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Commentationes Mathematicae Universitatis Carolinae
10,3(1969)
ON THE TOPOLOGICAL EXTENSIONS
Jaroslav LUKES, Praha

0. Introduction. In this note some topological ex-
tensions are studied. The notion of the 4 -topological
extension is introduced and it is shown that every topo-
logical extension fulfilling the My#Zkis condition (I )
is in fact a . -topological extension ( (T, 0;) is a
topological extension of the space (G',_OG) if G is
a dense subset of the space T and if q:/G, =G ).
In part 2, the notion of the &% -topological extension
is introduced which is a special case of the 42 -topolo-
gical extension. Part 3 deals with the notion of the C -
topological extension, which is a generalization of the
Caratheodory method for compactification of a simply
connected bounded plane domains and which applies also
to general Moore spaces. Finally, in part 4, the equiva-
lence of the ( -topological extension with the S® -

topological extension for plane domains is demonstrated.

1. f -topological extension. lLet (G, O) be a
topological space with the system (* of open sets; let

Z be a set and fp : @— &4t (Gu Z) a mapping such
that the following axioms are fulfilled:
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(11,): nAnB)= n(A)A pn(B) for A,BeO .

Then the system {/2(H) ; He (>} forms the base of a
certain topology on G U Z ; this topology will be deno-
' ted by the symbol 0;, . The original topology of the spa-
ce (G,0) will agree with the topology induced on G
if n (H)DAhGe O for every He O . This is certain-

ly the case if

(2,): He O =>pn(H)AG = H.

Lemma 1. Let the mapping 4o fulfil the axioms ( Oﬁ),
(11")’ (2‘”). Then the set G is dense in the space
(Gu Z, @ﬂ) iff the following axiom (3, ) is fulfilled:

(3,): p(A)=f = A= g .

Let (G,0), Z and nu: — ¢4 (G U Z) have the
meaning described above and suppose that the axioms (0,,) -
— (3,) are fulfilled. Then the topological space
(Gu Z , .Qﬂ,) is a topological extension of the space
(G, 0); we call this extension the .. -topological ex-
tension (precisely the (4», Z)-topological extension).

Lemma 2. 1) H,, H, € o, H ¢ H, = n(H)c
cp (H,) provided n fulfils (1,) ,

2) HeQﬂ=) Hen(Hn G) ir (2,) is ful-
filled.

Definition. Let (R, ¥) be a topological exten-
sion of the space (G, O) (in the sense of the introduc-
tion). We say that (R, %) anda (G, *) fulfil the con-
dition (") (see My3kis [4]), if

xeR, Ue ‘Uly(x)-#[ there is a
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U e UL"(x), U, €U such that 3 € R - (Gu u),

Ve 6¥y) = Vn(G-Ga U,) + 1.

Lemma 3. (G u Z,0,) and (G, O) fulfil the .
condition (") .

Proof. Let x € G u Z, let U e U(x)be open in
the topology 01'- . There is a & c¢ O with U lz‘%ﬁ (A);
let x € f(A), A er. If we put U, = 2 (A),then () is
easily verified.

Theorem 4. Let (R, <) be a topological extensi-
on of (G, ) and put Z =R — G, Define the mapping.fi

by
14
a(H) =H U{x e Z; there is a L € ¥4 (x) with Gn U c HJ,
He & .
Then f  fulfils the axioms (01‘,).- (31,) and 0",& c y,'

in addition,

%s L= (R,¥),(G, (%) fulfil the condition ().

Proof. One easily verifies that qu fulfils (0,)-

-(3,) end O, ¢ f. Let now He ¥ and assume (I").
Then HAGe O and Hcpn(HNG)e O, . Let us
fix x € H ; then there is & u e w?cx) , UcH
with

yeR-(GU U, Ve tUly) = Vn(6G-Gnl,) + 4.

It is easy to show that x € n (U N G)c H , hence
H e 01" . The rest follows from lemma 3.

2. 6% -topological extensions. Let again (G, &)
be a topological space, let & c O* be a system of open

sets, f/ € L. Suppose that @ is a relation on & =< &
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fulfilling the following axiom

(1p): X, Yed, XpY = Xc VY.
An ideal element of ( G,' ) is every nonempty system of
open sets S c & fulfilling the following conditions

(1g): [)S=10,
(25): 5, 5 € ¥ =—> there exists an S e &
with $c § n S5, ,
(3,): Se o, Bed, SpQ =Qe ¥,

(4.): S € I ==> there exists a T € ¥ with

S
Te S,
(55): A,Bezfr, ApB,Ar\S*ﬁ for eve-
ry Se ¥ ==> Be &.
Let SPCG) denote the set of all ideal elements of
(G, 0) .
Lemma 5. 1) If Ye S@(G) then each finite subsys- 7
tem of ¥ has a non-void intersection.
2) For ¢, , € 55(6)
. [& + 3;4—» there exist S; € % (1=1,2) with
s1f\ Sz = g.] P
) F e SP6), e ==
For every H € & we put
p(H=HU{ge SP(G);there is an Se ¥ with Sc H3$.
It is easy to see that the mapping f2:H — nn(H) fulfils
the axioms (0,) —(3,) ,so that we may form the
A, S®(G)) -topological extension of the space G, %)

- according to the preceeding paragraph; this extension
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will be called the 5% -topological extension (precise-
1y the (S®(G); £)-topological extension ) and the to-
pology of this extension will be denoted by 09 . For e-
very x€ G u $59(G), Yh(x)=4p (H); He O, x € n (H)}
forms the local open base at X .

Lemma 6. ¢, Y€ 8%¢6), & 4+ f, => there
exist U; € U(S) (4=1,2) with U nU, = /& .

Proof: According to lemma 5 there are 54 € :'{ with
S,lnsz-ﬂ- We put U; = n(5), i=1,2.

In what follows we suppose that the relation @
fulfils the following strengthening (-1; ) of the axiom

(1@)

(71;,): X,Yedr, XeV => uXcV
(where « X denotes the closure of X in the space
(6,0) ).

Lemma 7. ¥ € S%(G) , X € G ==> there exist
Wed®(s), Uy e U (x) with U AU, = g .

Proof: Suppose that An H+ @ for every A € &
and for every H € ¥4 (x)n O . Then .x_eAgu.A .Accor-
ding to (4g) and (7}) , given A € f there is aB e
with wB, c A. Thus x GAQ A , in contradiction with
(1g )-

Theorem 8. 1) The one-point sets in S®(G) are
closed in the space (G u 5¥(G), o%) .

2) If (G, 0) isa T, (T, 'T;_ resp.) space, then
(Gu S"(G-)7 0%) is a T, (T,, T, resp.) space.
Further properties of the 5@ ~topological exten-
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sion are studied in [7]; J.C. Taylor demonstrated, besi-
des other things, that the s® ~topological extension
is even a compactification provided the reletion @
fulfils the following axioms

(TS" ))) AeB =>uAch,

(4p): A,pB,, i=4,2=CANnA)E (BN B,),

( 5¢ ): ApB=—> (G-uB)p (G -unA),

(%0 ): Ap B = there isaset C, Aplpo B .

3. (C-topological extensions. Let (T, &) be a

topological space, let G c T be a domain (a nonempty
connected open set). We say that an arc ,‘?B in T is a
cross-cut of G if ABc GuUfA,B}, A, B &G .
Let us denote by @ (G) the set of all cross-cuts of G.
For g € Q(G) put further g =9, N G ; obviously Q
is a connected set. G c T  is called a @ -domain,
if for every cross-cut @ € Q(G) there exist the sepa-
rate domains G,, G, ¢ G with the property
G-9=06uG,, gc H(G)AH(G,) (the symbol H(M)
denotes the boundary of Mc T in the space (T, O) ).
Every bounded simply connected domain in the euclidean
plane or, more generally, every nonempty domain bounded
by a continuum in the Moore space fulfilling axiomsl - 5
(see Moore,[6], theorem 34) is an example of a @\ -do-
main.

In the remainder of this paragraph G denotes a Q-

domain in some topological space (T, &) .
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Lemma 9. a) Let q € G (G) and suppose that the
domeins G, G,, G, Gz’ in G fulfil the condi-
tions G.,f'\G'2=¢=Gi;"‘Gz’

g cH(G )N HCG;)AH(G:,')’\ H(G;). Then G,, G, are se-

. 4 4 ’
paratedland either Ga = G and G, = Gz or Q' = G, and
G‘ = G .

2 1

b) Let 9,,2,€ Q(G), §,n¢,=F,6-,= G, UG, , whe-
re G;, G, are separated domains, g c H(G)n H(G).
Then either iz c G:, or iz (= Gz .

Let 9,,2,€Q(6), §,n ¢, = 4 . According to
previous lemma the arc 24 separates G into two dis-
joint domains; the domain that has nonempty intersection
with the arc ¢, will be denoted by G(g,, ¢,). Let
now g,,9,7,2s€ (G, gy n g =4 for 1+ 4 -
We say that the cross-cut 22 separates the cross-cuts 24
Qs if G(Qy,2,) N G(q,, @3) =& -

Lemma 10. a) ¢,, ¢, € G(G), ¢,n éz" g = éz c
c6(g,,2,) 5
b) @,y 22 € B(G),§,n§,=0=>G-6@Q,,9,7¢c 6@, 2,7

c) g, seperates Q,, ¢, <==> q, separates g,, g,

= G(Q,, @s)C G(Q1, Q)= G(g,,9,)c G(Qs5 Q)
Proof: a) This follows immediately from lemma 9.

b) We may write G";Qz =6(q,1 24) v G, where

G(9,,924), G° are separated domains,

9,cH(G(g,,9,))n H(G’) . On account of the

relation G’ < G'Uéz € G'UH(G’) we conclude that

o . .
the set G’u 2, 1is connected. Write again G ~q =
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= G(Q1,Q1)U G” , Where 6(21, 2 ) s G” are separa-

ted domains, U € H(G(g, @2 1) »n H(G”) . We have

G’uq",,_ c G(Q’,gz)u G”, (G’ug'z)n G 2.2 éz ,
whence G’'u ¢, © 6(2,522) -
c¢) This assertion follows from the preceding part.
Definition. The sequence {g,_; ¢, € 6.(6I3 7, is cal-
led a C -chain of the domain Q& , if
1) g, N Qmsq=H for every m = 1,2,
2) q, separates ¢. .1 2., .4 for everym =2 3,...,

according to lemma 10 we may replace the condition 2) by

2*) 6021 Umss) © GCQay » Lm ) for everym > 2.

1t 4¢,%, 19, 7 ere the (-chains of the domain G,
we define the tollowing relations 3 , "V

) {g,,z-e{q,,’,.f:—i» Vm sucecz‘,g,w)cGQ’., Rmes))s

’ M V4 ’
I§Q, 3~ 19, e 12,3 ${2qf eandad{g, § 342,75 -

It is easy to see that the relation n~s just defined is
an equivalence relation.

Every equivalent class of the ( -chains is called the
end of the domain G. 1t E E2 are the ends of G ,

we define ,
£ E, D vigl 3, , ek, (fgni<{ani).

The primend of the @ -domain G is the end E of G
with the property:

E"4E, E’ is the end =>E’=E.
Let C(G) denote the set of al? primends of fho domain
G .For AcG weput
p(A)= AUSEeC(G); YVig, 3e Edm, (G, ,9,,0c A).

It is easy to see that the mapping f1: H—rfu(H) fulfilr
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the axioms (0p )—- (35, ) (where (" is the system of all
open subsets of a set G, Z = C(G) ); we may form a-
gain the fr -topological extension of the @ -dgmain G
with the topology ¢ ; we call this extension the C -
topological extension (precisely the C (T, G) -topolo-
gical extension).

For every @ -domain G of the topological spa-
ce (T, ®) we define the system ¥ (G) in the fol-
lowing way:

Aec‘()’('G)é‘i}AcG is a domain and

there is a 9 € G (G) such that G- g = AU (G-

- £g u A1), where the domains A, G - (g u A)

are separated, 9 ¢ H(A) n H(G - (qu A .

Lemma 11. a) A e & (G) iff there is precisely
one cross-cut ¢ € @ (G) with the property just introdu-
ced (we denote this cross-cut by the symbol A ),

b) A,Be &(G), AnB+F+B-A,4,ng,=F=>4,c B -

For A, B €X(G) we define
Ap B WANGCB, gungy =0 .

It is easy to see that the relation @ on & (G) ful-
fils the axiom (71;;) from the part 2, so that we may
form the S@-topological extension of the domain G , too.
The relation between the C( -topological extension and the

S®-topological extension of a bounded simply connected
plane domain will be examined in the next paragraph.

At this moment we remark only that already in the
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simplest cases (where G is not a bounded simply connec-
ted plane domain) the ( -topological extension need not

. 2.,
be a compactification, for example if T = {[ x, #Je R%;

'y,>0}u{[x,/y.JeR2;,y,___0,x=% , m=2,3,... % >

& = the euclidean topology, G = (0,1) x 0,1)

4. The equivalence in the euclidean-plane. In the

following part G denotes a nonempty bounded simply con-
nected domain in the euclidean plane R2 According to
the previous paragraph we may form the C -topological
extension of the domain G , we may define the system
£ (G) and the relation @ on % (G) and hence we may
form the s¢ -topological extension of the domain & .

The relationship between ( and 9% -exten-
sions is explained by the following

Theorem 12. The S?-topological ex'.ension of G
and the C -topological extension of G are homeomorph-
ic and the corresponding homeomorphism can be so chosen
that it reduces to the identity map on G .

Proof: First of all we construct a one-to-one map-
ping F from G u C(G) to G u SP(G) . For E €
e C(G) we define F(E) as follows:

Ae FCEIEE, there is a C -chain igm ¥ €
e b . end a natural number e  such that A=GQ,, Q.-
We shall show that F(E) e SP(G) . We must verify the
axioms (4g) - (5g) from the part 2. The axioms (1g) -
(4¢) are obviously fulfilled. We are going to verify the
axiom (5g5); let A,Be &(6), ApB, An X =+ 4
- 416 -



for every X € F (E) . According to [1] there exist con-
centric circles K (4, IL”) with the centre A and
the radii s, and a C -chain {f%, }e€ E such that

&, € Kir,x, ), imr, =0.
we put K, = G(&k, ,4 _ ). Clearly AnK_+ & for
every m . There are three following possibilities:

oo

I) Ac K, for all m ; consequently, Ac ) K = z
- in contradiction with A € X (@).

II) There exists an N such that KN c A ; then there
are again two possibilities:

a) There is an m = N such that (k, - j&:—m,)"
n(g,~ &A) = g . This implies K, @ A, whence
A€ FCE) and, consequently, B e FCE) .

b) For no m = N is (kw—»a/w) N(g-Ga)= 4.
If X ,Y are the end-points of the cross-cut g, , it
follows in this case that either g, = I56-Xl or x, =
=ls =Yl for every m > N , But this is impossible on
account of tim x = 0.
III) There is an N such that A-K =+ /4 &= K, - A
for allm = N ; we distinguish two cases again:

a) &, n §'A = f  for infinitely many m = N;

for those m. we have ¢, c K, (lemma 11) and 24 <
[
c NK, =0.

m=4 W
[ -4
b) There is an N,‘ = N  such that j@wn Aa F 4

for all m 2 N1 . We choose an arbitrary P e jcm_ N Ga

for every m & N,, ., The set 2a being compact we may

choose a subsequence “?,,,*_3 end a point Pe Qa4 8uch
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that B, — P. Hence P= 5 € H(G) and at least o-
ne end point of the arc q, coincides with A . In the
case III b) there are three possibilities again:

™) Bc K, for all m is easily seen to be impossible.

I1¥) There exists an N2 > N4 such that K"'z c B and

a¥) (A, - jv,,n) n (g - éb ) = g for some
m = N, 5 it is easy to see that in this case B € F(E).
b*) (&, - j\‘,@) Nn(Qp-Gp) =+ 7 for all

m 2 Nz 5 an argument similar to that used in II b) shows
that this is impossible.
I11*) There exists an N, = N, such that B — K, * & +
+ K,-B forallm 2 N, and

a*) jt,,w n g, =@  for infinitely many » 2 N, ;
as in III a) one can show that this is impossible.

b ) There exists an N, = N, such that J:,n Nngg+ I
for all m = N, ; as in III b) we have » € g, — ¢s and
we see that the arcs ¢, , 2a  are not disjoint (in con-
tradiction with Ap B ).

All possibilities have been exhausted and in every
case B € F(E).

It is easy to see that F(E,) & F(E,) whenever

E1 + El . We want now to show that F(C(G)) = SP¢G).
Let Y€ SP(G) and suppose that F(E)=¢¥ for no
EeC(6).

Fom every He G we put

ﬂ,’(H)=Hu {Je S?(G)-,there is an Ae & with Ac H},

ﬁ(H)- HU{E&C(G’);for every ( -chain {Q”.;G E
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there exists an m, such that 6(2%7 Q,m,o+4 e HE .

According to lemma 5, for every E € C(G) there are
Ag € F(E), S € ¥ such that A,n S = g . Obvi-
G) .
ously E e n, (A;), whence £ Sty Tre (A, ) o CC
According to lemma 7, for every X € G there are the
sets U e VI(X), B € ¥ such that Uy np, (B) =4
and, consequently, (U, n G)n B = g . Obviously

X%é (Uxf'\G')= G . The sets,fz,c(/‘s), uan' are

open in G u C(G) and

G)= Gu C(G) .
Ee%&)ﬂc (Ag) v x% u, n 6) v )

The C -topological extension of the plane domain G is
a compactification (see Caratheodory [1]); there are

Eypeeey E,€ C(G) X .., X, € G such that
m 7
&H 1, (AE‘) v il’.{’ (ux&r\ G)=GuC(G) .
Hence it follows
o m
-;QB"-;AaQSE.; -7,

in contradiction with lemma 5. Further we define F as
the identity mep on G, Then F is a one-to-one corres-
pondence between G v C(G) and G u SP(G). It is easy
to verify the following implications:

He G, Xe(H) = F(X) 6 f1, (H) ,
He G, X € fia(H) = F7UX) € 15 (H)

We see that F is a homeomorphism.
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