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REMARKS ON NONLINEAR OPERATORS AND FUNCTIONALS
Josef KOLOMY, Praha

Introduction. The purpose of this note is to estab-
lishsome conditions under which a mapping F or a subaddi-
tive functional f is additive, linear or positive homoge-
neous on a linear space X . A typical result (Theorem 4)
is as follows. Let f be a subadditive functional on X .
Assume there exist a neighborhood V(0) of 0 and a
functional ¢ defined on V(0) so that g @)= 0 ana
f(u) € g(u) for each w € Vo). 1ir g Ppossesses a
linear GAteaux differential Dg (0, h)at O , then f is
linear on X . Theorem 7 deals with the boundedness proper-
ty of even subadditive functionals, while Theorem 8 concerns
the nniform boundedness of the Gateaux derivative f’(uc)of

a convex subadditive functional.

§ 1. Terminology and notations. Let X, Y be real 1li-

near normed spaces, X* dual of X, E, 1-dimensional
Euclidean space. A mapping F : X — VY is said to be

(a) sdditive on X if F (4, +.u,)= Fla, )+ F(’“’z) for
every . , “, e X .

(b) homogeneous (positively homogeneous) if F(tw )=t F(w)
for every t € E, (for each t = 0 ) and every w € X.

(¢) linear if F is additive and homogeneous
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(d) bounded if for eath bounded subset Mc X F(M)is
bounded in VY. |

A functional f defined on X is called

(1) subadditive iff(u,,-t-uz) £ flu,) +'F(u2) for

every A,

19 My € X 3

(2) convex on a convex set M c X if

f(tu+U-t)v) £ tfu)+ (1-t) f(7)
for eacht € {0, 1) and each u, € M.

(3) odd (even) on X if f(-a)=—Ff(u)(fCu)=Ff))
for every w € X .

We shall say that a mapping F: X2V possesses the
Baire property in the set M c X of the second category
in X if there exists a subset Nc M of the 1st catego-
ry in M such that the restriction FM_N of F to M- N
is continuous. A set Nc X is said to be a Baire set in
X if there exists an open set Gc X so that G~N, N-G
are both the sets of the 1st category in X . For Gétea-
ux differentials ana GAteaux derivative we use the notions
and notations given in the Vajnberg’s book [1,chapt.Il].

By the one-sided Gdteaux differential V+'F (4,,/r) of a con-

vex functional f gt 44 € X we mean the limit

y i - - X o
tl_gr&'t[f(u,-»—,th) £ ()] \44(44.,,—%), e

If £ is convex and finite on X , the one-sided Gateaux
differential \fl_'F(u,h)exists for everyu, € X and it is
subadditive positive homogeneous functional in M e X for
every (but fixed) # € X [2,chapt.10]. Therefore
fu+th)-¢() =V fu,th e, w,th), w, he X,
where t% (AN (u.é tr) _o.
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§ 2. We start with the following

Theorem 1. Let X’ Y be linear normed spaces,
F: X —Y e that F(ta)=1tF(w) for everyue X
and t € (0, t,) , where t, < 4 . Under this assumption
the following assertions are valid:
(a) F  is positively homogeneous on X .
(b) If F possesses a linear GAteaux differential
DF(0,/h) at O , then F 1is linear on X .
(¢) If F has a Gdteaux derivative F’(0) at 0 |,
then F  is linear and continuous kon X
(@) If F has a linear GAteaux differential D F («, &)
on the segment (0,t,v;)={ueX: u=ty, O<t< t, §
for some 0 4% %4 € X andtgﬂrbq— ﬂDF(f_‘%,'II;)" -0,

o 1 Llewcty, th) 1= 0 tor an arvitrery (but

flxed) hhe X , then F is .linear on X .

~ Proof. (a) By our hypothesis there exists
tim, O +ERI-FCO) def yFp ) - dom Fcth) _ Fon)

t-70+

for every hh € X . As - V Fco, h) is positively homo-

geneous in fh e X, F'(h) has the same property.
(b) is a strengthening of Th.l [3].' It can be proved mo-
re simply as follows: V,F(0,h) exists and \ F(0, ) =
= F(h),heX. since F has DF(0,h)at 0 ,
then V,F (0, h)=DF(0,h)= FCh), 4 € X and hen-
ce F must be linear in f € X .
(¢c) is clear. (d) is a slight generalization of Th.2 [3].
Theorem 2. Let F: X — Y be a mapping of X
into Y so that F(0)= 0, Assume F possesses the
Fiteau differential VF(0,/h) at 0 . Then F is
homogeneous on X (== the remainder < (0, &) of
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VF(0,h) is homogeneéus on X . Moreover, let F po-
ssess & linear GAteaux differential DF(0,.h) at 0 .
Then its remainder @ (0, 42) is homogeneous in fr € X &
(== F is linear on X .

Proof. Since F(0)=0 =and F possesses the
GAteaux differential VF (0, .A) at 0 , we have that

F(tw) = VF(0,ta) + @ (O, tw) ,

tFw) = tVF(0,w) + t.w (0, )
for every 4 € X and t € E, . Being VF (0, «) ho-
mogeneous in A € X ,

F(tu)-t Flw) = w0 (0,tu)-tw (0, ) -
Hence F(tu)=tFuw), ue X, te E == 0, tw)=twQu),

weX,te E-,, - The second assertion follows at once
from the first part of Th.2 and from the results (a),(b)
of Th.l. Theorem is proved.

Theorem 3. Let X ©be a linear normed space, f a
convex finite functional on X . Under this assumption
the following assertions are valid:

(a) If f(tu) = tf(w) for everyuc € X @and each t €
€ (0,t,), where t, < 4, then f is subadditive
and positive homogeneous on X . Moreover, if ¥ posse-
sses the G8teaux differential VF(0, /) at 0 , thenf
is linear on X .

(b) I £(0) =0 eanda &), (0, A ) is subadditive in he€ X,
then £ is subedditive on X .

(c) 1If F(O) = 0, then f is positive homogeneous on

X Gume> @ (0, 42 ) is positively homogeneous on X .

(@) 1 ¢ ~ is continuous subadditive functional on X
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and £(0) = 0, then f(tw)£ tf(uw ) for every u e
€ X endeach t = 0 .

Proof. (a) Being ¥ convex, \(‘_-F (w, ) (for
fixed 4 € X ) is subadditive and positive homogene-
ous on X . As £(0) =0, we have for ., v € X, t €
€ (0, t,) thet

Ftwrv )= V£ 0, t(urvrD+a), (0,t(u+rv)),

1) F(t)= V, (0, tuw) + @, (0, tw) ,

FCtw) = PO, tv)+ o, (0, tv) .
Since f is convex, ) (0,4 ) 2 0 for every h e X
( Lemma 2 [4]). In view of subadditivity of V.,, + (u-,—h)

and our hypothesis

Flurv) = fu) - £() & Lo, (0,tCusv)) -
1 1
Lo otw-Lo,0tv) 6w 0tk )

for every w, v € X, t € (0, ¢, ) . As

%‘?,.(O,t (w+v)) — 0 whenever t —» 0,
fuw+v) &€ £Cu) + £(v) for every w4, v € X
The second assertion of a) is an immediate consequence of
The.1(a),(b) and Remark 2 [3].

(b) To prove (b) write (1) without ¢ on the left and
right sides and use the property that V, £#(0,.h) ,
@, (0, £ ) are both subadditive on X

(¢) The one-sided differential \(',f (0, h) of £ at O
is positively homogeneous on X . Hence the assertion
(¢) is a consequence of Theorem 2.

(d) Convexity of £ implies (w e X, te <0, 1))
that
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f(tw)=Ff(tu+U-1)0) & tf )+ (1-t)f (0)= tflu).
Hence f(tw) £ tf(u) for each w € X andte<0,1).
Let n = -Z’L—" be a rational number (m, m are positi-
ve integers). In view of subadditivity of f and the
lasf inequality we have that
(2 e mi(Lu)e F s,
Let t be a positive irrational number. Then there ex-
ists a sequence of rational numbers /¢ > 0 so that
", —> t . Continuity of ¥ gives
f(tu)=”%-?(£nw) £ Mmy 1, flu) = tfluw) ,
which proves c). This concludes the proof of our theorem.
Remark 1. The assertion (a) of Th.3 one may prove
simpler using the properties of V. £ (0, .f»). But we ga-
ve preference to the given proof (a) because the proof
of the assertion (b) is based on the same arguments as
(a).
Theorem 4. Let f be a subadditive functional
on X . Assume there exist a neighborhood V(0) of 0
and a functional g defined on V(0) so that g (0)=0
and f(u) £ g (w) for each w € V(0). 1f @ possesses
a linear Gateaux differential Dg (0,4 ) at 0 , then f
if linear on X .
Proof. Subadditivity of f implies that £(0) £
€ 24(0)., Hence £(0) = 0. But 0 & £(0) £g9(=
=0=> £(0)= 0. Suppose . € X, o € X, t > (, Then
fw)=Ff(u+-hn) g fu+h)++£(-0)

and subsdditivity of ¥ implies that
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2) -FfCEh)EFfu+h)-f(u) £ flR) .
For sufficiently small t > 0, th € V(0) =

=48(th) € g(th), Replace in (2) th for &2 and
divide it by t > 0 , we have for t > 0 small enough
that
gth), f£Cth)  furth)-fw) , £CER) , FCER)
- - =+ t t
t t t
As g(th) = Dg, (0,th) + w(0,th) » we obtain

that 1 .
Dg (0, )= L @ (0,6 b)) & § [F(urth)-flu)le

N

(3)
£ Dg (O,h)+-t1-co(0,t,h) .

Since the limits on the left and the right side of (3) e-
xist and are equal to Dg, (0,4.),we conclude that

tx_%: Lrecusrtn)-ew)rl=V, #u, )= Dg (0,h)

for each e X and . € X . Hence V. f(«, h) =

= - \4_4(4,(,,9%) = Dg (0, M) for every 4 € X and
Jv e X . Therefore f possesses the Gateaux differen-
tisl VF (s, M) for every a € X and Vf(u,h)=
= Dg (0, ) for every w € X , h € X. as £(0) = 0,
by the mean-value theorem

flw) = Vi(va,w) = Dg (0, ), me X, 0<w <1.
Since Dg (07 4t) is linear on X , our theorem is

proved.

Remark 2. The final part of the proof of Th.4 may
be done as follows: From (3) it follows that

- 397 -



flurth)-f(w) (0, th) w(0,-th)
( : -Dg (0,01 & max (|22, [=—=5—=2)).

As t — 0, the term on the right side tends to 0 . Hen-
ce ¥ possesses a Giteaux differential VFf («, ) at
every point 4. € X and Vf(w,h) = Dg (0, b)), 1 eX,
« € X . By the mean-value theorem f(u)= VF(zw, «)=
=Dg (0, ), welX.

Corollary 1. Let f be a subadditive functional
~on X so that £(0)= 0. Assume f possesses a linear
Géteaux differential Df (0, /2) at 0 . Then £ is
linear on X .,

Corollary 2. Let f be a convex finite function-
"al on X . Assume there exist a neighborhood V(0) of
0e X and a functional g  defined on V(0) so
that ¢ (0)=0 and V,f(w,,h) & g (&) for
each /€ V(0) and for some #, € X . If ¢ has a 1i-
near Gateaux differential Dg (0,4 ) at 0 , then f
possesses a linear GAteaux differential Df (4, , A2 ) at
A, -+ Moreover, if f is continuous, then f possess-
es the Gdteaux derivative +7(«,) at «, .

Proof. The one-sided Gateaux differential
V;'F (u,, ) is subadditive functional on X . From
Theorem 4 it follows that V, £ (4,, #2) is linear in
e X on X . Hence Vi f(u,, )= V_f(u,, h)
for every /o € X . This shows that f has the GAteaux
differential V¥ («,, ##) at 4, . But convexity of

£ implies that Vf(«,, k)= Df(w,,h), heX

(Remark 2 {3)). If ¥ is continuous, using Proposition
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6 [51, we obtain that Df (u,, 4) = £/ (u, )b, e X .
This completes the proof.

Corollary 3. Let ¥ be a continuous subadditive
functional on X . If f(tw) £ ¢(t)f(w) for e-
veryuw € X and t € (0, t,), where t, <1, o
is a real function on (0, t,) so thag_l:bo:'z -%_(i)';- 0,

then #(w) =0 for every s € X .

Proof. First of all, £ has the Gateaux deriva-
tive f’(w) on X and f/(u)= 0 for every « € X.
By Theorem 8.6.1 [6],Chapt.VIII (here we must point out
that this theorem is valid even for mappings which have
the GAteaux derivative only) we get that f(u )= ¢ = conel.
for every . € X . Since £(0) =2 0, ¢ = 0 . Suppose
that ¢ > 0. Then we have ¢ = f(tw) & P(t)flw) =
= ¢ (t) for everysw € X and each t € (0, t,) . Hence

1 (t) .
T £ g‘{-“' for each t € (0, t,) which con-
. . .4 -
tradicts with the fact that t% % g (t) 0 . The-
refore €=0 and f(w) =0 for every w«w € X.

This completes the proof. Corollaries 1,3 show that
functionals considered inTheorem 1 [7], Th.l [8], Th. 4
(3] are linear.

Theorem 5. Let f be an odd subadditive functio-
nal on X . Suppose f is continuous at 0 . Then f
is linear and continuous on X .

Proof. The inequality 2f(0) = £(0) imp-
lies that #(0) & O . On the other hand we have for
we X that 0 & f(0) = # (- ) & () +
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+f(-ul)=Ff(w)- f(u)=0.Thus £(0)=0 and f

being continuous at 0 , it is continuous on X . For

arbitrary 4, v € X we obtain
fr)=f((u+v)-m) £ fu+rv)+fl-u) =

= flu+)—- flw) € f(v) .

Hence f(v) £ f(u+v)~f(u) &€ f(v) inmplies
the equalities among these terms. This means that +
is additive on X and being continuous on X , f
is linear on X . This completes the proof.

Theorem 6. Let f be a subadditive functional on
X having a linear Gateaux differential Df («,, 4 )
at some point w, € X . If f(-w,)=~ f(«,), thent
is linear on X .

Proof. From 0 % £(0) = (- a,) & fli,) +
+4£(-4,)=0 it follows that f(0) = 0. 1f wm, =0,
then f is linear by Corvllary 1. Suppose that 4 + 0
and that /2 € X is an arbitrary element of X . From
fu)=Ff(u,-h+n) £ $(x,-H) + £(H) and u-
sing our hypothesis we have .that

) = flu,~- )£ £Ch)= Fll+ h)-a,) &
£ fu,+ )+ F-1)=Fu,+h )~ f(u,) .
Consider ¢t > 0 , replace in these inequalities A
by Tt/ and then divide by t > 0 , we get that
Lrtu)-#u,-th)l s d ecth) 2

el [FCurth) - Fu)] .

Since ¢ possesses a linear G8teaux differential

Df (my, M) at 4, ,we obtain (¢t > ()
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Dfiu, , ) - w(u,tLt(—h)) = 4(;547,) <
£Dfu,, )+ 2_(_".‘_;.:_'&& .

These inequalities imply that there exists
f(th)

t—+0, t

Df («,, ;) for every e X . From this fact we

ard that this limit is equal to

conclude that ¥ possesses a linear GBteaux differen-
tiel Df(w, /o) on X and that Df(uw, )= Df(uw, )
for every w, 42 € X . According to the mean-value theo-
rem f(u)=Df(raw, u) = Df (o, ), we X,
(0 « © < 1) which proves our theorem.

Corollary 4. Let ¥ be subadditive functional on
X . If ¥ is linear on some open subset M 5% 0 of
X, then f is linear on X .

Théorem 7. Let X be a linear normed space of
the 2nd category in itself, ¥ a subadditive functional
on X . Let one of the following three conditions be
fulfilled: (a) f is even and upper-bounded on a Baire
subset of the 2nd category in X ; (b) +f is nonnega-
tive on X and it is upper-bounded 6n a symmetric Bai-
re subset of the 2nd category in X3 () ¢ is even
and there exist an open subset M # 0 of X , a func-
tional 9 defined on M so that 9, possesses a Baire
property in M and f(u) £ @ (u«) for each « € M.

Then f is bounded in X .

Proof. Assume (a). Then 0 % #(0) =f(u-w) &
Ef(w)+ fl-uu) = 2F(w), w € X=>Ff)z2 0 for
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every « € X . By our hypothesis there exist a Baire
subset B of the 2nd category in X and a constant
C >0 80 that f() £ C for each &« € B .
Then the set W  of all differences w = 4« — 7V,
where « , 2 € B is a neighborhood of 0 in X .
Hence there exists o) > 0 such that fw ll< o =
= w € W . For any w ¢ W wi_“th~llwl<d;'

we have (w = u -, u,nv e B) 0s flw) =

=f(u-v)e fu)+Ff(vr) & 2C . Let 4 be an ar-

bitrary point of the ball 4 | & R ., Then there

exists an integer m, so that Rm @ of . Ws ob-
. A AL

tain thatOé'F(M,)s*P(%—o'-fno)éno'f’(—”fo') € 2Cm, -

This shows that f is bounded in X . The proof of
(b) is similar to that of (a).

Assuming (c) we see that M is a set of the 2nd
category in X . By our hypothesis there exists 44 €
€ M- A, where A is a set of the lst category in
M

M — A is continuous at MU, . Hence there exists a

, 8o that the restriction ¢ /M _A ©of g to
non-empty open subset N < M so that 4, € N and
uwe€N-A=p>g(u)& g (u,)+ 1 . The set B=
= N~ A is a Baire set of the 2nd category in X .
Hence 4 € B == f(wu) % g («,) + 1 . The rest
results at once from (a) of our theorem. Theorem is pro-
ved. ‘

Corollary 5. Let X be a linear normed space of
the second category in itself, f a subadditive even

functional on X . If # is upper semicontinuous at
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some point #4, € X , then f is bounded in X .
In the sequel we shall use the so-called Banach-
Steinhaus uniform-boundedness principle: Let X, X, be
linear normed spaces, A be a set of the 2nd category
in X , ?2{ a set of linear continuous operators of X

into X CIf X e A = /bu;}/:;ﬂl.l(x)ﬂ<oo
1 Ue ’

th supn Ul < co .

enuém

We prove the following

Theorem 8. Let X be a linear normed space of
the second category in itself, ¥ a convex continuous
subadditive and finite functional on X . Assume { po-
ssesses the Gateaux differential V£ («,42) on the set

Nec X, Nz g.

Then there exists a constant ( > 0 so that

M)l & C

for each .4 € N , where £/(w)
denotes the GAteaux derivative +/Cw) of £ at w

In particular, if N is convex,then 4 is Lipschitz-
jan on N with constant C .

Proof. If 0 € N , then ¥ is additive on X
according to Theorem 3 a). Being f continuous it is
homogeneous and hence linear on X . Therefore our
conclusions are trivially fulfilled.

Assume that 0 ¢ N . By Proposition 6 [5]1 Vf(«w,4) =
=$#’Cu) for each .« € N and every o € X . U-
sing *enna 2 [4)-and subadditivity of f we obtain
FCERIEFR)~fuU-R)EF(wWh £ Fu+h)-fw)efih)

for each . € N and M € X . Hence
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£ | € max (1£0R)], 1£(=h)1)

for each . € N and £ € X . By theorem 2.5.3 [9]
IfFChIEM UMl +1) for every h e X , where

DéM{_.= sugr £(f) < + 00 . Hence Hh e X =
(LY

= supy £/ (u Yo & M, Ul # | +1).According to Banach-
Steinhaus principle there exists a constant C > 0 so

that »supn If(w)ll « C . Thus the first
weN

part of out theorem is proved. To prove the second as-

sertion it is sufficient to use the above fact and the

mean-value theorem. This concludes the proof.
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