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CONCERNING THE BANACH-STONE THEOREM
Stanislav TOMASEK, Liberec

In the sequel we consider compact Hausdorff spa-
ces X , Y and corresponding B -algebras C(X), ccy)
of all complex=-valued continuous functions.

Recently (cf.L[5]), it was estabslished that for
any linear isometry « of the Banach algebra C(Y)
into the Banach algebra C(X) , X and Y being com=~
pact, there exists a closed subset @ € X amd a conti-

nuous mapping ¢ of @ onto Y with {wf, x> =

=a(x)-<{f, p(x)> for all X € @ and for all f e
€ C(Y), where of € C(X) and fa(x)l =1 for any
xe @ .

With respect to this fact the following question
arises: suppose that 4« 1is a iinear isometry of C(Y)
into C(X) ; to investigate under what conditions the
mapping ¢ 1induced by « 1is & homeomorphism from e}
onto VY., This question is completely solved in the
statement (b) of the following Theorem *). Further we

shall show a straightforward proof of the theorem of

#) The presented results were communicated as Appendix
in [6] firstly.
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Holsztyﬁski and, finally, we shall state some closely
related results concerning the $ilov boundary.

Let 4 denote a linear isometry of C(Y) into
C(X). Putting E = {uf; fe CCY)? we mean by
t. the corresponiing adjoint mapping of the topologi-
cal dual space E’ onto C’(X). The isometric image E
of CCY) by a is a Banach space with the topology
induced by the norm-topology in C(Y) . Denote by E(X)
the family of all extremal points of the unit ball in
E/ ; similarly ECY) stands for the collection of
all extremal points of the unit ball in (C/(Y) . It is
obvious that Yw (E(X)) = E(Y) . The canonical embed-
ding g : X —% E’ 1is defined by (g (x), > = f(x) .
Similarly ¢, -means the canonical embedding of Y in-
to C’/CY) . In the sequel we put
(1) B=ge(X)nEwX), @=¢g"B).

For an arbitrary Banach space F the set of all extre-
mal points in the unit ball of F’ need not be, in ge-
neral, weakly compact. In what follows we shall prove the
weak compactness of E (X) 5 consequently and with re-
gard to the weak continuity of g the subset & defi-

ned by (1) is closed, hence compact, in X .

Theorem. Let X and Y be two compact Hausdorff
spaces and let &4 be a linear isometry from CCY) into
C(X). The subsets @ and B are defined by (1). Then
it holds:



(a)

(b)

There exists a continuous mapping ¢ from (3, on-
to Y such that

<uf, x> = (x)e (£, p(X)>
for any x € & and any f & C(Y), where oc € C(X),
leoll =4 and lec(x)] =4 for all xX€@.
The mapping ¢ defimed in (a) is a homeomorphism
from & onto Y if and only if the following condi-

tions are satisfied:

1° The collection E =« (C(Y)) separates the points
of & .

2° For any q(x )€ B, q(x,)€ B,q(X ) * ¢(x,) , and

for any complex number B3 , (A3l =1, it holds
Qlx,Y ¥ B glx,) .
Proof. (a). The proof of the statement (a) is a modi-

fication of the proof of the Banach-Stone theorem (cf.[3]).
Pirst we recall that (cf.[3])

E(Y) = .“T’Jqot‘/ .

Hence, the subset E(Y) is weakly compact in C/(VY).

From the weak continuity of tw and from tw (Ecx)) =

= E(Y) we may conclude that E (X)
pact in E’ , thus Q= g"(B}

is weakly com=-

is compect in X . For
8Ny g (x) e B  there exists a unique element y € Y
such that

) b (g(xN = awtx)eq, () ,

where (ot (x)\ =4 for each x € @ . We define now a

mapping T of B onto Y by t(Q(x)) = 4 6 where
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g(.x) and 4 satisfy the relation (2), It is easy
to see that t(B) = Y .
For any x € @, < «(@), x>=<q(x,ul)> =

- (x(X)q,(y),e>= ox(x) ,

where € € C(Y), e(y)= 1 for all g4 € ¥. This imp-
liesw(e)=cc € E , hence t 1is continuous on B .

The function g (X)=t(Q(x)), xe 6 , satisfies e~

2
vidently the properties stated in (a). To verify the

equality in (a), it suffices to note that (uf, x> =
=B, )= K (x)- (), # > = & (x) - £ (p(x))

for any x € @,y =¢(x) and £€C(Y) .

(b) Suppose now that the properties 1° ami 2°
are satisfied. To establish that t, hence & , is a
homeomorphism, it suffices to prove that t 1is one-to-
one. If for some g(X,)é€ B, Qx) e B we have
t(Q (x,)) = t (g (xX,0=7 ,then
tu.(q,(x,, N = x(x)q, W), tu (Qx, 0 = x(X,)-Q,(%).
But tu. is a linear isometry, consequently, Q(X,) =
= (3q(X,) for Ba ol )e (ot (x,))™" . According

to the property 2° we conclude Qlx,) = gCXz) .

On the other hand, if ¢ is a homeomorphism
from @ onto Y, then obviously E separates the
points of . @ . Suppose that Q(x,) = 3. (x,) for
some 13| =41 , By the definition of t¢ we obtain
t(q(x,)) =t(g(lx,)) , hence @(x,) = Q(X,) . «
This completes the proof of the statement (b).
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Remark 1. The condition 22 of the statement (b)

may be formulated in the following way
297 Let X, and X, be two points of @ . If for some
fe E f(x)) & f(x,) , then for any complex
f,131= 1, there exists a function fs € E  with

";3(-"1) + - F,,(‘Xz ).

Especially, if the vector space E separates the
points of & ond if there exisis a function in E with
constant non-zero values on (37 then the mapping & from:
® onto Y defined in the precedent Theorem is a homeo-
morphism. Indeed, we we may suppose without loss of ge-
nerality that e € E , €(x)=4 for any xe @ .
From q(X,)=B3.9(X,), X,€ @, X, € @ , ve obtain

1=<qlx,),ed>= B3.-{q(xX3),e>=/7.

Remark 2. The statements of Theorem hold also in
the case that C(X) and CCY) represent the spaces o
all continuous and real-valued functions on X and Y .
Especially, if the image « (e) of the unit element e
of the algebra C(C¥) 1is a positive function on G
(e.g., if . is an isofonic linear isometry), then evi-
dently o (X)=4 for all x€ & . Fromoc € E it fol-
lows the property 2%, The last case has been investiga=-

ted from another point of view in [4].

Now we are ready to apply the previous results to

the abstract Dirfchlet’s problem (in the sense of Bauer,

cef.[11).
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First we recall that if X 1is a topological space ani
£ is a family of bounded and continuous functions on
X , then a c’ompact subset C = X will be termed =
§1lov boundary of E  whenever the following conditions
are satisfied:

(1) For any f € E
= I .
%l(-{-’,.x)l ;’oeuf(<{’,x>

(11) For any compact subset ('S C, C"# C , there ex-
ists f € E  such that

zr:aéy|<f,x>l < pac|df, x> .

Now we complete the precedent Theorem by
Corollary. Suppose that all assumptions of Theorem
are fulfilled and that, moreover, ¢ is a homeomorph-

ism. Then the subset ( defined by (1) is & $ilov boun=
dary of E .

Proof. To prove the property (i), we may assume
that the mapping &# defined by Theorem is continuous.
For any such ¢ and any £€ CCY) we obtain

x/:u;fpl(uf,.x 1 ﬂqb‘u;qu-G,y,) =

=&ug~|<¢,gp(z)>l = mag IKawet, 2> .
The last inequatity implies (1).*’

%) It should be noticed that a subset C & X  satis-
fying only the property (i) is called by some aut-
hors the bouniary of the family E . In any case
the subset @ Qefined by (1) is the boundary of the
family E .



Suppose now that ¢ is a homeomorphism and that
B, 1is a proper and closed subset of @ , For some
X,e @\ @, the subset V=g(@ @,) is a neigh-
borhood of 4, = L (X,) in Y . We choose a function
feC(Y) 08 #41,fy,)=1 and f(y) =0 for all
y ¢ V. Since uf e E and
Kuf,x, = 1<f,px) =1, [{wf, x >I= 1<{f,q(x)>I=0

for all X € @, , we obtain the property (ii),

Remork 3. In particular, if E  separates the
points of @ and if some constant non-zero function
on @ is contained in E , then G is the Silov boun-
dary of E .

This result is a complex modification of the Bau=-

er s maximum principle (cf.[2]).
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