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Commentationes Mathematicae Universitatis Carolinae

10, 2 (1969)

ON THE CONTINUITY PROPERTIES OF NONLINEAR OPERATORS AND
FUNCTIONALS
Josef KOLOMf, Praha

Introduction. A number of the fixed-point theorems
and approximative methods of solution of nonlinear equa-
tions involving strongly and weakly continuous operators
were recently established by the methods of Functional
Analysis. Some nonlinear problems require the study of
the following questions: under which conditions the Fré-
chet derivative F‘(w) of a mapping F: X — Y is Lip-
schitzian, resp. strongly continuous in the norm-topology
of the apacé of all linear continuous transformations of
X into Y. Recall that there is a necessary and suf-
ficient condition for the strong continuity of an opera-
tor F which acts in reflexive Banach space X with
base (Vajnberg [1,Th.7.l; Citlanadze [2], Rothe [31).
M.I. Kadec [4] has removed the existence of the tase of
X and he has shown that Theorem 7.1 [1] is valid for
separable reflexive Banach spaces. V.I. Anosov [5] has
established the validity of Th.7.1 [1] for functionals
defined in non-reflexive Banach space X under some an-
other restrictive condition on X . Some simple conditions

for the strong and weak continuity of F: X— Y have
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been also given in [61. For smooth operators there is
known the following result of Vajnberg [1,Th.4.4]: Let
W be bounded convex subset of a Banach smce X F:
:W — X completely continuous on W  having compact
(in the norm-topology of (X —> X ) ) Fréchet derivative
"F’(u) on W . Then F 1is strongly con’tinuoua on W.

The strong continuity of the Fréchet derivative
F’(w) has been investigated by M.M. Vajnberg. His re-
sult is as follows [1,Th.4.5]: Let X be a reflexive
Banach space, F: Bg 0)— X a completely continuous
mapping of an open ball BR O)=fueX: lul<R?
into X . If the Fréchet derivative F“(«) 4is uniform-
1y contimuous on B (0) and compact in B . (0) ,
(< >0),then F’(«) 4is strongly continuous in BR ).
(See also [1,Th.4.6]). For the results concerning the
strong continuity of gradient maps see [1,§ 7],(41,[5],[7 .
The purpose of this note is to establish some furt-
her conditions for the strong and weak continuity of non-
linear operators. Furthermore, we derive some conditions
under which a) 'a convex functional + possesses a strong-
1y continuous Fréchet derivative /(«) on B, (0) ; b)
a mapping F: X — Y  possesses Lipschitzian and strong-
ly continuous Fréchet derivative F (4 ) on a convex
open bounded subset W c X .

l. Let X,Y  be linear normed spaces, X*, y*

their (adjoint) dual spaces. The mpiring between the
points of X* (or Y* ) and the elements of X (or ¥ )
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we denote by < , ) , We use the symbols “ —> " |
" W _, v to denote the strong and weak convergence in
X, Y. Anoperator L : X — Y 1is said to be com-
pact (a lineai' operator L is called also completely
continuous) if for each bounded subset M c X the set
L(M) is compact in Y (a subset N c Y 1is called
compact in Y if from each sequence {2 { € N we
can select a subsequence { %“; such that § Y ge ?
converges to some point 4 € Y )e A mapping F: M
=Y, Mc X , 1s said to be completely continuous on
a bounded set M s if [ 1is compact and continuous on
M . Recall that F: X — ¥ is called weakly (strong-
ly) continuous at w e X if wm, o, “, =
= F(uw, )% Fw,) (F@,)—> Flu,)) . For the G&-
teaux, Fréchet differentials and derivatives we shall use
the terminology and notations given in the Va.jnberg's
book [1,chapt.Il], for the weak Fréchet derivatives sece
for instance [8]. For other notions which will occur in
this paper, we refer the reader to [1l,chapt.Il],[6].
Through this note D («, ), resp. Bg(u,) will
denote the closed resp. open ball centered about the
point 4¢, and with the radius R, (X - X) the spa-
ce of all linear continuous operators of X into Y.
We start with the following ‘
Theorem 1. Let X , Y be linear normed spaces, F :
X =>» Y a mapping such that F (tu) = t F(u) for

each t€(0, 1) and u & X . Suppose F possesses a
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linear GAteaux differential DF (0, A ) at 0.
Then F is an additive mapping on X.
Proof. First of all we note that F(O)= 0. Let
M,V be arbitrary (but fixed) elements of X . Since F
has a linear Giteaux differential DF(0, ) at 0,

we have for £t > (0 that
Flt(w + ar)) =DF(0, t (u+w N+ w (0, t (u+v)),
W E(tw) = DFO, tu) + @ (0, t)
F(tv) = DF(0, tv) + w (0, tv) .
Let t be so that ‘0 « t < 4 . By our hypothesis

we have that
t(F(u+v)- Fu)-F(@))=0, t(uw+a)) -

-w(0, tw) - w (0, tr) .

Hence
Flcrv) - Flu)-Fa) - 100 tlure Dl
+ Hew (0, ta) |l . 1o (0, to)ll
-t t .

Let € > 0 be any positive number. Then there exists
a J(E)> 0 so that 0 < t < OCE) 1implies
t w0, t (wrvN 1<%, tH0O, tull < £

t w0, tw)l < &

Therefore
(2) lF(w+v)=-Fu)I-F@) |l < €
Being € an arbitrary positive constant, the inequali-
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ty (2) gives that F(w +2) = F(aw) + F(2). Hence F
is additive on X . This completes the proof.

Remark l. It is well known that a linear continu-
ous operator A: X — Y is weakly continuous. The
basic properties of weakly continuous maps were descri-
bed in [6]. Among others it was shown that (a) if X is
a reflexive Banach space, Y @& linear normed space,

F: D (0) — Y  a weakly continuous mapping on
DR(O)C X, then F is uniformly demicontinuous and weak-
ly compact on DRCO) 5 (b) under the conditions of
(a) there exists 4, € Dy (0) so that

IF )l =, inf IF (.

The question under which condition F: X — VY is weak-
ly continuous is not solved satisfactorily yet. In [6] we
have found some almost obvious conditions for weak conti—
nuity of F . For instance [6,corollary 2]: Let X be a
reflexive Banach space, Y a linear normed space. If ei-
ther a) F: Dg(0) — ¥ 1is weakly compact and weakly
closed on Dg (0), or b) F: D0 — X * is
locally weakly sequentially bounded and weakly closed on
‘DR (0), then F 1is weakly continuous on DR(O) . Theo=-
rem 5 [6] gives a necessary and sufficient condition for
weak continuity of F: X —» Y in separable reflexive
Banach space X . Recall that it is quite analogous to
Kadec’s theorem [ 4] concerning the strong continuity of F.

One may prove similarly as Th.4.4 [1] the following
sssertion: Let X, ¥ be linear normed spaces, W a
convex bounded subset of X, F: W —> X a mapping
having on W compact weak Fréchet derivative ﬁ'(wf,
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Then F 1s weakly continuous on W .

Theorem 2. Let X , ¥ Dbe linear normed spaces,
F: X—Y so0 that F(tw) =tF(w) for each te
€ (0,1) and every w e X . Suppose F has the Gateaux
derivative F“(«) on the segment (0,t 1) = fu: « =

=ty, 0<t<t <4,y e X}. Ift_’:luayl,“-“(tv;) = 0

and  fm t7 lw(ty, th)l = 0 for every M €
t—y04

€ X, then F is linear and continuous on X .
Proof. Let «, v € X, 0<t <1, , then

F(t (w+v ) - F(ty) = Flty) twrv-v)+ oty twrv-y)),
(3) .
Fltw)-Fty) = Ftg) t (u-4)+ @y, t(w-% »,
Fltw)- Flty)= Fty) t (- 9)+ wlty, tr-4 ).
By our hypothesis and according to (3)

(O Flwrs)-Flwy-Fr+ Fag & | Fct o)l I N +

sty tus vy Wi+ Hlaxty, teu-u) I+ Loty tv- )l .
In view of (4) and our hypothesis, F(w« + %) =

=F(w)+ F(v»)-F(y,)  for everyu, e X . Set « =
=v'=0, then F(¥,)= 0. Hence F is additive on X
and being continuous it is homogeneous and thus linear
on X . Theorem 2 is proved.
To prove the following theorem we shall use this
Lepma 1. Let X , Y be linear normed spaces, A:
:X—Y alirear compact (i.e. completgly continuous) o-

perator. Then A 1is strongly continuous on X -
Proof. Let 4, be an arbitrary point of X, {u, fe

éX, u,,,—'“ﬁ-)w‘ .Since A is weakly continuous,Ad,,,—u:r Al%.
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As Ma S a, , {#.} is bounded ; N4 05 R (n=012.).
Since AD(0) » is compact set in Y and A4 (4,)e A (0)
for every M and the weak convergence on compact set is equi-
valent with the strong one [ 1,lemma 4.1], A4, — Au..
This proves Lemma 1,

Remark 3. It is well-known that a linear operator -
A:X->X in Hilbert space X is compact&> A s strongly
continuous on X . For general spaces the notions of compa-
ctness and strongly continuity of A are not equivalent.For
instance the identity em bedding of the space C into L,_ is
strongly continuous but it is not compact / see [1,p.26]/ .

Theorem 3. Let X, Y  be linear normed spaces,
F: DR () — Y such that F possesses the first and
the second Gdteaux derivatives F'(w), F“Cu) - on D, (0).
Let F’(w)#  be compact operator in £ € X for each
(but fixed) « € Dg (0) . Assume there exists a con-
stant 3* > 0 such that IF(w)-F@)l2ylu-2|
for each 4 , ¥ € D (0) and that Ec:‘fa»' Fluwlll< ¥ .

Then F 1is strongly continuous en Iy (0) .

Progf. Assume a contradiction that there exists a
point w, € D (0) such that F  is nat atrongly
continuous at “w, . This assumption implies the exis-
tence of ¢ > (0 and the sequence {4, € Dg (0) o
that ,u,m—"!f-) «w, amd |F(w,)- F(u))ll 2 €, .
From Tawlor'a formula we have that

(5) NF(u,)- Fla)l & I Filu,) Wy~ u)l +
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1 I E” - 2
+2M%)IF Wl N, - w4, I

S = ¢’ .
et “5/5:%) HFE7Ca)ll Then
6 F f bt~ 12 & F e Clayy D40, 1) ety - 24, 1 &

£ Rbe ity -4t I R I IF(,)- Flue) Il .

The reltions (5),(6) give R
P, - Flu € (= 52 ) IF@,) (4~ )1 .

As a2y w,, F'(uw,)w,~4,)—> 0, whenever

m —y 00 by our hypothesis. Hence IF(w,)- F ()l —
—»0 as m — 0o , a contradiction. Thus F is strong-
ly continuous on 'DR ) and theorem is proved.
Proposition 1, Let X’ Y be linear normed spa-
ces, F: X = Y a mapping having the linear Glteaux
differential DF(«w, # ) 1is some convex neighborhood
Viw,) of € X .1t  a, Y5> wu , h, >0,

My € V), b, , e X=>DF,, h>—D4, )

(respectively DF(, , b, ) 5 D (w,, # ) ), then
F 1is strongly continuous (resp. weakly continuous) at
A, .

Proof. Suppose on the contrary, for instance, F
is not strongly continuous at 4, . Then there exist

£, > 0 and the sequence «, € V(w,) so that %_q;_r’

My, =>|Flu,)- Fu,)ll 2 €, . By the mean
value theorem
KF,,)- F, ), €h Y= KDF U, +2, Up-tt, ), ity =42,), €5 51 &




£ IKDF (e, + T, (b~ u,),u”}- DF(u,,«,),eX > 1 +
+I{DF (o, st,) ~DF (aty+ T, (- 4, ), 0,), €% D1
where 0 < 2, < 4, e: € Y* eandflelN=1 (m=4,2,...)
Hence
\CFly)- Flaw, )€k >1€ IDFlup+ 25, (e, 18, ), 40,,)- DF (4, a2,) 1l +
+IDF(u,, 44,) = DF (444 2 (4t~ 41, ), 44, ) W .
A8 w, ¥y 4, @nd w,+ %, (u,-at,) 5 a, , both the
terms on right side of the last inequality tend to zero by
our hypothesis. According to Hahn-Banach theorem there ex-
ist -e::)*e ¥* such that lle,‘f’*ll =1, (mn=1,2,... )and
(< Fluy ) - Flae,), €3 ) = Il Flat, )~ F () Il . Thus I Fag, ) -
~Fw,)l— 0 as m—> 0o and this is a contradiction.
Hence F 4s strongly continuous at «¢, -
Similarly one can prove the second assertion.
Let F: X—Y be a mapping-having in some neighbor-
hood V(w,) of w4, € X the Fréchet derivative F’(w).
We shall say that F’(«) is continuous (strongly conti-
muous) at w, 1f «, € X, u,—r44 (um—w—)ub)@ IF(w,) -
-F, i — 0 in the norm topology of the space (X— ).
Suppose [ possesses the Fréchet derivative ‘()
on BR (0). Then F“(w) is said to be uniformly continu-
ous on BR (0) if for any € > 0  there exists g*(¢)>0
such that for any &, «, €. By (0) with [l -u, <
there is || F'Cw, ) - F’(u,a)ll< € . We shall say that
the remainder & (&, #) of the Fréchet derivative
F’ () 1is uniformon B (D) if for any € > ( the-
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re exists J(€)>0 so that lw(w, )& € Al
for each & € B, (0) 2nd e X, Il < o .

A mapping F: X — Y 1is said to be uniformly
smooth [10] on ®r open subset M © X 1if for any posi-
tive number %E > (0  there exists g"(e) > O such
‘that if 0 < JAll< O, then

(7) I G (w, )< € il

holds for each « € M | where

G, )= Flu+)+ Fu-h)-2F() .
In [10) we have proved the following assertion:
Let X be a linear normed space, f a convex functio=
nal on X . Suppose is uniformly continuous on

BR-M:
tinuous Fréchet derivative §£‘(«) on BR ) =

), (x > Q). Then f possesses an uniformly con-

f 1is uniformly smooth on B, (0) .
A functional ¥ is called subadditive on a sub-
set GcX 1t w, e G,u+re G imply
flu +r) % fuw) + $(v) . We prove the following

Theorem 4. Let X be a linear normed space,
a convex functional on X such that f is subadditive
and uniformly continuous on Bn-u. 0), (¢ >0) . Assume
either a) f possesses the Fréchet differential &f(O,A)

at 0 and £(0)=0; or b) f(tw)=¢(t)f («) for each
weD0),t€(0,1),1f R+ > 1 and for each ac € D, (0),

t €(0,+00) 1f R+oL £ 1, where a real function is assu-
med to be defined and positive in (0.41) in the first case
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of b) and to be defined and positive on ((,+ c0) and
finite on each subinterval (0, @ > ¢ (0, + 00 ) in the

second case of b). Moreover, suppose thatt !.0 Q’t(t)= 0
-y
+

in both cases of b).

Then f possesses the Fréchet derivative /()
on B& 0) and f/(«) 1is strongly continuous on
BR 0) .

Proof. Suppose that { is not uniformly smooth
on BR (0) . This denotes (see also remark 7 [10]) that
1
m ?
(m=1,2,...) there exist &, e X, Ik, ll=1, the mn-
bers t € (0’ /-;Lt ) and wu € Be 0) such that

tiere exists € 2> 0 so that for any d;

(8) L 6w, tah,) > ¢, n=1,2,..7,

my; m
m

where G (w, ) = F(u +A)+Fflu-h)-2f () . Since

£ is convex, G(w,,t H_ )= 0 far every m

mr ‘m " m
(m=1,2,.).As { &, 7 1is bounded and t, — 0_ then
for sufficiently large m (m 2 m,_ ) we have that

upt t, 4, € B . (0) . Eoploying subadditivity

of £ on BR+¢C (0) we get that

(9) Gy, b, ) & £ty by, )+ £(t, (~hy )

for m = m_ . Assuming (a),in view of continuity of f

0 °
in the neighborhood of zero it follows that + possesses

the Fréchet derivative £/¢(0) at O and

(10) £(t, )= #(0)t, b, + @ (0, t, H,, )

7 'm e d J
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£(-t, )= =20 b, by + WO, t, ~h, ).

According to (9),(10)
0% .g; Glu,, b4 ) é—;’-ﬂ[w Ot 4 )+ ©,t, -k, N,

Both the terms on the right side of this inequality tend
to 0 as m —% 00, Hence % Gluy,, t, n,)— 0
m -

my) m

whenever m. —» 0O which contradicta (8).

If R+ax>1 , being { uniformly oo ntinuous on
BR-H»CO)? 4 1is bounded on D1 ) (cf.[1 ,chapt.
I1). Suppose R+ ot £ 41  and that b) is fulfilled for
each « € D, (0) and t € (0,+ c0) . Then continuity
of £ at (O 4implies the exigtence d° > 0, ¢ >0
such that lu ll£ o"=> If(w)l € ¢ . Letwe D (0,

there exists an integer 7, such that -”1,:; £ J". Then
1# )= 1£(F )= g@,) 4 (5 ) E c.g(n,)
for each & € D1 (0). Hence  is in the cases of

b) bounded on _D1 (0) ; i.e. m f)| £ ¢, -
? weD,

A functionsl f 1is " g -homogeneous” in both the cases
of b) for each w € D,, (0) and t € (0,1), In view of

t, — 0+ there exists an integer nm

4 S° that m,;m,’#

= tm. € (0,1). According to (9) we have for each m/éﬂl’

(T, )
0& £ Gu,,tuh,) & 20, Lg2= .
Ast, —0,, -%- G (tp o Uty ) —% O  whenever
m
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m —> 00 which again contradicts (8)., Hence in both
cases a),b) f is uniformly smooth on Bg (0) . In
view of the above mentioned result [10,Th.8], the Fré-
chet derivative £/(«) of f exists on By (0) eand
it is uniformly continuous on BR (0) . This implies
[see 1, the proof of the first part of Th.4.2 ] that the
remainder <& (u,, 4 ) of the Fréchet derivative f7«c)
is uniform on BR (0) . By corollary 2[ 7] $/(«) 1is
strongly continuous on BR (0) . This completes the

proof.

Repark 1, It was shown in Corollary 2 [7] that
under some conditions the Fréchet derivative f“(« ) of
a convex subadditive functional is strongly conti-
nuous on DR (0) . It must be pointed out (see also
remark 1 [ 7] that this corollery 2 [7] is valid ifDRCO)
is replaced by Bg (0) . In Theorem 1 [7] we have assu-
med that X is a reflexive Banach space and that +
has some properties on ‘DR (0) with the aim of the appli-
cation of the Vajnberg Theorem [1,Th.l.4] which asserts
that a strongly continuous operator on a closed ball
DK (0) of a reflexive Banach space X 1is compact
and uniformly continuous on DK (0) . Hence the assump-
tions of reflexivity of X and closedness of the ball
DR (0) 1is essential only for the second and third asser-
tions of Theorem 1 [ 7] (see the end of the proof of this
theorem).

From Theorem 4,[1,Th.4.1;Th.8.2] it follows the
following
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Corollary 3. Let X be a reflexive Banach space,
£ a convex functional on X so that ¥ is subad-
ditive and uniformly continuous on B'w‘ 0), (x> 0).
Assume either a) f possesses the Fréchet differential
df (0,4 ) at 0 and £(0)=0; orb) f(tw) =
=@ () f(uw) for each w €D, (0), te (0,+ ),
where @ (%) 1is a positive function defined on (0,+c0),
it is finite on each subinterval (0, @ > c (0, +00)

and so that Jfom _Q_Ci'l_ o .
tvo, ¢t

Then { possesses the Fréchet derivative {’(«)
and f‘(w) 1is compact and uniformly continuous on DR(O).
Moreover, ¥ is weakly continuous on J; (0) .

Reparks. The result of Theorem 4 one may rewrite as
follows: Under the conditions of Th.4 £ possesses the
gradient map 4« — £7(«) on BRCO) and it is strong-
ly continuous on BR ) .

The properties of the gradient map F(w)=+F'(w),
where f 1is a convex functional, have been investigated
in[ 7). Let us note that the existence of the Fréchet de-
rivative f/(«w) on B; (0) of a convex continuous func-
tional £  defined on a (reflexive) Banach space X
has been established in [11,Th.2], (13],[14].

Theorem 5. Let X ©be a Banach space, ¥ a line-
ar normed space, F: X = VY a continuous mapping of X
into Y having on a convex bounded open subset W < X,
0 € W, the first and the second Giteaux differential
VF (u, ), V2F(w, b, 4, Assume there exists a
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constant M > 0 so thatllV?F(u, s, RISMIAI- &I
for each 4 € W and every H, ke X. Let R>0
be such that BRCO) c W . Suppese there exists a
bounded positive function #: <0, R > — E: so that
the remainder < (0, /o)  of the Fréchet derivative
F’(0) of F at 0 (which exists according to Theorem
1 [12]) satisfies the inequality

(11) lw (0, 5+ &) - (0, ) £
£ f(macUnl, 1 RINIw 0, &)

for each o, ke B, (0) with h+ bk e B, (0).

Then F possesses Lipschitzian Fréchet derivative
F’(«) on W . Moreover, F‘’(u ) is strongly continu-
ous on B, (0), where # < R .

Proof. In view of Theorem 1 [12] and Remark 1 [12]
F possesses Lipschitzian Fréchet derivative F’(«) on
W and F is uniformly differentiable on W , i.e.
for given € > (0 there exists o (e) > O so that 0<

<Ml £ 5Ce) 4implies that e (w, hIN & €l h)
uniformly with respect to .« € W . Let Bm(O) c BR ),
it remains to prove that F“(« ) 1is strongly continuous

on B)L(O) .

Suppose there exists a point «, € By, (0) so
that F’(«) 1is not strongly continuous at «¢, . This
means that there exist €, > 0 and the sequence «, €
e B, (0), 4, ¥> u, and IF(«,)-Fu)l > g .
Let 1€ X be arbitrary, Il & 1, ef ¢ Y*
Ck=1,2,.), ﬂe; =1 and t € (0,1), If t is small
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enough, &y, + th, «, +th ¢ By (0)
ve that

and we ha=—

(Flhp+ th)- Flu,), et d=<Flw, th, el >+

AV F s b e ), 8 >

(Flu,+th)- Flu,), e¥> = <Fuw,)th, ek >+

o) "m
L (VIF(u,+ Eth, by k), X >,

where 7 e o, 4), 6e (0,1) . From these equali-
ties we get that

(12) < (F7t, )~ Fu, N b, e Y= F (Fls,r th) - Fl,),
& 3+ Fl,) - Fluy v th), € 3)-F t V2 F iy, + T th,

M), i+ Lt CVAF (ot h, b, ), eX > .
We have that

Flu,+th)-F(0)= F'(0) (¢,+th)+w Oy tbm+th),
(13)

Fiy) - F(0) = F/(0) e+ @C0, a4 )
(14) Flu,)- F(0) = F10) 4+ @ (0,4,) ,
Flu,+th)- F0) = F/(0) (uy+th) + @(0,u4,+1h) .

In view of (13) and (14) we have

Flg+th)-Fla,)= FOtIv+@ (O sty th)— 0, 4,,) ,

F,)- Flu,+th)=-F10)th+a(0,4,) - @ (0,4, +th ),



Hence the sum of the first and the second term in the

absolute value on the right side of (12) is less than
I= L (1< O ttps th)- @ €O, ), 0% 51 +

+I< @0, u, +th)-w(0,,),e% >1) .

By our hypothesis f is bourded on < 0, R ) .

Denote K =°‘£/;<%42é>4(x). As um, u, € Bg (0),
?

s+t e Bg (0), 4, +th & B (0), employing (11)
we obtain for T small enough that
Jé%—(ﬂa)w,w,,i-th)—wco,u,,,)ﬂ +

e (0, 4, + th) - @ (0w, )l) £

< 2K 1o co, b0 .

From these inequalities and (12) it follows that

A5 CCF "y Y= F o, D, e 516 2K 1w 0,200 +
+Mt il inl

for each b &€ X with [/l £ 4., Since F has the

Fréchet derivative F/(0) at (0, there exists a num-

ber t, € (0, 1) such that

0<t<t, => Z o0 tmi< g i n]

Then for 0 < t< Min (f,, —3%» ) both terms in (15)

are legs than -2%—9—"“'!»’7,' . Acecording to Hahn~Banach

theorem there exist eff)* e V* (m=1,2,...) so
thet 1e*1 = 4  and

I<CF )~ Ftt, D, €% > ) =l (4t ) = F*Ceto D1 I .
Hence | mupy | CF )= Fiay )l = B Folaty) =
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- Flul 6 L5

which is a contradiction. Hence the Fréchet derivative
F’Cw ) is strongly continuous on B”_CO) . This conclu-
des the proof.

Remark J. Note that 1V*F(w, o, k)1 =
« MIal Il &1 for each «w« € W and H ,

ke X VF(u, h, k) 1is continuous at(0,0)
uniformly with respect to «w € W .
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