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Commentationes Mathematicae Universitatis Carolinae
10, 2 (1969)
SOME REMARKS' ON POLYNOMIAL OPERATORS
Slavomfr BURY3EK, Praha

Introduction. The polynomials on abstract spaces have
been introduced by M. Fréchet in [5],[6]. But & systemati-
cal study on abstract polynomials and their properties we
can find in (14). Some questions about the existence of
eigenvectors of homogeneous compact symmetric polynomials
on the space L2 were studied in (3] and a similar pro-
blem for positive polynomial operators was discussed in
(4]. Further, the theory of analytical operétors both in
complex and real Banach spaces is based on the notion of
the abstract polynomial (2]1,(8]. The first part of this
note deals with the problem of continuity of the polynomi-
8l operator which is an inverse operator to a continucus
operator on a Banach space. In the second part we consider
some problems on the existence of eigenvectors for symmet-

ric and positive polynomial operators on a Hilbert space.

1., Notations and definitions. Let X , Y be linear
spaces. An operator P(.x,',... » %) from XxXx.ox X
into Y 1is said to be the f-linear operator if it is li-
near in each variable X, ..., Ky The . =-linear ope-
rator will be called the symmetric K -linear operator if

it is invariant under arbitrary permutation of variables

x17llc7ixh .

- 285 =



We shall say that an operator P(x) from X to
Y is the homogeneous polynomial operator of the order
fe > A1 (briefly h.p.-operator) if there is a symmet-
ric f-linear operator P*(.x”,,,, Xg ) such that P(x)=
= pP* (X,... ,% ) . It is easy to show that for some
. hep.-operator P(X ) the symmetric & -linear operator
P¥(Xyy...yXg ) 1is defined unambiguously. This operator
will be called the polar operator to the operator P(x).
We shall say that an operator P(x)= P+ a(.x)+.,,+ P, (x)
from X to Y is the polynomial operator of the order m >
> 1 1ir Ee Y is a constant and Pi(.x), i=1,2,..m
are homogeneous polynomial operators of the order 1+ from
X toY.

The following algebraic properties of the homogeneous
polynomial operator fP(x ) and its polar operator
p* (X4y-00y Xg ) 8are well-known:

(101 PR,y X )= TAET 6y o C PEXF G ),

where the summation is related to all groups {5"52,..,76‘5?

of numbers +141 and —1.
4 ;W)

' ' Ae ! %, 5
(1.2) Plx . +X)) = 377707 Poxenn, X0 ),

where P*(,..,x”..,) denctes P*(...,.x u.zx,.,.) and the
4 -times
summation is relsted to all groups {7 ..., ¢, § of numbers

0,4,2,...,m such that 4 + 4,+...+1i, = k.

.3 ki i1
(1.3) P(x)- P(ry,)=i§_1 P (X", 4, x —y)



for any X, e X .

Let P(x)= B+ B (x)+ B (x)+ ...+ [, (x) be a poly-
nomial operator of the order »m > 4 . Then for arbitra-
ry mutual different real numbers T, t,”.,., t,, there

exist real numbers 'c;:é ; 1:,;{,:0,47...7/772, such that

mnv
(1.4) Px) = .2 T P(tj.x)

1 =0

d
for any X € X and 1 = 0,1,..., m .

2., The continuity and boundedness of the polynomial

erator

In this section we recall some based properties of
polynomial operators on linear topological spaces and, e-
specially, on Banach spaces.

Theorem 2,1. Let X ©be a linear topological space
and let Y be a normed linear space. Then the fge-linear
operator P(.x1’,.., Xg, ) from Xx...x X toVY is
continuous if and only if it is bounded on an open subset
Ux.,..xUlec Xx...xX.

For the proof of this theorem see, for example,[13]
(the case /& = 2 ).

Corollary. Let X be a locally convex linear topo-
logical space, Y be a normed linear space. Then the S~
linear operator P* (.x,,,,.,, Xk) from Xx.. xX to Y
is continuous if and only if there is a seminorm |l - "X
and a positive real number M  such that for any .)(1: & X,
1=1,2,...,4 it holds

HPA(Xyyersy % M & ML, oo s Xl
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Proposition 2,3. Let X, VY  be normed linear spa-
ces and let P(X) be a polynomisl operator from X to
Y of the order m > 1. Then the following assertions
are equivalent.

a) P(x) is continucus at a point X, € X .

b) P(X) 4s continuous at any point in X .

¢) P(x) 1is bounded on every ball in X ,

d) P(x) 4is uniformly continuous on every ball in

X.
e) P(x) satisfies the Lipschitz'a condition on e=-
very ball in X .

The proof of this proposition follows easily from
(1.1) - (1.4).

Proposition 2.4 ((141,p.182).Let X ,Y be Banach
spaces and let P(x) be a polynomial operator of the
order,m from X to Y having the Baire’s property
(i.e., P(x) 1s continuous on X except, maybe, &
set of the first category). Then P(xx) is continuous
on X .

Definition 2,5 {[2],031,[4]). Let X,Y be nor-
med linear spaces and let P be a continuous h.p.=-opera-
tor of the order & > 1 from X to Y . Then we defi-
ne the norms I PJl and IP¥|l of P and its polar ope-
rator P¥ as follows )

Py = P | = (X 1y oes
Ixml! O, WPXI = sap N PHX .0, %0,

. ?
Ax N 6Ayind, 2

Remark 2,6. Using (1.1) and Definition 2.5 we ob=
tain the following inequalities

noa _



f
IPI £ IP*) £ —'}‘; NP1 .

The latter inequality cannot be generally improved as it
is shown in [11].

Definition 2.7. Let X, Y  be Banach spaces., Deno-
te fi,(.x " the normed linear space of all continuous
polynomial operators of the order m from X toVY with
the norm U Pl=IRI+ KB I+...+ UF, Il , where P; are
continuous h.p.-operators of the order i = 0,1, ..., m .
Similarly, denote éﬂy (xy* and %X, (x Y%  the space of
all continuous ¢ ~linear operators and the space of all
continuous h.p.-operators from X to Y of the order
k21,

Remark 2.8. It is obvious that J:,(x)"”,xy(.x)’j ét;,(x)”

are Banach spaces with norms defined above. Indeed, if
{P,"J e 9CY (x)* is a fundamerntal sequence, then P(x)=

:%E,Cx) is a h.p.-operator having the Baire’s proper-
ty and thus, due to Proposition 2.4, Pe 9, (x Y am
e, -Pl— 0.

Finally we show that there is a theorem on polyno-
mial operators which is an analogy to the well-known Ba-
nach-Steinhaus theorem.

Theoremn 2,9. Let M c 7;’, (X)™™ be the set of con-
tinuous polynomial operators such that for any Pe€ M the
set {P(x)/x € X3 4is bounded in Y. Then the set M
is bounded in the space & (x)™ .

Proof. According to (1.4) it ir auPficient to prove



this theorem provided that Pe€ M  are h.p.-operators
of the order & 2> 1. Let P* be the polar operator
to P. Dencte
- .4 * £
B, = {.Xi € X;i=1, 2,..-,&./”!:> (.x1,...-,05,°)||— n,Pe Mj,
[--J .
Then XY-”L_.{ B, and there is a set B,,‘, of the seconmd
. category. The set of all di.fferences_ X=y 5 X, Y€ 54,,
contains a neighbourhood of the point zero in X and
thus, there is a positive real number s > 0 such that
;s x

for N\x;R&n; ¢=4,2,.., & we have [P¥x ..., )%
< f1 . Hence, for X =X-a, Izl £ n  we can write

1P = ll_:zi(i" )(-4)*4P*(.x";'y,’*")ll £ p-2*
Let x € X, Ixll £ 1 and choose a positive real num-
ber 0" such that o sz > 1. Then for any Pe M we ob-
tain
1P = IT*P(F) I & o*. p. 2% .

Hemce [IPY = sup IPGON £ d*. 2™ and the theorem
is proved.

Proposition 2,10 ([141). Let {P,3 be a sequence
of continuous polynomial operators from @( Xx)™. Then
the set

M=4ixeX/ tm B, ()l < + 00}
m -3 co
is either the set of the first category or M 1is equal
to X, »

It is obvious that so-called "principle of the con~
densation of singularities" reminds valid also for polyno-

mial operators.



3. The continuity of inverse oper~tors

In this section let X, Y  denote Banach spaces and
for X, € X, n >0 let K (x)={xeX /lx-xll<x].
Proposition 3.1. Let F be an operator from X toy
having an inverse operator F. Suppose F' ia a hepe=-
operator of the order &k > 4. If there is a positive re-

al number 4" > 0 such that
HFCO I > o Ixl

for any X € X then F-7 is the continuous h.p.-opera=-

tor.

Eroof. Let g4 € Y X = F~"(y). Then
Ixli= IF Tyl £ £ 1FCF Tyt 1y 1*

and thus, according to Proposition 2.3, the operator F1
is continuous.

Corollary 3.2. Let F be an operator mapping a Hil-
bert space H onto itself. Suppose F has an inverse
hep.-operator F~7 of the order & > 1 . If there is a
positive constant o > 0  such that

5
(F(x),x) 2y Ixl
for any x € X then F~! is the continuous h.p.-opera-
tor.

Lemma 3,3, Let P be a h.p.-operator of the order
m >4 from X to Y with its polar operator P* ., For
any natural number m let E_ be the set in X such that

HPH (Xypunsy X )N & m X e U

for each X, € E”’ i=4,2,.,.,m . Then, at least, one of
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the sets E_ 1is dense in X .
Proof. The sets E_  are nonempty because each of
them contains the point zero. For arbitrary x € X,

X 3 0 we can choose the smallest naturadl number m

|
such that m > -llﬂ_%"%)‘i- . Then x e E, and thus X=
00
= U E, . Being X Bamach space, X 1is the set of
ns1

the second category and there is a set E, ~ and a ball
K, (x,) such that K (x,)n E, is dense in K| (x,). Let Ky (%)
be a ball such that K41(x4)c Ke,)Nn E,, , where x € Enp

Then for X e X , lx =, we have X +X € K“’(.x,,)

and there is a sequence (zhi, € K,.,,1 (x,) n En’
which converges to .x1 + X . Hence, the sequence

K = zh-—.x1 converges to X and we can assume that

e I >k, 2- = . Then, using (1.2), we obtain
| I (P2 I x 1™ &
1P =l Pzg- X M £ m, 2, Zp 1",
; . 2m (21 1) .
P 7 -3 Z_e 1 1 .,
=m,g6‘,,”’)llx4 1™l 1) £ o Il xg 17 .

Let m denote the smallest naturd number which is grea=-

2mg (e, + 201, §)™
ter than ;‘44» 4 . Thenll P(.X*’)“é/n”%'m

end thus x, € E_ . Let x € X, x % 0 be an arbit-
x

rary point. Then for § =K - JxJ We have ey = r,

and there is a sequence £, € E_  such thaiﬁoz €= § -

o
r, ¢

Hence, the sequence {.x*; = {§° r, converges

to X and we obtain
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Il x
1P ) = 1PCge Bon = X 1Pegon =

& IXI o g 1™ = mllx 17 .
1

Consequently, %, € E_~ and E, 1s dense in X.

gheorgg J.4. Let F be a continuous operator from
X onto Y having an inverse qperator F ' . Suppose
F"’ is a homogeneous polynomial operator of the order
m = 1. Then F"' is the continuous polynomial operator
from Y to X .

Proof. Denote F~"® the polar operator to F-7
and let

Y=Yy €120, 2,0, m/NF Uy M E RNyl Ny N

where d¢ =1,2,... . According to Lemma 3.3 there is a

set ), which is dense in Y. Let & V¥, gy ll=2 = 0.
Then the set K, ,(0)N Y,  is dense in K, (0) and we
can find elements g e Y, 4k =1,2,... , such that

ll@—c%+;,+%)ll £ f; Nyl & 5%

Y = Jlm 2

Let us put
m [ A% 1, The
x’i’q""ixz. 7‘1""‘4“1 F (’y?,.gl, ),
where {1',1,.,. y 13*_} are the groups of integers 0, 1,...
e ,Mm such that 1.1+,,.+1.‘¢ = m . Denote .xk=
= > X; .. 70 adding over all such groups of integers.
1

Then we obtain
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m! <, :
|‘x;1,‘, % | & '2;7'——11—,— m "/y—‘, n... ﬂay“ﬂ""

and thus, the sequence {xkf is a fundamental sequence
in X . But X is a Banach space and there is a point
X € X such that fm X, = X . Using the continui-
Se~+ 0o
ty of the operator F and (1.2) we obtain
F : Y = tim FCX )= tom F(F T+t g D=y,
(0= Filim, %) =i PO = L FOF e ey
Hence
- Z 2™ .
= (@)Ilallxﬂ_m*%ZWllfyﬁﬂ o lygl & m 27yl
Finally, the Proposition 2.3 completes the proof.

Remark 3,5. As an example of the continuous homoge-
neous polynomial operator of the order & 2> 1 can ser-
ve the operator P(x) defined on the space L, ([0,11)
as follows

1 4
Pl = gy a)= [ [K iyt .00, IxCE) xGat, . dE,
where K(/a,tq,,,, ) te) 1s a quadratically integrable func-
tion on [0,4]x.,, x[0,4] . Similarly, the operator

P = gts)= 3 [ Ko taxtetrat

y3
where K‘-’ (s,t), =0,1,...,,m are continuous functions

on [0,11= 0,11, is the continuous polynomial operator
of the order m on the space C([0,11) .

In this section let X’, Y/ denote dual spaces to
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Banach spaces X, ¥ . The symbol ¢ 7, £7 > Qdenotes
the valueeof a continuous linear functional e Y’ at
apoint g € ¥ and (Xx,4) is the inner product in
a Hilbert space.

Definition 4.1. Let P be a h.p.-operator of the
order & > 1 from X to Y and let (4 be a h.p.-ope=
rator of the order £ from X to VY’. We shall say that
P is @ -symmetric if the following functional

£y yovey Ko g yeees B ) = € PX(X,yerey Xg ), B Capyyeees tp )

is the symmetric ¢+ .£ -linear functional. We shall say

that P is the symmetric h.p.-operator if Y= X’ and

P is I-symmetric. ( I is the identity operastor.)
Lemmg 4,2. Let for any continuous homogeneous po-

lynomial functional (X ) of the order & 21 on X

hold

(4.27) hpl = tp*il .

Then for any continuous h.p.-operator Pe QCYCX)*' it
holds

(4.2°7) P = P*N .

Progf. It is obvious that Pl £ [P*] . Now we pro-
ve the opposite inequality. For arbitrary positive real
number € we can choose .x",.-.,astex , Ix; 0 =1,

. * = %y _
1=1,2,,.., % such that P (.7:"...,.3(*)”>HP I-¢g.

k]
Let us denote 4 = P (.x1,.,.,
known corollary of the Hahn-Banach theorem we can find

§'€ Y’ such that N¢#'ll= 1 and <y, ¥ > =1yl .

"?le.) . Using the well=
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Thus, for the continuous homogeneous polynomial functional
flx) = £(P(X)) = CP(x), 7> we obtain lpll =
=lp*ll< (| P*1 . But

PACZ, ey B ) = gy 70 = Mgl =IPH(R L T l> IPAI- €
Hence I P*|l £ lp*l = Ipls NPl and our lemma is proved.

We shall say that a normed linear space has the "fl’b‘
property" if the assumption of Lemma 4.2 is satisfied.

Repark 4.3. There are spaces which have not the "fiq-
property"” for %% > 1 as, for example, the spacel(L0,1])
(see (11)). But S. Banach has proved in [3] that the space

L‘z has the "-fye -property" for any & > 4 . An inspec-
tion of the proof shows that every abstract Hilbert space
has also this property for any o > 1.

Remark 4.4. Every continuous homogeneous polynomial
functional fo(x) defined on a subspace H, of a Hil-
bert space H can be extended to a continuous h.p.=-func-
tional fi(x) on H such that fu(x)= fu(x) for any
XeH, and Ifell = W Il . It follows immediately from
({161,Theorem 7) and the Remark 4.3.

Theorem 4,5. Let X be a Hilbert space, Y be &
Banach space. Suppose A 1is a continuous linear operator
from X to Y’ and A’ is its adjoint operator. If P is
A -gymmetric continuous h.p.-operator of the order & > 1
from X to Y, then

AP} = I<P(x),Ax > .

Proof. Denote fi(X)=<P(x), A(x)> . Thenlp(x)lé

£ JA'PH - hx 1***  and thus lpll &£ HA’PN . For arbitra-

ry posSitive real number £ > 0 we can choose 54"” ceey
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X, X, 1Z 1 =1,i=1,2,... .k such that WA'P*(X,,...
..'.,ka)ﬂ>l|A'Pll-£.Let us denote

:)—(- - A’P*(&-,',-rvz y,k,)
et T AP ., X

Then | Xeess =4 and we obtain

/,14*(;1,'.:’ D_(M,’) = < P*(\‘i;7’»1, y*')’ A&h‘,‘,) =
S (AP, ), F, V= NAPKZ L, 21> IAPI- € .

Using Remark 4.3 we can conclude that lI41,l|==(|4L*” > APl
and this implies [lpll = A'P) .

Corollary. Let X be a Hilbert space and let P be
a continuous symmetric h.p.-operator mapping X into it-
self, Then

TPl = "m1(fp(x),.><)l .

Lemma 4,6. Let F be an operator from a Hilbert spa-
ce X into X having the Fréchet derivative F7(0) at
the point O and let F(0) =0, F(0)a=0 for any b€
€ X .Then F has at most one point of bifurcation, name-
ly the point zero.

Proof. If A is a point of bifurcation of the opera-
tor F then there is a sequence {Q,? of eigenvalues

and a sequence {X, } of eigenvectors such that A, —> A

and a,m’ = .(_E’.g.i’—“’-ll—‘—x.&)_ Further

(X 5 Xm) ‘
F(x) = FO) + F(0)(X)+ w(x)= O(x) ,

where co(Xx) 1s an operator in a neighbourhood of 0 such

' . F(Xa), X
that fom ALCOL_ _ 5 gpen mgx—i—?m"‘l =

t
flxit = 0 il W f>0
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o N xa )l - 0.
él&ﬁgto-j—x—;“&"'=0 and tgus A 0

Proposition 4,7. Let X be a Hilbert space, Y a Ba-

nach space. Let A’ be the adjoint operator to a conti-
nuous linear operator A from X to Y’ . Suppose P
is a continuous A -gymmetric h.p.-operator of the order
& >4 from X to Y . Then for any positive real num-
ber € there is a point X, € X, “"‘z =4 and a real
number A, A= I APl such that
JTA'P(X,) - Axg < € .

Proof. Let € > 0 . According to Theorem 4.5 there

is x, € X,lIx N =4 such that

ICA'Plxg), g 1 > IAPY = 55T -

Denote A = sigm (A’P(.xe ), X YAA’P I . Then we obtain
LA'P(X) - A, 2 = IA'PIP = 21(A'PEXg), %g )1 »

L IAPI+NAPIZ < 2IAPIF- 200API*- §) = € .

Theorem 4,8. (The existence of eigenvectors.) Let
P be a homogeneous A -gymmetric polynomial operator of
the order /R from a Hilvbert space X into a Banach spa=~
ce Y, Let, at least, one of the following cenditions
hold.

(1) P 4is a completely continuous operator and A
is a contix‘luous linear operator.

(11) P 1is continuous and A 1is a completely conti-

nuous linear operator. Then for any @ > 0 there is an
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eigenvector X € X, lxll=a of the operator AP
with a real eigenvalue A, |Al = [A’PI a*-* , The
only one point of bifurcation of the operator A’P
is the point zero.

Proof. let @ = 1. According to Proposition
4.7 there is a sequence {x, i€ X, Ix =1 and a
real number A, such that NA’P(x,)-2A,x, l|— 0.
Using the condition (i) or (ii) we can assume that
{A’P(x, )} is a convergent sequence. Then for ar-

bitrary natured numbers m,m wve have
Wt = S | & Nxy= Fo AP+ A I APGY,)-
- AP+ Xy = A AP X

Hence l\\x% - X, I — 0 as m, m—00 and there is
a point x, € X such that lx =1, x —x . It is
obvious that A’P(x)-2,X, = 0 . Let @ >0 be ar-
bitrary positive real number. Then for x =@ X, and =
= 2 a%-" we obtain

P(x) = Ax = a*P(x,) - A,a, = &(P(x,) - 2, x,) = 0 -
If o > 2 then the uniqueness of the bifurcation
point zero follows immediately from Lemma 4.7. The case
k =1 1is well-known from linear analysis.

Proposition 4,9. Let X be a Hilbert space, A
be a linear selfadjoint positively defined (i.e., there
is a constant 9 > 0 such that (Ax,x)2 2~ llx Il
for any x € X ) and P be a compact symmetric h.p.-
operator mapping X into itself. Then for any a >0
there is a point x€ X, llxl = a and a real number A
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such that
P(x) - AAx = 0 .

Proof. Denote XA the space with the inner pro-
duct [ x,1=(Ax,9) for any x, 4 € X . Then the
operator @ = AP  is a continuous symmetric h.p.-
operator on XA and, according to Proposition 4.7,
there is a sequence X A6 € X4 and a real number A
such that [Q(x,)~Ax,, A(X,)~-Ax, J—+ 0 as m-»co.
But[@(X,)-AX , Q(X,)-AX T= (AB(X,,)-AX, ), B X,) =1, )>

291Q,) =2 X, mnd thus |A'Pex ) - 2x, 1= 0.
Now we proceed as in the proof of Theorem 4.8.
Proposition 4.,10. Let F be an operator mapping

a Hilbert space X onto a Banach apace » . Suppose
FF  has an inverse operator F'" which is a h.p.=o0=
perator of the order &K >4 and let P be a com~
pact h.p.-operator from X to Y . Assume further
that F-1p is symmetric and let, at least, one of
the following conditions hold.
(i) There is a positive constant 7 such that
(F(x),%) 2 9 Ix |

’

(11) F 1is a continuous operator.
Then for any a > 0 there is a point x e X, Ixl=a
and a real number A I.Mh= (| such that

\ P(x)~-AF(x)= 0 .

Proof. Using Proposition 3.1 or Theorem 3.4 we
obtain that F~7p is a symmetric completdy conti-
nuous h.p.-operator. Then Theorem 4.8 gives the asser-

tion.
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Proposition 4.11. Let P= PB+...+ F, bea

comple tely continuous polynomial operator of the order

m > 1 from a Hilbert space X into X satisfying
m

sy iCPCux),.)()l::'g.1 neu .

Uxh <

Then there is a point X, € X, flx,l =41 and a real
number A , 1Al ’—:?4 A such that
P(x,) ~ Ax, =0 .

Proof. We can proceed as in the proof of Proposi-
tion 4.7 and the proof of Theorem 4.8,

Remark 4,12. There are polynomial operators (even
on finite-dimensional spaces) which have no eigenvectors.
A theorem on the existence of a continuous branch of po-
sitive eigenvectors is shown in [4]. An example of a po-
lynomial operator which has discrete spectrum we can

find in (15].

5. Positive polynomial operators

In this section let )(, Y  denote Hilbert spaces.

Definition 5,1. We shall say that a h.p.-operator
P of the odd order k& 2 41 from X to X is positi-
veona set Mec X 1if

(P*x*" ), )3 0
for any X € M and any /o € X . We shall say that P
is positively defined on M 1if there is a positive
constant o¢ such that
(P*(x%" h), M) > oo I L i?

for any X € M and any H € X .
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Lemma 5,2. Let P be a continuous positive sym-
metric h.p.-operator on a bounded closed convex set
M c X . Then the functional
| £00 = (P(x), %)
is convex and weakly lower semi-continuous functional.
Proof. It is obvious that 4£(x) has the Fré-
chet differential of the second order D2ecx, mt) =

R(R+1VCP*(xR ) /) > 0. Then, according to
[9], #f(x) 1is convex on M and the reflexivity of
the Hilbert space X 1implies the rest of the asser=-

tion.

Proposgition 5,3. Let P,;’ i=1,2,..,m be conti-
nuous symmetric h.p.-operators of the order £ from X
into X . Suppose P are positively defined on the
ball K={xe X/hxll £ R, R> 0% with constants

«;, v=1,2,...,m . Then the eqation

m
i:zor E 0 =y
has the unique solution in K for any g € X such
e EE
that n"'“<i.4 +1n

Proof. Let us put
$0 = 3 ﬁ,,— (B (x), )= (X,q4) .

Then, according to Definition 5.1, we obtain for xe K

ocs R*
f0 > RLE To7 -Mpl1>0, nence #0) > £(0) .

Using Lemma 5.2 we conclude that (X ) possesses




its minimum at a point X, , lx,# < R . But f(x)
has the Fréchet derivative in K and thus

qradtx) = 3 B (x)-4=0.
The uniqueness is obvious.

Proposition 5.3. Let P be a symmetric positi-
vely defined h.p.-operator of the order m > 4 from
X to X andlet @ be a continuous symmetric
positive h.p.-operator of the order m £ m from X
to X . If there is a point %, € X, X # 0 such that

m (Pex)y X)) _ m (PGX), Xp) _ 9
7 I @ x) T TR0, %) g
X0
Then
P(x,)- A, 0(x,) = 0

and A, 1is the smallest eigenvalue.
Proof. Denote

m (G(X,+th), X, +th)

where t is a real variable and 1 € X is an arbitra-
ry point. Then f(t) possesses its minimum at t =0
and thus £/(0)= 0 . But

‘0) - —d . -
0 @) ) [2mcpcx,>,m (B(x;,), x,)

= (P(X), %) B (@(x,), h) - 2m ] -
Hence

(P(X)=A,8(%,),h) = 0 for any e X and thus
Px,)~2,Qx,) = 0 .
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If there exists x, € X, X, + 0 and a real num-
ber A, such that P(x )-A @(x,) =0 , then

X ,
M= o >R @oory TR
This completes the proof.

Theorem 5.4. Let P, @ be continuous symmetric
positively defined h.p.-operators of the order m > 4
from X to X . Assume that the set

E = {xeX/(Px),x)&C, >0¢%
is compmet in X . Then there is a point x, € X, Ix, (=1

and a positive real number A, such that

Plx,)-2a,Q(x) =0

and
2 » (P(x), x) 1
,—xg% (@ (x), X) is the smallest eigenvalue.
x

(P(x), ) .
- ——t2 -
Proof. Let £(x) (@), X) end 2, omifx) .
Then there is a sequence X, € X such that

(Pl ), X ) 1
< RLAL LT TE LAl . WA < a1
Ao £ C@otn), Xm) Aot

.

Define X = [3%r . ThenlX l=1,#(X,) = fix,)

and thus

(P(X,), X,) <(Q(F,), X+ E)r£080A+ Ly £n80a,+1).
Using the compactness of E we can choose a subsequen—
ce Z,‘“—’-& X,€ X as e — oo. Then f(&'”‘)—) fix,)=

= X, . Now we use Proposition 5.3 and the theorem is
proved.
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