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HIGHER ORDER DIFFERENTIABILITY OF NONLINEAR OPERATORS ON
NORMED SPACES I X’

M.Z. NASHED, Beirut

1. Introduction. This paper is concerned with several no-
tions of higher order differentiability in the theory of
nonlinear operators on real normed spaces. We broaden the
concepts of higher order differentials of GAteaux and Fré-
chet and introduce new variants of such differentials. We
also study higher order strong differentials, Hadamard,
Peano and Taylor variations and differentials. Various im-
plication relationships among these variations and diffe-
rentials are obtained. Sufficient conditions for the exis-
tence of these differentials are also established.

A differential of order /m may be defined in two
ways. We may define it directly without reference to lower
order differentials, or we may define it inductively assu-
ming the existence of differentials of order less than m
These two approaches may lead to different notions. We
shall distinguish between eight notions of Fréchet (G&-
teaux) differentials of order m and establish continui-
ty implications of these notions.

x) Communicated at the seminar on Nonlinear Functional A-
nalysis at the Mathematical Institute of Charles Universi-
ty on June 22,1968.
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We remark that for the differentials considered in
“his paper, the existence of a differential of order 7
implies the existence of all lower order differentials.

This property is not possessed by all definitions of dif-
ferentials (for instance, Riemann differentiale and diffe-
rence-differentials (11).

For an exposition of calculus in normed spaces, we
refer to Dieudonné [2], Liusternik and Sobolev [3], Vain-
berg [4], Kantorovich and Akxilov (5], Michal [6], Nashed [7]
and Rall (8], and to the older work of Graves and Hildebrandt
[9-11], Fréchet [12,13] , Gateaux [14-163, Levy (171 and
Kerner [18-20].

All the limits in the definitions of differentials
in this psper are taken in the sense of the norm, and not
in the sense of the weak topology. The latter leads to no-

tions of weak differentials.

2. Multilinear operators and differential forms.

The study of higher order Fréchet and Gateaux diffe-
rentials essentially involves the approximation in various
senses of the difference + (X, +HA)—f(x,) by abstract po-
lynomials. This leads to consideration of various notions
of continuity of mappings from a subset of a normed linear
space to a space of multilinear operators, which we shall
discuss in this section.

2.1. Let E,, E’.,..,, E, 8nd Y be normed real li-
aear spaces and let T denote the product space E, x E,x
x... x E,  equipped with the usual product topology indu-
ced by the norms on £; , i = 1,2,..., m ,We write
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X m (Xq9000y) Xpp ) € T as x, ... X, ~ and let Ixl-
=pup llx; I .We recall that an operator L, : TT— Y
is called multilinear or amm -linear if it is separately
additive and homogeneous in each of the variables. For a
multilinear operator L _ . and for each x,, ---;Xg _, >
KApyg2°927 Rom Ve designate by Sy, the linear opera-

tor xq — L, X X, ... X,  of the space Eg into V.

m 172

We say that L _, is separately continuous if for each
Xyqeeey Xy g9 Rpeqgreee7 Xom >  where X, & Eg  the o-
perator S, is continuous for R =1,...,m, L, is u-
niformly separately continuous (bounded) in Xg if the
linear operator S, is continuous (bounded), uniformly
on the set Ix =...=llx, I~ I g = coo=lix, =1
Finally by a continuous multilinear operator we mean a
multilinear operator which is jointly continuous in all
the variables, that is, continuous on the product space
TT . We shall need certain implications among these no-
tions and characterizations of continuous multilinear o-
perators which are stated in the following:

Theorem 1. Let L, be a multilinear operator on
T into VY. Then the following implications hold emong
the following statements:

a=>lr=c=>d=>e=f ,

f=> a if the space TI is complete ;

(a) L,  is continuous on TT.

M m

(¢) L, is bounded on each bounded set of TT .
(4) L, is bounded on TI , that is there exists a con-

stant M 2 0 such that for all X, ... X _ ¢ T,
- 511 -
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() L, X, oo X, heMix o Tx,, I s

(e) L, is uniformly separately continuous (bounded)in
Xg for some fixed 4 .
(£) L,, is separately continuous (bounded).
We omit the proof since the various implications of the
"theorem are either given in the literature or involve sim-
ple manipulations. The most important proposition in the
theorem is the equivalence of statements (a) and (f) when
the space TT is complete. For an exposition of continu-
ous multilinear operators on normed spaces we refer to
Dieudonné [2] and Hille and Phillips [21]. For computatio-
nal aspects of such operators see Rall [ 8]. Bourbaki [22]
and Dieudonné [23) give an account of the theory of multi-
linear operators on topologicael vector spaces, where it
may be noted that (f) does not imply (a) even for locally
convex topological vector spaces. However, the implication
holds under weaker conditions than stated here, for exam-
ple in the case of a bilinear operator which is separate-
ly continuous it suffices to take E.,, to be a metrigzable
barelled vector spéce, E,_ a metrizable vector space and
Y any locally convex space, so that in particular joint
continuity follows if the spaces E,", are Fréchet spaces.
In this connection we also note that Bourbaki defines a
notion of hypercontinuity (and equihypercqntinuity) for
bilinear operators which is intermeliate between the no-
tions of separately continuous end continuous operators.
For normed spaces, this notion is equivalent to any of the

statements of Theorem 1 if Tl is a Banach space. These
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notions become important for the theory of higher order di-
fferentiability in vector spaces without a norm [24], which
require modifications to be examined elsewhere. The general
theory of continuous multilinear operators is closely con-~
nected with topological tensor products which are surveyed
in [23].

Let :Cm denote the vector space of all continuous
multilinear operators on the product space TT into VY .
The greatest lower bound of all constants M satisfying
the inequality (1) is given by

Il W= mup L, x ccox Helix =1, 4i=1.. m%
and is a bonafide norm on the space éf,m_ . Furthermore the
space a‘C,m, equipped with this norm is & Banach space if
and only if Y is complete.

The inductive definitions of higher order Gateaux
and Fréchet differentials lead to consideration of the
epace L (E , LC(E ... ,8CE, ,Y),...), where £(X,¥)
denotes the space of all continuous linear operators on X
into Y. There is a canonical isometric isomorphism which
identifies the space &, (E,,..., E_ 5 ¥ )  with the
space & CE , £ (E, ..., £(E . ¥)...).In the sequel
we shall identify the corresponding elements of these spa-
ces under this linear isometry.

Now let E1-E,_=---=EM=E. Let 6 be a per-
mutation of the set {1, 2,...,m ¥ and consider x :
:{1,2,...,m}—T. 6 induces a linear transformation
R:%, (TMsY)— &£, (T3 ¥Y)  defined by

(% L, )x= L (xs6) where x & T . The mean of an m -li-

- 513 -




near operator is defined by L, X, .- X,, =

=,£l—? % (R L,)x , where the sum is taken over all
permutations of {1, 2,...,m 3. An m -linear operator
is said to be symmetric if E,=...=E  edR L, =L,
for every permutation 6 . The mean is always symmetric;
a symmetric /m -linear operator coincides with its mean.
Note that KL, Il = UR.L_ I for every 6.

This notion of symmetry should be distinguished from
the weaker notion of symmetric »m -linear operator used in
exterior algebrs where L is said to be symmetric if

%AG.I%.LM= 0, where g = 4 if 6 is even and

ke =~11if 6 is odd.

2.2. The study of differentials of order m leads
to mappings from a subset X of a normed linear space to
the space &, (E x ... xE_; Y) . We write D: X >
—>X,, endcall D(x;...) a formal differential o-
perator. DF (x; b, ..., fo, ) is called a formal
differential form. Several notions of continuity ead di-
rectional continuity may be defined for D(x;...) de-
pending on the topology used for Sﬂm .

Definition 1. A Qifferential operator is said to be
pointwise continuous in X at x, if for any Moo by €

e T, ID(x; ... $y) = DxXy; hyoee by V> 0 whenever

Ix -~ Xo 8 —> 0 . This is equivalent to considering the

space of,, in the topology of pointwise convergence.
Qofiniﬁog 2. A differentiel operator is said to

be jointly coptinuous in the variables x, h ..., f,,

at X, if forany xe X, H, ... ko, ¢ T ,

ID(X; S, oen Ay, ) = DX, R, oo km)lly—yo whenever
- 514 -



lx =x,l — 0 and I h; - kR; |l -0 for 7 =
= 47...,m . This is joint continuity in the classical sen-
se. h

Definition 3. A differential operator is said to be
continuous in x at X, if it is continuous as a transfor-
mation from the set X to the space Sﬁm :
lIDCx'...)—-D(xo;...)lli — 0 whenever

mv
I x ~x,Il — 0 . This is the seme as considering the spa-

ce éf/m in the topology of uniform convergence on boun-
ded sets.

We remark that Definitions 1 and 3 are implicit in
the work of Kernmer [19] and Graves and Hildebrandt ([11]
respectively.

Notions of directional continuity may be defined si-
milarly. For example,

Definition 2d. A differential operator is jointly
directionally continuous at X, if for any fixed 4 ,
DX+ ty 0y ... By ) - D(x, ;R Jgn)lly—y 0 whenever
t—=0 and N, - Ry 1 — 0 for it=4,...,m.
Definitions 1d and 3d will denote the analogs of Defini=-
tions 1 and 3 for directional continuity.

Notions of weak continuity, demicontinuity and hemi-
continuity of differential operators may be defined ana-
logously and are useful in consideration of weak differen-
tials of higher order as will be shown in [25]. (See Re-
mark 1 p. 35 in Vainberg [4] and the recent work of Kolo-

my (26,27] and Zizler [28] for first order weak differen-

tials.) The implication relationships among these notions
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are atated in the following:

Theorem 2. (a) A differential operator D (x; ...

..., ) is continuous at X, if and only if it is
pointwise continuous at X, uniformly with respect to
h1 o M, ontheset I ll=...=lh,Il="1.

(b) A differential operator is pointwise continuous at X,
if and only if it is jointly continuous.

Furthermore, the continuity of D(x; 4, ... £ ) at
Xo in the sense of any of these definitions implies
the existence af a positive number M and a neighborhood

N(x,) of X, such that for all x & N(x,),

(2) L DX %1...%m)\|yé MLl ... N, N .

Similar implication relations hold among Definitions 14,
2d and 34 for directional continuity. The directional con-
tinuity of D(x; Jy, ... £, ) at x, in the sense of
any these definitions implies the existence for fixed 4
of a positive number M and a neighborhood N(0) such

that for all v e N(0),

(3) ADCx, +Tap; da e Sy, = MG, L b, L

Proof. (a) Let D be continuous at X, . Then
given € > (0, there exists a d > 0 such that
Ix - x, implies

ID(x;... 9= D5, (€, %0 x By =5 2T

m

supp LD (x5 My eee ) = Dy A1y oee By N s My = i ll=1icE.

fhus
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lx- x, 0 < & implies I D(xsh, ... by,) -Dix,35,... h, <&
uniformly with respect to f1, ... 4, on the set lh |l =

= .., ™ ”Jhm il = 1. conversely if D is pointwise con-
tinuous at X, uniformly with respest to 4, ... & on

the set M, ll=...=llfy 1 =4  then for each & >0 ,the-
re exists a o/(e)> (0 which is independent of f1, ... A,

such that

“D(x;mmm)-]}(&g;%m )l < €& for I l=... oy 1=

=1 and lx - Xl < d. Tus ID(x;...) -

- D(Xo5 .-l < E .

(b) Let D be pointwise continuous at X_ . Let X — X,
and %, —r ; fori=4,...,m . Then

ID(x;be,... K, )= Dlxys gy ooe M Ol &
& ADCx; Ry By ) =Dk, 5 Ry ee . Ao, M+

+ “D(x°5k1cc- hm)_D(xo3’h1”' h,m)’l -

The first term on the right goes to zero by pointwise
continuity of D ; the second goes to zero since D is
a continuous multilinear operator. The converse is tri-
vial. Inequality (2) follows easily using the triangle
inequality and part (d) of Theorem 1.

The proof of the implications among the notions of
directional continuities is essentially the same.

2.3. The form Lm.x ces X obtained from a sym-
metric mm -linear operator L, X, ... X,, by setting

) .)(,I =,,,= .xm = X is called an abstract power and ie
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denoted by me'm . The induced operator 1s called a
s s my ™R
power operator of degree mm . Similarly me,, P "5@
S

where m; are positive integers and .3 m; £ m is
v=1

iati cee Kpooo Xg ooe Xo o
an abbreviation for L, X ...X X, X0 Xgo ‘%
Since a symmetric m -linear operator is distributive and

commutative in each of the X, ... X,, it follows that

~n
L'm (A,'\X,’+... -I;?«kxk) =
= = A’;"f..’. %&t"’"‘" LoX Tees X
™ e e L4
My+oootMyg=m m L. m | 1
Hence,

)m

am™
mea"'%msnjﬂm,—m(&lﬁ+"'+2'm‘xm ;

8o that the m -linear operator is recovered from the po-
wer operator. We note that if L, is a power operator
of degree m. and | is a linear operator on the range of
L. ,>then TL_x™  is & power of degree m . A power
operator of degree m is continuous if and only if it is
bounded on some sphere. If so, then it is bounded on each
bounded set and satisfies a Lipschitz condition of order
one uniformly on such a sphere. An abstract polynomial of

m
degree m is an operator of the form a(x)=k§'.1 Lk-xk 5

where L, € &£ CE*, V), = 4,...,m , are abstract forms.
Note that there is no loss of generality in assuming that
the multilinear operators L, are symmetric since the
polynomial form and its Fréchet derivatives are unchanged
if each L, is replaced by its mean T, . Equivalently,
an abstract polynomial of degree m is an operator on
the space E  with valuee in Y which for x, fhc E
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and all scalars A satisfies

Q(x+ ) -h"i Co (X, A1) A%

where C, (X, %) are independent of A and (G, (X,H)+ 0.
For properties of polynomials over Banach space we refer
to Hille and Phillips [21] and Liusternik and Sobolev [3].
The notion of abstract polynomials in real or complex nor-
med linear spaces has passed through several stages. For
historical developments we refer to Fréchet [29], GAteaux
[15], Michal [30], Martin [31], Highberg [32] and Gavurin
[33,34].

3. Higher order differentials of Fréchet, GAteaux,
Hadamard and related varignts.

3.1, Veriations. Let E and Y be normed linear spaces.
Let F be a mapping from an open subset ‘X of E into
Y. Let X, € X and % be an arbitrary nonzero element
in E. Then x, +th e X for It]l £r(x ; f2). Let
v=nupir:ltlc n =X,+1th € X§. Then $ (1)=F(x,+th)
is defined for It|l < © . If ¢ has nth order derivative
st t = 0, then ¢'™ (0) is called the nth Giteaux-
Levy variation and is denoted by o™ F(x, ; 4»). In this
form, the definition is due to Levy [17]. The notions of
firet and higher order variations passed through many sta-
ges of generalizations in the work of Gateaux [14,16],
Levy [17], Graves and Hildebrandt [10,11], Kerner [20] and
others., It follows easily that F has a first variation
on the set X if and only if for each x€ X and any
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Mygeoeyhy, € E ,  the runctionF(x+‘.:Z:t1. M )

is pertially differentiable with respect to t, , K =

=4,..., m, in the set of points t,,..., t,  for which
™
x+.2th e X . IfF haes an nth order variation

at X, , then F  has variations of all orders up to m

at X, end for each positive integer & <m and every
o~ a* - )
h e E, a” F(X‘,;h)a m Io Mide *’F(Xo‘\‘-th;ht)’{;d‘"[:(%,h)

is homogeneous in /h of degree m . Every opﬁrawr which is
homogeneous of degree nm has mth order variation at # and
I™F@; )= m!Fla) .

The first variation is not necessarily linear nor
continuous in /. If F has a first variation at X, ,then

F is directionally continuous at X, , i.e.,

?
ﬁ%vlF(x,, +th) - FXM =0 for fixed #/ but it is
not necessarily continuous at ., . A linear variation is
called a Leyy differential. A continuous linear variation

is called a G8teaux differential. Clearly, erery Levy dif-
ferential at x, is directionally continuous in . :

(4) Him TF(X, 3 I+ T RI=TF(X, 53 ) +
T>0

A Levy differential is a Gateaux differentisl if and only
if (4) holds uniformly with respect to & on the set
fhll=1. ’
The nth variation is not necessarily m -linear
nor continuous in A .
Higher order variations cam also be defined induc-

tively. If J'F(x; /v ) exists in a neighborhood of X, ,
- 520 -



then JF(x; .) is an element of the space of all ho-
mogeneous operators on E into Y. If for fixed 51,

I F(3; ) has a first variation at X, , then we say F
hae a second variation at X, and denote it by

T (X, 3, R, 1eee, T2F(Xo; 41, do )= L OTFX, ;) fe)=

- t;_‘;,,;, % $FF(x,+th; )= TF(x,; )} -

It then follows that

a”d"'"‘F'(x‘, ;»h:,,;;'f Mo, ) =
- m F(-Xa +‘5;” t h‘" )"-'t""= tm =0 )

It h=...=h, = h then "™ F (X, 3 My -ee g B2 )
coincides with Jd"™F(x,; f2) defined above.

In order to enrich the theory of differentiation,
additional properties on the nth variation are usually im-
posed. Rather than follow this approach, we shall enlarge
the scope of notions of higher order differentials and
relate them to variations. For a thorough study of higher
order variations in complex spaces, see Hille and Phil-
lips [211].

If FF(X,+tAx; v + A ), where Ax end
A are elements of E , has a total differential at

= /o= 0, then we say that JF(x; /») has a total
variation at (x,, 1), and denote it by I F(Xo, #;

AX, Ah). Clearly if SF(x; /») has a total varia-
tion at (%, ; /o), then
TTF (X, 415 AX, A)=T?F (X3 b, BX)+d, SFxX ;0,4%).

. Notio fm r Fréc t .

We recall that an operator F: X — Y is said to
- 521 -




be Fréchet differentiable at X, if there exists a bounded
linear operator L (x,; «) on E dnto Y such that
for all L € E with X, + S € X

FXg+ M) = F(xg) = L(%3H)+R (X5 A1)

where

L HR(.X,;/%)" =0 .

h—6 H4ll
If F is defined in a neighborhood of X, , thenl (x,; &)
is unique and is called the Fréchet differential of F
at x, , and is denoted by ol F (X, ; 42 ) . The operator
d F(x,; ) is called the Fréchet derivative and is
denoted by F’(x,). If F is Fréchet differentiable at
X, , then it is continuous at x, . On the other hand, if
F is assumed to be continuous, then the requirement of
continuity of dF(x,; /) in 4 is redundant.

Let X be an open subset of the product space T =
= E1x.. . xE, . Let F: X = Y . The Fréchet partial
differential at A4,,..., &4, of F with respect to x;
is defined in the 'usual way: there exists a bounded line-
ar operator L (u,,-...54, 3 - ) such that for all
h, & E-i with

(Mg yooe g g g g My + gy s A g rree U ) E X,
Flugyeeeybly oo abyt By peee, )= Flad oco t )= L (4 it s M)
+ Ry vee thy 3 )

where

R vee ;Ih‘)
ﬂ(u'L l%ﬂn ” _?0.. hi__'e.
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Lty oee 4y, ; 4, ) is called the Fréchet partial dif-
ferential and is denoted by d,Flu ... 4, ; 42, ) . F is
said to be totally differentiable if it is Fréchet differen-
tiable considered as a mapping on X c E,, x... xE_, in-
to Y , that is, if there exists an L(w; #), « =4, -
verMy € Xy Iv=Ay...0 €T , which is linear and con-

tinuous in 7 such that "_

NP My ey 4B )~ Fltgpuc )<L (it 5 0, 0 B, )
hvo Vi l+.o. + U |l
Ly.at 3 h, ... S ) is called the total Fréchet diffe-
rential of F and is denoted by d,F'aA:'..,uﬂ;}l:, sl )

= 0.

An operator F: Xc T — VY which is totally
differentiable at My voo Ay, is partially differentiable
with respect to each variable and its total differential
is the sum of the differentials with respect to each of
the variables.(Fréchet [12;p.319], Dieudonné [2;p.167].)
Now we turn to higher order differentials. Suppose that
F  has a Fréchet derivative on a subset X of E .
Then F’: X > E — Y is continuous and linear on E .
We shall give eight notions of second order Fréchet diffe-
rentials of F . (We remark again that weak differentials
are not treated here. See Introduction.)

Defipition 4. If dF (x; - ), considered as a
mapping on X into X(E; ¥Y) has a Fréchet derivative
at X, , then we denote this derivative by F“(x,) end
call it the gecond order Fréchet derivative of F at X, .

Accordingly F” (x,) ie an element of the space
L (Ey L (E 3 ¥Y)) which is isometrically isomorphic
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to £(E < E; Y). We make the identification of these
two spaces in the sequel so that F“(x,) e L (E =~ E; Y).
If F“(x) exists on X ,then F” is a map from X to
L(Ex E; Y).

We call F/ (X,) ak, for /, & € E , the second
order Fréchet differential of F at x, and denote it al-
8o by d?F(x,; #v, ). Ve then have

Lim, WA N ENAF Xy S5 <) = dF (X5 ) -

-dfF (x5 o, RING 3= 0,
where | - ':ﬁ denotes the norm in the space of all con-
tinuous linear operators on E into Y . ‘
Definition 5. The operator F is said to have at
X, & gsecond order pointwise Fréchet differential if
there exists a continuous bilinear operator B(X,; « , o)
on E such that for each fixed £ € E ,

(5) gLimg. 140 I'Nd FOx 4 ks b1)- dF (300 )- Blx, 34, e = 0.

We call B the second order pointwise Fréchet derivative
and denote it by J2F(X,3 .. ) -

Definitjon 6. The operator F is said to have
at X, a second order partial Fréchet differential if
dF(x; ), considered as a map from X x E  into

Y, has at X, a partial Fréchet differential with
respect to. X . We denote the second order partial Fré-
chet differential by ol} F(x, ; 1, k). Accordingly
tor each M & E ,

Lo, W AP o s h)-dF (s 1)~ F (x5 h R0l = 0,
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where d F (X, 3 /4,4& ) ie continuous and linear in fe.
Note that d2F(x ; #r, k) is not required to be line-
ar nor continuous in f. . However, it turns out that it
is automatically linear in 4 .

Definition 7. The operator F is said to have a
second order total Fréchet differential at X, , if
dF(.,.): X x E — Y  has a total Fréchet diffe-
rential at (x,,#2) for all o € E . We denote this aif-
ferential by dd F(x,,/r; Ax , Ak ). (Note that we
do not abbreviate ddF to d2F since we reserve the
latter notation for the second order Fréchet differen-
tial in the sense of Definition 4.)

Definition 8. The operator F is said to have
at X, a second order- gtrong Préchet differential if the-
re exists an operator B(x ;:.)& £(E x E; ¥) such
that for each € > (, there exists /£ > ( where
ldF(yy « )-dF(z; )~ B(x,;.,4-z)l £« ellyg-2 1
for each pair of elements 74, 2 with Iy - X, Il ¢ ~,
lox ~x I < x . The operator B(x,; -- ) is called the
second order strong Fréchet derivative at X, and is
denoted by d2F (Xy3 e« )

The notions of strong pointwise differential and
strong partial differential may be similarly defined.

Before we study various implications among trese
diffe:'entials, we consider continuity properties c.
dF (x3; 4 ) which are implied by the existence of each
of these differentials. It is clear that if F has a
second order Fréchet differential at X, , then F’(x)
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is continuous at X  ; equivalently the differential

0}
dF(x; h) is continuous in X at X, in the topo-
logy of uniform convergence (Definition 3). The impli-
cations for the other differentials are stated in the
following:

Theorem 3. (a) If F has a second order pointwi-
se Fréchet differential at X, , then F’(x) is conti-
nuous at X, (Definition 3), hence 31.80 pointwise con-
tinuous at X, -

(b) If F has a second order partial Fréchet dif-
ferential at X, , then dF (X3 f) is jointly continuous
at (X, , #2) (in the sense of Definition 2).

(¢c) If F has a second order total Fréchet diffe-
rential, then dF(x; # ) is jointly continuous at
(Xo M) -

(@) If F has a second order strong Fréchet dif-
ferential, then F’/(x) satisfies a Lipschitz condition
in some neighborhood of X, -

Proof. (a) Consider the function ¢  defined by
S, )= I & I-1 IdF(X 4 b h)-d Flx, ;) -2 F(x, 5 4, R
it +60 and d(h,0)= 0. since I2F(x,; N, k)
is the second order pointwise Fréchet differential,

b (Mh,4%) is continuous in k at fe = 6, It is also
linear and continuous in /1, Therefore there exists

M >0 eand a neighborhood N(Q) of 8 € E such that:
for any R € N(B), ¢(h, k) £ Ml . (See Theorem
2; in particular equation (2)). Thus for 41 € N (6) ,
|d,F(x,+k;h)-dF(xo;h)— 82 F (X, Rl €M TANEAR
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Therefore,

Nl Fly+9e; 4 )= dFCx, 50000 = N2 F (x5, e ) & ML LA
and

N Pt do; n)-dFixg s )l
X

Consequently,

ld.F(x;k;.)—d,Fcag;.)l‘ﬁé(M+l6’F‘(x°; STV Y
2
Thus

£ (Mt 102F(xye0 g ) M

& — 0 implies 1AF(X,+ M3 «)~dF(x,; . 1— 0.

(b), (e), (d) follow easily. We prove (d). By defi-
nition there exists # > 0 euch that
if 4 end x are in N(x; )= fX € X: Ix=-X, | < ni-
Thus ldlF(y;.)-dF(z;. )1&4 b ly-xll+Mliy-x|
where ﬂd‘F(xo;..)l& &« M . :

2

That is,

NdF(ys;.)=dF(z; M, €M) lly-2 1,
for all a4, x € N(x,; ).

We now state implication relationships among these

notions of differentials.
Theorem 4, (a) F has a second order Fréchet

differential at X, if and only if F has a second or-
der pointwise differential at X, and (5) holds uniform-
ly with respect to 42 on the set %2 | = 1. In this
case the two differentials are equal.

(b) F has a second order pointwise Fréchet
differential at x, if and only if F has a second or-
der partial Fréchet differential at X, and the latter
is jointly continuous in £v and 4 (or continuous in
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M and the space E is complete).

(¢c) If F(x) has a second order pointwise
Fréchet differential at X, , then dF (x; %) is total-
ly differentiable (Definition 7) at (x,, %) and the
total differential is given by J?F(x,; #r; Ax) +
+dF(x,; Ah) . :

(a) If F has a second order strong Fréchet
differential at X, , then F has a second order Fréchet
differentiel at X, .

Proof: (a) and (d) are obvious.

(b) First we show that ddFix,; 4, &k ), the
second order partial Fréchet differential at Xx, , is au-
tomatically linear in 4. Let f2,, b, , k€ E, b l=1,
o,/ and T be scalars. Then

Nd,dF(x,; & b, + Bh, , k)-ad, dFix,; b, k)~

- B dF (x50, , k)l =

=% Nk dF (s, + By, o) -y dFCx,; 2 he ) -
- Bd, dF(X; %, , vk &

& rl'—l I, dF(x,; @b, + B, , 2k )-dF(xg+ Ths by + By
+dF(x, 580 +30,)0 +

+ 2L 1dFix ez, )- Aty )~ Ay dF o, 2ok O] +
+ 1B dF G+ 25 ) dFUx, s )~ dFCx, sy, ThON
Each of the three terms on the right side of the above

inequality tends to zero as 2 —% 0 , uniformly with
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respect to A¢ on the set el = 1, But the first term
on the left side of the inequality is indep.pndcnt of T.
Coneequently,d.ud.F'(ag,alq’-o-ﬂha,k) - ﬁdxd-‘F(",': 4, , Ao+
+(3d dF(x; #y, ;%) for S with lliel =1 and hence
for every Jf since d dF(X,; o, o) is homogeneous
in Jo .

Thus if d«d,F'(ag ; J1, o) is jointly continuous in
M end A (or if d,dF(x; A, %) is continuous in &
and the space E is complete (see Theorem 1)), then
d;,dF'(.xc; /’1—,1%) is the second order pointwise diffe-
rential at X, . The converse is trivial.

(c) Suppose F  has a second order pointwise Fré-
chet differential at X, . For fixed e E , let
B, 5 AX, 80 )= O2F(x,; h,AX)+dF(x,; AM) -
Clearly B is linear and jointly continuous in Ax and
Ak .We now show that B(x,, fo; Ax, Ah) is the total
Fréchet differential at (x,, 22) of dF(x, ; ).
Let .
R(AX, AN )= AF(x,+AX, h+Ah)-dF(x,;h)- B, h;ax,8h).
Then

IR(ax,AnN . 1 )= . -
SRR AN 2 " [dF(x,+ Ax;h)-dF(x,; )
laxil+Iah) — 1AxH ° ’ °

— B (o5 42,800 + T N F o, 4 A A ) -

- dF g, Al el Nl O+ A )= Lo o)

= OF(x,; h, Ax M+ NAF(x, + Ax3 o )-dF(x,5 . )|

As Ax and A tend to sero, the first term on the right

goes to zero by definition ogzgnle,; M, Ax) ;s the se-



cond term goes to gzero by part (a) of Theorem 3. This

shows that B(x,, hj; Ax, ARh)

is the total Fréchet

differentisl of A F(x,; ) .

(1]

f2]

£31

(4]

(5]

Lel

(71

(8l

(9]

M. 2.

(Continued in Part II)
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