixed Jk, . 

(f) L ^ is separately continuous (bounded)* 

We omit the proof since the various implications of the 

theorem are either given in the literature or involve sim­

ple manipulations. The most important proposition in the 

theorem is the equivalence of statements (a) and (f) when 

the space IT is complete. For an exposition of continu­

ous multilinear operators on normed spaces we refer to 

Dieudonne* [23 and Hille and Phillips [213. For computatio­

nal aspects of such operators see Hall [83. Bourbaki [22] 

and Dieudonne* [233 give an account of the theory of multi­

linear operators on topological vector spaces, where it 

may be noted that (f) does not imply (a) even for locally 

convex topological vector spaces. However, the implication 

holds under weaker conditions than stated here, for exam­

ple in the case of a bilinear operator which is separate­

ly continuous it suffices to take E^ to be a metrisable 

barelied vector space, E^ a metrizable vector space and 

Y any locally convex space, so that in particular joint 

continuity follows if the spaces E ^ are Fr£chet spaces. 

In this connection we also note that Bourbaki defines a 

notion of hypercontinuity (and equihypercQntinuity) for 

bilinear operators which is intermediate between the no­

tions of separately continuous and continuous operators. 

For normed spaces, this notion is equivalent to any of the 

statements of Theorem 1 if IT is a Banach space. These 
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notions become important for the theory of higher order di ­

f ferent iabi l i ty in vector spaces without a norm [24J, which 

require modifications to be examined elsewhere. The general 

theory of continuous multilinear operators i s c lose ly con­

nected with topological tensor products which are surveyed 

in [233. 
L e t ^rv denote the vector space of a l l continuous 

multilinear operators on the product space TT into y » 

The greatest lower bound of a l l constants M satisfying 

the inequality (1) i s given by 

IIL ll» wMLx^ "- «*-*- H •' '-*• I » 4, i - V " , ' " * * 
irv • in, *\ mx t, * 7 7 

and is a bona fide norm on the space ^/nv . Furthermore the 

space oC/yn, equipped with this norm is a Banach space if 

and only if y is complete. 

The inductive definitions of higher order Gateaux 

and Fr6chet differentials lead to consideration of the 

space ^CE^ ^CCE^... 7^CEnn7V)7...) 7 where &CX,y) 

denotes the space of all continuous linear operators on X 

into y . There is a canonical isometric isomorphism which 

identifies the space <-̂ m, CE^7...7 £ w ; y ) with the 

space *£ CE^, S& CE^,... 7 ^CE^^V),.,. ) „ in the sequel 

we shall identify the corresponding elements of these spa­

ces under this linear isometry. 

Now let E 1 « E -»*••• -* E ^ «• E . Let 6* be a per­

mutation of the set iA9 27...7m% 3 and consider J< ; 

:-l/t1 17*..7m%J—>TT# 6 induces a linear transformation 

P, : X, (TTt y )—> ^CTT; y ) defined by 
(£,L ) * * L C * * ^ ) , where X 6 TT , The mean of an <m -li-
Q *m *tn> l 
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near operator is defined by L/WT x^ .. . ^mv -» 

» —. 2. (%> L ) x . where the sum is taken over all /ml &&«>*> ? 

permutations of -t 4, Q.,.0*, sm3 . An /m. -linear operator 

is said to be symmetric if E^ "... ~ E ^ and F£, L^ s L ^ 

for every permutation 6" # The mean is always symmetric; 

a symmetric on, -linear operator coincides with its mean. 

Note that H L^tt » Ir^L^II for every 6~'. 

This notion of symmetry should be distinguished from 

the weaker notion of symmetric /nv -linear operator used in 

exterior algebra where L w is said to be symmetric if 

21 Ac Rr L. -? 0 , where A>~ » 1 if -T is even and g» o o in.- / © 

^ 5 - 1 if 61 is odd. 

2.2. The study of differentials of order <m leads 

to mappings from a subset X of a normed linear space to 

the space ^^ C Ê  x . . . X E/|rt j Y > . We write J ; X - > 

—»^L. aod ca l l DC/x ; . „, ) a formal differential o-? 

perator. DFCx$ J v i ? . . . , Jftu^ ) is called a formal 

differential form. Several notions of continuity end di­

rectional continuity may be defined for D(X) . . . ) de­

pending on the topology used for <-%-̂  -

Definition 1. A differential operator i s said to be 

pointwise continuous in x at xo it for any Jfy ...M^ e 

€, T , 1 DCoe, M^... Jhfc)- D Cô j ^ — Jt^,) Hy-* 0 whenever 

|-X - 0<o J —> 0 # This i s equivalent to considering the 

space i6<Trv in the topology of pointwise convergence. 

Definition 2. A differential operator i s said to 

be jointly cpitinuoua in the variables M,A,,*.*, ^^ 

at X0 i f for any x £ X , M^ ... Jk^ c 7T , 

I D ( * } * V i v ^ 1 ~ P ( ^ ; ^ ..* ^ ) l l -^0 whenever 
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II * - Xc II - » 0 and I ̂  - -*- II - » 0 for i -

-* 1;...;'W& - This is joint continuity in the classical sen­

se. 

Definition 3. A differential operator is said to be 

continuous in ,x at :X0 if it is continuous as a transfor­

mation from the set X to the space *£„ 

II D C * 7 ... ) - 3) (Xc j . . . ) \ \ — > 0 whenever 

II X — X0 II —> 0 . This i s the same as considering the spa­

ce ^ ^ in the topology of uniform convergence on boun­

ded s e t s . 

We remark that Definitions 1 and 3 are implicit in 

the work of Kerner [19J and Graves and Hildebrandt C11J 

respectively. 

Notions of directional continuity may be defined s i ­

milarly. For example-

Definition 2d. A dif ferent ial operator i s .jointly 

directionally continuous at x 0 i f for any fixed ty , 

IDCX.+ tyjJfy...^)-^ whenever 

t - * 0 and II Jh,i - M^ I —> 0 for i = 4, ..* 7 "n . 

Definitions Id and 3d wi l l denote the analogs of Defini­

t ions 1 and 3 for directional continuity. 

Notions of weak continuity, demicontinuity and hemi-

continuity of dif ferential operators may be defined ana­

logously and are useful in consideration of weak differen­

t i a l s of higher order as wi l l be shown in [25J. (See Re­

mark 1 p. 35 in Vainberg [4] and the recent work of Kolo-

ntf L26,27J and Zizler [28J for f i r s t order weak differen­

t i a l s . ) The implication relationships among these notions 
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are stated in the following: 

Theorem 2, (a) A dif ferential operator J) ( * ; ^Hf *-« 

• • * ^ * v ^ *8 continuous at «X0 i f and only i f i t i s 

pointwise continuous at .x0 uniformly with respect to 

(b) A differential operator i s pointwise continuous at X0 

i f and only i f i t i s jo int ly continuous. 

Furthermore, the continuity of DC-Xj Av^ . . # ^ v ^ ) at 

.X0 in the sense of any of these definit ions implies 

the existence af a posi t ive number M and a neighborhood 

N(<x0) of x0 such that for a l l o< e N(x0) , 

(2) 13K*> J f y . . . ^ ) » y * M i l ^ t i ••• D ^ w " • 

Similar implication relations hold among Definitions Id, 

2d and 3d for directional continuity. The directional con­

tinuity of D(«Xj h/^ ••* ^V»r ) at «x0 in the sense of 

any these definitions implies the existence for fixed ty 

of a positive number M and a neighborhood NCO) such 

that for all t? e N (0) , 

(3) >IDC*0 ^tnti*^... ^ ) l y * Ml*^l ... M O • 

Proof* (a) Let D be continuous at X0 . Then 

given £ > 0 , there ex i s t s a cfj> 0 such that 

ft X - X 0 I implies 

lD(x,...>-DCoc.,...)l t _ x • y ; < « , ~ -

fhus 
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8#_xJ<<Timplies WTX^h^.h^) -T>(x0sh,...K/rfV)\\< e 

uniformly with respect to %v .*» K/ffu on the set IIA^ I .» 

31 •*• ** "^lw'' ** ^* Conversely i f D i s pointwise con­

tinuous at x 0 uniformly with respect to ^ . . . h, on 

the set 11^11-...=- IIH^I 9 4 ? then for each e > 0 , the­

re ex is ts a c/Te ) > 0 which i s independent of fo,^ ... 'hYt% 

such that 

I D ^ j J h ^ . . . * ^ ) - ] ) ^ ^ . . . ^ ) ! < 6 for l ^ l - . . . H f J I « 

=r 'I and II x ~ *<> II < cT . Thus I D ( x ; • • • ) -

• Ddx<> > . . . )ll < S . 

(b) Let D be pointwise continuous at x o , Let x —>• X0 

and Je- —* - ^ for i * 4 7 . . . . , /m, . Then 

I D C o < ) J ^ . . . i ^ ) - D ( o c o ) ^ . . . ^ ) l l £ 

^ IID(X5^. . .^>~D(^j>fe 1 . . . M^n -t-

The first term on the right goes to zero by pointwise 

continuity of D j the second goes to zero since D is 

a continuous multilinear operator* The converse is tri­

vial* Inequality (2) follows easily using the triangle 

inequality and part (d) of Theorem 1. 

The proof of the implications among the notions of 

directional continuities is essentially the same* 

2*3* The form L _ x ... «x obtained from a sym-

metric nm -linear operator L ^ X ^ ... ^/vrv, by setting 

X, »..* -* <X » x is called an abstract power and ie 
1 Oft, 

- 517 -



denoted by I x'™' • The induced operator is called a 

power operator of degree ntrv „ Similarly L^o^ ^... x ^ 

where HYI^ are positive integers and , £ "TC.̂  -& ̂ rt is 

an abbreviation for L / m , ^ < , ' - ^ ^ , t ' X-^'" **> *" ^ ' 

Since a symmetric m, -linear operator is distributive and 

commutative in each of the X^..* -X^ it follows that 

Hence, 

so that the /m -linear operator is recovered from the po­

wer operator. We note that if L^ is a power operator 

of degree /m. and T is a linear operator on the range of 

L-v-n. > then T L ^ x ^ is a power of degree (m.. A power 

operator of degree nm, is continuous if and only if it is 

bounded on some sphere* If so, then it is bounded on each 

bounded set and satisfies a Lipschitz condition of order 

one uniformly on such a sphere. An abstract polynomial of 

degree rm, is an operator of the form GLCx)**^ L^»x 7 

where L ^ e SdCEL > Y ) , Av=* A f . . . 7 nrv ? are abstract forms. 

Note that there is no loss of generality in assuming that 

the multilinear operators Lj^ are symmetric since the 

polynomial form and its Fre*chet derivatives are unchanged 

if each Lj^ is replaced by its mean L ^ . Equivalently, 

an abstract polynomial of degree rm is an operator on 

the space E with values in Y which .for x^ A e E 
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and all scalers X satisfies 

where Z^Cx 7 H) are independent of A and C^CX.,A)4-0. 

For properties of polynomials over Banach space we refer 

to Hille and Phillips [21] and Liusternik and Sobolev [3J. 

The notion of abstract polynomials in real or complex nor-

med linear spaces has passed through several stages. For 

historical developments we refer to Fr^chet C29J, Gateaux 

115J, Michal C30J, Martin [3U , Highberg [32J and Gavurin 

133,34}. 

3. Higher order differentials of Frexhet. Gateaux. 

Hadamard and related variants* 

3.1. Variations. Let E and Y be normed linear spaces. 

Let F be a mapping from an open subset X of E into 

y. Let «x<> e X and Jh, be an arbitrary nonzero element 

in E . Then «x0 + tH e X for 111 -£ H, Cxo -7 ^ ) , Let 

X s A ^ { * i l i U H =x$x0+XH e X} . Then <J> rt)*FfX-,+ifc; 

is defined for l i l < t' . If <J) has nth order derivative 

at t « 0 , then 4>{/rv) CO) is called the nth Gateaux-

Levy variation and is denoted lay cT/n'F(^0 ; Jx,). In this 

form, the definition is due to Levy [17J. The notions of 

first and higher order variations passed through many sta­

ged of generalisations in the work of Gateaux [14,16J, 

Levy [171, Gravaa and Hildebrandt [10,112, Kerner [20J and 

others* It follows easily that F has a first variation 

on the aet X if and only if for each x e X and any 
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A« i • • * fM,-. 6 £ , the function F(x + . I i ^ ) 

is partially differentiable with respect to 4 ^ ; M a 

m 4 ^ . . * 7 n% ? in the aet of points t^,... , t^ for which 

X + . X t.\ e X . If F ha8 an nth order variation 
%s<i * * 

at Xp , then F has variationa of a l l ordera up to m> 

at X0 ? and for each posit ive integer M, <c art and every 

i s homogeneous in>H of degree TL. Every operator which i s 

homogeneous of degree rm, haa mth order variation at 9 and 

(T^FCe;^)-- <m!F(fit) . 

The f i r s t variation i s not necessarily l inear nor 

continuous in M,. It F has a f i r s t variation at x0 ,then 

F ie directionally continuous at ,xo , i . e . , 

M^n, 1 F(xc * tjh.) - F^o>8 » 0 for fixed ^ but i t i s 

not necessarily continuous at x 0 , A l inear variation i s 

cal led a Levy d i f ferent ia l . A continuous l inear variation 

ia called a Gfiteaux d i f ferent ia l . Clearly, every Levy dif­

ferential at y0 i s directionally continuous in M, : 

(4) JtUm, <fF(*0 ; M, 4- <vM, ) * <fF(x0 ', M,) -

A Levy di f ferent ia l ia a Gateaux differential i f and only 

i f (4) holds uniformly with respect to M, on the aet 

tM, fl « i . 
The nth variation i s not necessarily m, - l inear 

nor continuous in M, * 

Higher order variations cam also he defined induc­

t i v e l y . If cTF( * $ M, ) ex i s t s in a neightorhood of ** > 
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then dFCXj • ) ia an element of the space of a l l ho* 

mogeneous operators on £ into V , I f for fixed -H ? 

d*FCX;M,) has a f i r s t variation at X0 ., then we say F 

hap a second variation at X0 and denote i t by 

J*FCX0;Jh,,Jk,),i.:, cfaFCo(0^^,M,)^crjcrFCx0^>,h> 

- Jtim, ±icTF(x0 + tJk,,4v)-crF(X0; hx,)} -
t-*o * 

I t then follows that 

* StfZ dt„ FC^^t^^yi^^t^o • 
If ^ - x - . - * , f e ^ * >j, ? then c r ^ - F c r ^ ' , ^ - - , *** > 

coincides with <T^F(xc $ ^ ) defined above. 

In order to enrich the theory of dif ferentiat ion, 

additional properties on the nth variation are usually im­

posed. Rather than follow this approach, we shall enlarge 

the scope of notions of higher order di f ferent ia ls and 

relate them to variations. For a thorough study of higher 

order variations in complex spaces, see Hille and Phi l ­

l ip s [211. 

If <fF(x0 + tAx-7 h, -t- to AM,) , where Ax and 

Ah, are elements of E 7 has a tota l d i f ferent ia l at 

t a /o « 0 , then we say that dJF(x-7 h,) has a to ta l 

variation at Cx0,ht)f and denote i t by dcTF(Xa> h,; 

Ax7 Ah,). Clearly i f cTF(x 7 h,) has a to ta l varia­

tion at (x0 J h,) , then 

3,2* Hotiona of mth orfler F^cfaat flfrff tr fnt |a4* . 

We reca l l that an operator F; X —* y i» " i d to 
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be Freshet differentiable at X0 i f there ex is ts a bounded 

l inear operator L <x0 • • ) on E into Y such that 

for a l l Jh, 6 £ with x0 + M, e X , 

F(x0+Jh,)- F(X0)=LCM.i<h>)+R<*oi **<) 

where 

%RU0;Jh)\\ _ n 

A™ irrii u ' 

If F i s defined in a neighborhood of «x0 , thenL f^; h,) 

i s unique and i s called the Fr6chet differential of F 

at x0 , and i s denoted by cLF (x0 ; H ) . The operator 

d F(,x s • ) i s called the Frechet derivative and i s 

denoted by F'(x0) , If F i s Frechet differentiable at 

X0 ... then i t i s continuous at xo . On the other hand, i f 

F i s assumed to be continuous, then the requirement of 

continuity of d,F(xc •, Jh ) in Jh, i s redundant. 

Let X be an open subset of the product space TVs 

» E1 x . . . x E^ . Let F : X - » Y . The Frechet partial 

d i f ferent ia l at AA,A , . . ., u*^ of F with respect to *x̂  

i s defined in the usual way: there ex i s t s a bounded l i n e ­

ar operator L ( ^ , . . , , AA^ ; • ) such that for a l l 

H. B £ . with 

(4^,...tM.4mi ,<u*i+.A,4 ,^^,...,44,^) e X , 

4- R (Uj . . . AA,^ ', M,± ) 

where 
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L(AA^ . . . AA^ -, M,£ ) ia cal led the Frgchet partial dif­

ferential and ia denoted by d^F(u . . . AA^; Jbt^ ) . F ia 

eaid to be to ta l l y differentiable i f i t i8 Fr^ehet differen-

tiable conaidered aa a mapping on X c E x . . . x £ ^ in ­

to Y ? that i a , i f there ex i s t s an L{AA $ Jfo)7 AA*S AA±.., 

*..M,^ B X , M>~ Hi •• * fafo B TT y which ia l inear and con-

tinuous in M such that ^ 

^ ir<*s*h,r»>»^'n*"^~u^.~u^*i... **>„) 11 = 0 

l-(u....At >,&,.-.- M, ) i s cal led the total Fr4chet d i f f e -

rential of F and ia denoted by dFCu ... AA^ J A ^ . . . h^ ) . 

An operator F; X c TT —> y which ia to ta l ly 

different iable at AA^ . . . AJL,^ i s partial ly differentiable 

with respect to each variable and i ta tota l differential 

ia the sum of the d i f ferent ia l s with respect to each of 

the variables.(Fr^chet [12;p.319] , Dieudonn6 [2;p . l673 . ) 

Now we turn to higher order d i f f erent ia l s . Suppose that 

F has a Frlchet derivative on a subset X of E • 

Then F ' : X x E —> y i s continuous and linear on E. . 

We shall give eight notions of second order F^chet d i f f e ­

rentials of F . (We remark again that weak d i f ferent ia l s 

are not treated here. See Introduction*) 

Definition 4. If cLFCx > • ) , considered as a 

mapping on X into «6C£$ y ) has a Fr^chet derivative 

«t x0 , then we denote th is derivative by F**(x0) and 

c a l l i t the second order Frlchet derivative of F at X0 . 

Accordingly F " (x0) i s an element of the space 

X C E -7 %t ( E , V )) which i s isometrically isomorphic 
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to £(E x. £ ; y) . We Make the identi f icat ion of theae 

two spacea in the sequel eo that F"(x0) e £(£ x Ej Y)» 

If F"(x) exiata on X , then F" i e a sap fro» X to 

SrtCEx £ ; V ) . 

We c a l l F" (x0 ) JhJh, ibr Jfr,, *fe- c E , the aecond 

order Frechet di f ferent ia l of F at x0 and denote i t a l ­

so by daF(oc0 ; bv, <&),We then have 
JUm, \\M,r*ilidFU0+M,*, O - d F C ^ j O -

- < £ * F c X ; • , ^ > < l « e * * # > 

where 1 • 1^ denotes the norm in the apace of a l l con­
tinuous l inear operators on £ into Y « 

Definition 5» The operator F ia aaid to have at 

X0 « second order pointwiae Fre*chet differential i f 

there ex i s t s a continuous bil inear operator B (xc y * ? •) 

on £ such that for each fixed <H € £ , 

We ca l l & the second order pointwiae Fr^chet derivative 

and denote i t by daF(X0 -, * * ) -

Definition 6« The operator F i s aaid to have 

at Xc a second order partial Frlchet dif ferential i f 

dF(x; >hy, considered as a map from X x £ into 

y ; has at X0 a partial Fr*ehet differential with 

respect to «x • We denote the aecond order partial Fre*-

chet dif ferential by cl* F (x0; i v , M ) , Accordingly 

for each M, 6 E , 

JUm, mrHdFtet+MiHy-dF^Ay-d* FU0<,HfM)ly« 0, 
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where d* F(x0 '7Av7Jt ) is continuous and linear in it. 

Note that d*FCxo? h/7My) is not required to be line­

ar nor continuous in M> . However, it turns out that it 

is automatically linear in <tv • 

Definition 7> The operator F is said to have a 

second order total Fr£chet differential at xQ ., if 

<£FC , • ): X x £ — > y has a total Fre'chet diffe­

rential at (x^ 7 M,) for all H a £ . We denote this dif­

ferential by ddF(xo7Jh ) Ax 7 A A ) . (Note that we 

do not abbreviate ddF to d^F since we reserve the 

latter notation for the second order Frlchet differen­

tial in the sense of Definition 4.) 

Definition 8. The operator F is said to have 

at «x0 a second order strong Pre'chet differential if the­

re exists an operator BC^*, « * )& iCC£ x- £> Y) such 

that for each £ > 0 ; there exists ft -> 0 where 

IdFty; . )-d,FC:s; * ^ B ^ f l ; . ^ - J t ) N 6 II «f-z I 

for each pair of elements nff Z, with l*y*- X0 II -» ft , 

II & --»* f -& £ • The operator B Ox^ j *• • ) is called the 

second order strong Fre'chet derivative at «X0 and is 

denoted by c£fl F Cx^ j • . ) # 

The notions of strong pointwise differential and 

strong partial differential may be similarly defined. 

Before we study various implications among these 

differentials, we consider continuity properties c 

dFCtX ; Jv ) which are implied by the existence of each 

of these differentials* It is clear that if F has a 

second order Frechet differential at X 0 ; then F ' O O 
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is continuous at x0 $ equivalently the differential 

otFCX) h,) is continuous in x at X0 in the topo­

logy of unifoim convergence (Definition 3). The impli­

cations for the other differentials are stated in the 

following: 

Theorem .3* (a) If F has a second order pointwi-

se Frexhet differential at x0 7 then F'(x ) is conti­

nuous at X^ (Definition 3), hence also pointwise con­

tinuous at x0 ' 

(b) If F has a second order partial Fr^chet dif­

ferential at x0 7 then cLF(x '7 Jin,) is jointly continuous 

at (jXa 7M,) (in the sense of Definition 2). 

(c) If F has a second order total Fr^chet diffe­

rential, then dF(x $ M,) is jointly continuous at 

(x0 7 Jh,) < 

(d) If F has a second order strong Frdchet dif­

ferential! then F'(x) satisfies a Lipschits condition 

in some neighborhood of x0 • 

Proof, (a) Consider the function 4> defined by 

4>C^,^)« It AIM ldiF(x0^K',M)-dF(x07Jh,)^d^F(x0^,M)\\ 

if M, 4- 0 and $(*t7 9) m 0. Since <9ZF(X0 -, M,7 to ) 

is the second order pointwise Fre*chet differential, 

4>(Jh7to) is continuous in 4 at to -» 9 0 It is also 

linear and continuous in to* Therefore there exists 

M > 0 an& a neighborhood N (9) of 9 e £ such that 

for any to € N(&), $(H,to) 6 M II to \\ • (See Theorem 

2; in particular equation (2)). Thus for toe N (9) , 

|dF(o(,+*)JK>-dFfc^ 1-kl* 
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Therefore, 

ldF(v-Jlt,A,)-dFC^ >*l 
and 

IdFtai+MtM-dRbnh)! t ( M 1 1 | ^ i p r f . . I . ; | * | . 
IAJ 4 

Conaequently, 

IdF(^+JJe;. )-dF(.%; • )L * (M-clOTY^ . )Lj ) fi M, I . 

Thus 

Jlt-v© implies |dF(«e+4t, .)-c(F(.v> . )ll-> Q . 

(b), ( c ) , (d) follow aaaily. We prove (d). By defi­
nition there exists tt > 0 auch that 

HdFOy,-, . ) - d F ( x j J - ^ F ^ ; . . . ) ^ « ^ . - » H 

i f ^ and x, are in N(xoj/t,)-»{.x e X : B.x-.ye II 16 / t } • 

Thua HdF(/^; . ) -c iF(* } . )t^ A | / ^ - * f . + M I ^ - * , H 

where »d4F . ^ j . . ) L « M . 

That ia, 

WdFC^.t-dFCx;.)^ *(M* * > % - * ! , 
for all r^; x e N ( \ ) ^ ) . 

We now state implication relationships among these 

notions of differentials. 

Theorem 4a (a) F has a second order Frgehet 

differential at x0 if and only if F has a second or­

der pointwise differential at Xd and (5) holds uniform­

ly with respect to Jh, on the set II M, I m 4 . la this 

case the two differentials are equal• 

(b) F has a second order pointwise Fr^chet 

differential at x 0 if and only if F has a second or­

der partial Frdchet differential at X0 and the latter 

is jointly continuous in M» and M (or continuous in 
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Jh, and the apace £ i s complete)* 

(c) If F(x) ha8 a second order pointwise 

Frdchet differential at .xo . then dF(x; h, ) i s total­

ly differentiate (Definition 7) at (x0 7 Jh, ) and the 

total differential i s given by d1F(x0 j M,$ Ax ) -c-

+ dF(x0-7 AH ) . 

(d) If F has a second order strong Fre*chet 

differential at x0 7 then F has a second order Fre*chet 

differential at xq . 

Proof: (a) and (d) are obvious, 

(b) First we show that dLflF(x0 j Jh, 7 Jk> ) ; the 

second order partial Fre'chet differential at xc , i s au­

tomatically linear in M>. Let Jh^ + Jh,± , Jk> e E , fl>fe I - 4, 

cC? /S and X be scalers* Then 

WdxdF(x0•)<K<h>i + p>*v% 9 h)- cnd^d>F(x0 j Jfy, i t ) -

- fid^dFCo^ttoi,*,)! -

- / S d ^ c t F ^ j i ^ , VJfc)| £ 

*ft?| ^ ^ V * *h4 + fl\,*Jk,)-dF(^+vJkicijfy+/3<h!t)+ 

+ dFCx^oxMn* flJh,a)fl + 

+ -jg^g4F^+^ 

+ pf{(UF^+r*^^ . 

Each of the three terms on the right side ot the above 

inequality tends to *ero aa ^ —* 0 f uniformly with 
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respect to to, on the se t I to, I m 1 , But the f i r s t term 

on the l e f t side of the inequality i s independent of fcf • 

Consequently, d^dFCx^h^ Q>h,%, &)- ctd^dFCx, yh^Jk)* 

¥(&ddF(xQ<} to,x,Sk) for to, with I Jit I *i and hence 

for every to, since dxdF(x0 , to,, to ) i s homogeneous 

in to, . 

Thus i f d^dFCxi 9 A%9 Jh) is jointly continuous in 

to, and to, (or i f c L d F f o • A , J*,) i s continuous in i ^ 
<X O f f 

and the space & i s complete (see Theorem D ) , then 

c ^ d F C ^ j ^ , > f e ) i s the second order pointwise d i f f e ­

rential at xc . The converse i s t r i v i a l . 

(c) Suppose F has a second order pointwise Fre*-

chet di f ferent ia l at X0 . For fixed to, e £ ; l e t 

B C x ^ i v j Ax,A*i)= d*FCx0;h,,&x)+AFCx0 j A ^ ) . 

Clearly & i s l inear and jo in t ly continuous in Ax and 

AJi-.We now show that BC^,, to,; A,x, A i t ) i s the tota l 

Fr^chet d i f ferent ia l at Cxc , >*H ) of dF(x0 ; to, ) • 

Let 

RCA*,AJM^FCx,+A*,^+A^)^^ 

mien 
M C A a ^ j M ^ -
lA*l + lA-hI IAX I 

-8*F6fcj * * , . * * ) • ^j^kl UdFC^+AX; A**) -

- iF6^AJk>l .4 j2^ 

-B%F(x0;h,Ax)\+ldFCxo + t^.)-dF(xo; .)H 

As Ax and A to tend to sero, the f i r s t term on the right 

goes to zero by definit ion of d%F(X01 to,, A:x ) t the ee-
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cond term goes to aero by part (a) of Theorem 3. This 

ahows that B(«x<,, Jh,-, A * , &M, ) is the total Frechet 

differential of -d,FC*„ j to, ) • 

(Continued in Part II) 
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