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Commentationes Mathematicae Universitatis Carolinae 

10,3(1969) 

ON THE TOPOLOGICAL EXTENSIONS 

Jaroslav LUKES, Praha 

°» Introduction. In this note some topological ex­

tensions are studied. The notion of the ft -topological 

extension is introduced and it is shown that every topo­

logical extension fulfilling the MySkis condition ( P ) 

is in fact a ft -topological extension ( ( T", <3l ) is a 

topological extension of the space C G* , &§, ) if G is 

a dense subset of the space T and if ^/& =* C&. )• 

In part 2, the notion of the S^ -topological extension 

is introduced which is a special case of the ft -topolo­

gical extension. Part 3 deals with the notion of the C -

topological extension, which is a generalization of the 

Caratheodory method for compactification of a simply 

connected bounded plane domains and which applies also 

to general Moore spaces. Finally, in part 4, the equiva­

lence of the C -topological extension with the S^ -

topological extension for plane domains is demonstrated. 

1. -to, -topological extension. Let CO-, O" ) be a 

topological space with the system & of open sets; let 

Z be a set and ft* ; &—y ixfbCQu Z) a mapping such 

that the following axioms are fulfilled,: 

(0^ ) i ft CG) m G u Z , 
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(1 ) : jfi(An &)-* 4h(A)ni*,(B>) for A7 B e 0s . 

Then the system ~£>fx(H) ; H € 0* ? forms the base of a 

certain topology on G u Z ; this topology will be deno­

ted by the symbol Op . The original topology of the spa­

ce (&f & ) will agree with the topology induced on Gr 

if -ft (H)n G € O for every H e (5s • This is certain­

ly the case if 

(2 )J H e P — * f*CH) n G ~ H . 

Lemma 1. Let the mapping ft fulfil the axioms (Op), 

C L ) . f2^.). Then the set G is dense in the space p 1 v> 

(Cr u Z9 0 ) iff the following axiom (3p ) is fulfilled: 

Up): 1* (A) m 0 4*=* A - 0 • 

Let ((r, (?) , Z and ft: P—> 4xfi(Cr u Z ) have the 

meaning described above and suppose that the axioms (Op) — 

— Cip) are fulfilled. Then the topological space 

(& u Z i On, ) is a topological extension of the space 

(&,(?); we call this extension the ft -topological ex­

tension (precisely the (,ft; Z)-topological extension). 

Lemma 2. 1) H, , H% e &, fy c H2 «=»#> fi(Hi) c 

Cfi(H2) provided -ft fulfils (^ ) > 

2) H c (̂  -—• H c ft (H n G) if ( . 2 ^ ) is ful­

filled. 

Definition. Let ( R 7 S^) be a topological exten­

sion of the space (Cr, (?) (in the sense of the introduc­

tion). We say that ( R , *f) and (6, &) fulfil the con­

dition ( P > (see MySkis [4]), if 

* € R , U € VI*(x) — • [ there is a 
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li e Vt*(x) , U. c U such that ^ e R - f & u H, ) , 

V.e ttfy)^ Vnf(r-Sn 0,)+ ^J. 

Lemma 3. f(5 u Z 9 0^ ) and (6, 0) fulfil the 

condition f D * 

Proof. Let x 6 G u Z ; let U e £#(*)be open in 

the topology O . There is a & C & with U » C/^C/1); 

let x e ft (A)y A €#-. If we put U « frfA),then f D is 

easily verified. 

Theorem 4. Let (R 7 ^f) be a topological extensi­

on of f G, &) and put Z - R — G . Define the mapping^ 

by 

^(H) » H u{^< e Z; there is a U e W ( x ) with Gr\U c HJ, 
He O . 

Then ft fulfils the axioms (Q^) ~ (3^) and 01 c: if j 

in addition, 

£ •* if*** <R,*f),CG, O ) fulfil the condition C D . 
•p.- 7 / ' 

Proof. One. easi ly ver i f ies that .ft f u l f i l s (Qfg,)-

- ^ \ , ) an<* ^L c *̂ * L e t n o w H e ! / and assume C D . 

Then H o G e # and H c f i f H n & ) e ( ^ . Let us 

f ix x 6 H ; then there i s a Û  e *Ct f x ) , ^ c H 

with 

^ e R - ( & u U^>, V e a ^ . ) - » Vnfe-Cxri^)*^ 

It is easy to show that X € ft (U n G ) c H ., hence 

H € &. , The rest follows from lemma 3. 

2. 5^ -topological extensions. Let again f G, # > 

be a topological space, let &- c 0* be a system of open 

sets, 0 4 & • Suppose that <p is a relation on $r x. & 
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fulfilling the following axiom 

cif): x,ye &, xf y «> X c y , 
A11 ideal element of (G-., (>) is every nonempty system of 

open sets tf c %r fulfilling the following conditions 

(2^): S1;, Sg e */* =..===> there exists an S e y 

with S c S ^ S2 7 

(3C): s c y , a € <#-, s p a =» <3 e Zf , 

(45 ) : S e tf * 4 there ex is ts a T 6 £/ with 

T > S , 

(5S ): A ; B € &, A p & , A n S -±* 0 for ev e . 

ry S c y « > B e ST. 

Let S^CG) denote the set of a l l ideal elements of 

CGf &) . 

Lemma 5* 1) If £fe S CG) then each f i n i t e subsys­

tem of if has a non-void intersection. 

2) For tf,, % e $9CG) 

1% + S£<-«» there ex is t S^ e % U « Y, 2 ) with 

S 1 n S2 * 01 . 

For every H e (J* we put 

> p ( H ) * H u { t f £ S^CG^there i s an S e bf with S c Hi-

I t i s easjr to see that the mapping ft,;H —• -ftCH) f u l f i l s 

the axioms CO^) — d^ ) ,so that we may form the 

Gft7 S?CG)) -topological extension of the space CG7 &) 

according to the proceeding paragraph; th is extension 
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will be called the 5 ^ -topological extension (precise­

ly the C S^C6-); «(.W-topological extension ) and the to­

pology of this extension will be denoted by <?*» • For e-

very ^ e & u S ^ C G ) , U(x) ** ift (H),- He &, x e ft CH)? 

forms the local open base at x . 

Lemma 6. % , ££ e S9(G) , % 4- ̂  -=*> there 

exist U^ 6 «efcCb£) C-t-'-f, 2) with ^ n U 2 - 0 • 

Proof: According to lemma 5 there are S^ € i£ with 

Si r> S^ - j0f . We put U,. - +> cs4, > > l* 1, 2 . 

In what follows we suppose that the relation $> 

fulfils the following strengthening ( 1p ) of the axiom 

M?) : 
<Tp): x , y £ ^ , x p y - 4 ^ c y 

(where u,X denotes the closure of X in the space 

C G - , 0 ) ) . 

Lemma 7. *f e S^CG) P x € & «--£> there exis t 

U, e <&L CV), U2 e <&C (x) with U, A U£ - 0 . 

Proof: Suppose that A n H + |? for every A € \f 

and for every H e ^ ^ ) n ( J . Then x e C\<u,A .Accor-

ding to C4S) and C?£> ) , given A €. if there i s a EK € if 

with >a.BA c A . Thus x e <0 A . in contradiction with A Ae«/ * 

M s ). 
Theorem 8. 1) The one-point sets in S?(G) are 

closed in the space Cfr u Sf(G)y &*) • 

2) If (<x, (?) is a 1^ ( "XJ ? T^ resp.) space, then 

( & u S^CG), <?*) is a -£ ( T^ , Tz reap.) space. 

Further properties of the S ^ -topological exten-
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sion are studied in [7]; J.C. Taylor demonstrated, besi­

des other things, that the S? -topological extension 

is even a compactification provided the relation £> 

fulfils the following axioms 

( 1̂ > ):) A <pb ~-# 4JUA c B > 

( 5 p ): A p B — > CG-4A,e>)f> (G -A* A) , 

( ?p ): A p B ===-i» there is a set C , A $e> C p B> . 

3. C -topological extensions. Let ( T , 9) be a 

topological space, let G c T be a domain (a nonempty 

connected open set). We say that an arc AB in T is a 

cross-cut of G if A B c G u * A, B J 7 A, B <£ G . 

Let us denote by ft CG) the set of all cross-cuts of G. 

For o e d CG) put further £,-<£, ̂  & j obviously <£, 

is a connected set. (x c T is called a QL -domain, 

if for every cross-cut f£ e (5CG) there exist the sepa­

rate domains G^ y G% c G with the property 

G - £** &i u <V> ^ c H C G ^ n H C ^ ) (the symbol H CM) 

denotes the boundary of M c T in the space (T, (?) ). 

Every bounded simply connected domain in the euclidean 

plane or, more generally, every nonempty domain bounded 

by a continuum in the Moore space fulfilling axioms1 - 5 

(see Moore, [6.1, theorem 34) is an example of a Q -do­

main. 

In the remainder of this paragraph G denotes a Q-

domain in some topological space ( T , # ) • 
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Lemma 9* a) Let ^ e 61 CG-) and suppose that the 

domains G^ ., G^ 7 (^ ., (r̂  in (x f u l f i l the condi­

tions G1 n fr2 * 0 - G% n G'% , 

r icHCGr)nHCG 2)n H C G p n HCG^.Then Gi, Gx are se­

parated and either G^ m G^ and (x̂  -» G' or & r Ĝ  and 

% - *; • 

* > L e t 2 i > 2 i 6 a<G)> &r n 2 * ~ 0>G-Zim G1 u G% , w h e -

*• G<\ i Gl a r e separated domains-j^c HCG^n HC(.r). 

Then either £ c G^ or ^ 2 c ^ . 
L c t 2*> 2* € ^C(r), ^ n £ 2 • # , According to 

previous lemma the arc g^ separates & into two d i s ­

joint domains; the domain that has nonempty intersection 

with the arc £ 2 w i l l be denoted by & Cĝ  , 22<). Let 

n o * & > 2 2 > 2 $ £ a c < * > , fa * i* ~ 0 *>r * * * • 
We say that the cross-cut £ a separates the cross-cuts ^ -

2 * > i f G c **> 8*> " & r 2 * > 2a > - * • 

Lemma 10, a) g f , £ 2 € 0 (&), fa n $z - 0 —*> 2* c 

<= GCZn%2) > 

*> Z<n 2 i e Q«T)ffa*i±-0^G-G<tji>**'>c G^^%) > 

c) £ 5 separates J ^ i ^ 3 - ) ^ separates g $ , £ ,<*-* 

^ f f < 2 * > f c > c G < S f » £ 4 > < - ^ G C * 4 > 2 * > c ^ 3 ' 2 * ) # 

Proof: a) This follows immediately from lemma 9. 

b) We may write G-%£ ** G(^lt g , ) u G' 9 where 

& Cg2 , 2^ ) , &' are separated domains, 

£ a c H C <r C^± , ^ ) ) n H ( & ' ) . On account of the 

relation G' c G$ Ufa c &'u H (&') w e conclude that 

the set & u c^% i s connected. Write again & ,- 2f ** 
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* Gc9. >%i)u G" 7 w h e r e &(*i' ** ) ' G" a r e s e p a r a ~ 
ted d o l i n s , 2 , c H w ^ « i » ^ HCG'° • We have 

G'^Z^cGC^tZ^uG", CG'u&nGfy,^)*^ , 

whence G'u i t ^ G'r£i>2a. ) • 

c) This assertion follows from the preceding part. 

Definition* The sequence K%^\ %„ e. Q*CG)l^m^ is cal­

led a C -chain of the domain ft f if 
1^ &** n Z«><n m & f0T e*«ry m * 172.7.» 7 

2) 2 ^ separates g^., , £ ^ 4 for every m.2, 3,.... 

according to lemma 10 we may replace the condition 2) by 
2*> &cZ^ffUfH^ c GC1*i-< 7 £*v ) for every m, 2z 2 . 

I f ^%m,^ > l%'«,$ a r e t h e C-chains of the domain (j- / 
we define the following relations -? , ^^ ' 

& iU^H»A V<n,3*,CGCZjt,gjL„)cGC&, %*„», 

It is easy to see that the relation r\j just defined is 

an equivalence relation. 

Every equivalent class of the C -chains is called the 

end of the domain Or . If E^ f E^ are the ends of G- , 

we define 

^ e pri-nend of the Q -domain & is the end E of G 

with the property: 

£'-.£, E ' is the end — » E' - E . 

Let CCG) denote the set of al? primends of the domain 

G • For A c G we put 
fiCA). Au{£cC<G-) | Vf 2 j | t }6£J/« . a CG-Cĝ , « ^ ^ ) c A ) . 

It is easy to see that the mapping jit H— t j vCH) fulfilr 
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the axioms COp,) - ( 3^ ) (where & i s the system of a l l 

open subsets of a set G-, Z ** C CG ) ) ; w e may form a-

gain the <p, - topological extension of the 6? -domain G 

with the topology & ; we ca l l this extension the C -

topological extension (precisely the CCT}G) - topolo­

gical extension). 

For every Q -domain G of the topological spa­

ce CT7 &) we define the system &C&) in the f o l ­

lowing way: 

A e - v ( & ) <-«=-5> A c G i s a domain and 

there i s a £ € fit CG) such that G - g, -« A u C(J-

- { J U A ] ) } where the domains A , G- - cg, u A) 

are separated, c^cH(A)nHCG~-C<z<vA)) . 

Lemma 11. a) A e ^ C<S) i f f there i s precisely 

one cross-cut £ € ftCCf) with the property just introdu­

ced (we denote this cross-cut by the symbol %A ) , 

b) A , B e &CG), AnB*0±b-A,4AnqtfB~0~» %A c B . 

For A, B e&CG) we define 

A<p B<-=> AJuAn G c B , %* ^ %B ** 0 . 

It is easy to see that the relation p on & CG) ful­

fils the axiom C ̂ L ) from the part 2, so that we may 

form the S* -topological extension of the domain G , too. 

The relation between the C -topological extension and the 

S^-topological extension of a bounded simply connected 

plane domain will be examined in the next paragraph. 

At this moment we remark only that already in the 
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simplest cases (where G is not a bounded simply connec­

ted plane domain) the C -topological extension need not 

be a compactification, for example if T -=• $£*, tyl e R 7 

^ > 0}u{£x,tyle R2-^=.0, x * ji , /n,- 2, 3, ••• I > 

0* = the euclidean topology, G « 00,4) x C07A) . 

4. The equivalence in the euclidean plane* In the 

following part G denotes a nonempty bounded simply con­

nected domain in the euclidean plane R. . According to 

the previous paragraph we may form the C -topological 

extension of the domain G ? we may define the system 

)£y CG) and the relation j& on i6- (G) and hence we may 

form the $? -topological extension of the domain G' . 

The relationship between C and S ? -exten­

sions is explained by the following 

Theorem 12. The S* -topological extension of G 

and the C -topological extension of G are homeomorph-

ic and the corresponding homeomorphism can be so chosen 

that it reduces to the identity map on & . 

Proof: First of all we construct a one-to-one map­

ping F from G- u CCG) to G a S?(G) . For £ e 

e CCG-) we define FC £ ) as follows: 

A € F C E )<=-====> there is a C -chain $£«„ I * 

e £ , and a natural number M such that A~ GCg^-^j^). 

We shall show that F ( £ ) 6 S ^ C G ) . We must verify the 

axioms M 5 ) - ( $$ ) from the part 2. The axioms ( ̂ 5 ) -

(4 5 ) are obviously fulfilled. We are going to verify the 

axiom <5 S ); let A , B e &CG), A<p B, A A X + 0 
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for every .X e FCE) . According to II] there exist con­

centric circles K C^>, H,^) with the centre /• and 

the radii K^ and a C-chain {M^l €, £ such that 

jfe, c KC*, /t ). JLurrvK, « 0 . 
"»VJn, 7 OTU ' tf\, 

We put K„ -r G C J ^ , ^ ^ ) . Clearly A n K ^ * ^ for 

every m . There are three following poss ibi l i t ies : 
OO -

I) A c K ^ for all rrv • consequently, A c^iO K^- 0 

- in contradiction with A e ̂  C<£) . 
II) There exists an N such that Kkl c A : then there 

N ? 

are again two possibilities: 
o 

a) There is an m 2> N such that Cie^ - ̂  ) n 

r\ (<LA~ q^A ^ - 0 • This implies K^ <p A p whence 

A € FCE) and, consequently, B e F C £ ) . 

b) For no srt ^ N is CJfê - A ^ ) n Cg^- ̂  > * *#• 

If X 9 y are the end-points of the cross-cut %A , it 

follows in this case that either /tv, « I/&-X/ or /t>» = 

= I /4> - V I for every ,71 ̂  N , But this is impossible on 

account of JUnn, K -=• 0 * 

III) There is an N such that A - K^-4- / -# K ^ - A 

for all m £ N < we distinguish two cases again: 

a) it n £, ss 0 for infinitely many rn, a- N ; 

for those m, we have £ A c K ^ (lemma 11) and <£^ c 

b) There is an N^ £ N such that ̂ ^ n £ A * # 

for all /rt -=5 N . we choose an arbitrary f̂  e Jt^ n %A 

for every m ^ N1 0 The set £ A being compact we may 

choose a subsequence f r^^ ? and a point P € %A such 
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that r̂ L — * P . Hence P-~ >t» € H C G ) and at least o-
At* 

ne end point of the arc %A coincides with A> . In the 

case III b) there are three possibilities again: 

P*) B c K ^ for all m, is easily seen to be impossible. 

II*) There exists an N* £ N. such that K^ c B and 

a*) < ^ ~ -^^ ̂  <£B - £& } "" f> for some 

/7> -̂  N^ j it is easy to see that in this case B € FCE). 

ftt 5: N* ̂  an argument similar to that used in II b) shows 

that this is impossible. 

Ill*) There exists an N^ £ N^ such that B - K ^ * 0 ¥ 

4» K ^ - B for all /rt -* N2 and 

a*) -*jn, n \ h ** 0 for infinitely many >n. --* N^; 

as in III a) one can show that this is impossible. 

b ) There exists an N & Hz such that Jk^ n £B 4* 0 

for all rrv ^ N ; as in III b) we have A> € gB - gfr and 

we see that the arcs £^ , 2^ are not disjoint (in con­

tradiction with A <p B ). 

All possibilities have been exhausted and in every 

case B € FCE) • 

I t i s ea«y to see that FCE^ ) 4* FCEX) whenever 

E 4- E1 . We want now to show that FCC CG )) -» S^CCJ) . 

Let <f € S?(&) and suppose that FCE ) « i / for no 

E € CCG). 

FOB every H c G we put 

fi, CH)» H u K<Je S^(ei* there i s an A e f/ with A c H ? ,, 

fMH)-» H u f E e CC&) . for every C -chain fg^ j 6 E 
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there exists an m„ such that &(<lm, ? %m, + 4 ) <= H ? • 

According to lemma 5, for every £ £ CC&) there are 

A E € FCE ) , SE e if such that A £ n S£ • # . Obvi­

ously E e -fL, OV. ), whence LJ fi* <^£ ) -3 CC&) . 

According to lemma 7| for every X € & there are the 

sets XX^eVtCX) , Bx e J/ such that U ^ n ^ d ^ ) * / 

and, consequently, (IL n &) n B̂  =- J? . Obviously 

xVfr ( UX n G') ~ ̂  • The sets 4%C*£J* He A ^ are 

open in & u CC&) and 

t £ CC(r> ' c £ X t 0- X 

The C-topological extension of the plane domain & is 

a compactification (see Caratheodory [1]); there are 

^1*#"» ^n,6 CC&^ K,,—^X^e & such that 

U fa CAp ) u .U CUy o G ) ~ &u CC&) . 

Hence it follows 

.H B . n ,n Sr - 0 , 

in contradiction with lemma 5. Further we define F as 

the identity map on 6- , Then F is a one-to-one corres­

pondence between & u CC&) and & u S?CG) . It is easy 

to verify the following implications: 

H c <J, X c ̂ CCH) —-> FCX) c -fi^CH) , 

H c & , X c -fi^CH) — + F'Vx) e f̂ c CH) . 

We see that F is a homeomorphism. 
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