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Commentationes Mathematicae Universitatis Carolinae
10,2¢1969)
SOME NOTES ON VARIOUS ROTUNDITY AND SMOOTHNESS PROPERTIES
OF SEPARABLE BANACH SPACES
Véclav ZIZLER. Praha

l, Notations and definitions. In this paper a space
X denotes a real Banach space, X* the dual space of
X. xn_.yx(xm—‘ir—rx) in X end f, »5 # in
X*  mean strong (weak) convergence of a sequence in X
and pointwise convergence in X* respectively. The
set of all real numbers is denoted by P and that of
all positive integers by N - K:'”r- fxe X; Ix&xi,

Sl‘" = {x eX;lxl=r3 for ~ > 0. Analogically
K:“ , 5: -1 in X*, If no confusion can arise,

we write simply K, , S, and soon. C <0,1> ,
;eﬂCN) and so on denote the well-known space with their
customary norms (see [ 9]).

Let X with I X0 be a space, } £ be the du-
al norm of x|l in X*. We say that X (with
Ix ) [ X* (with If 01 )] 1s (WUR) L(W*UR)]-
sp.-e if the following implication is valid respéctively:

(X, Y, € 54"'7 "j&%h - 1) => x,,-%»%r’* 0,
[haygm € S, 122t |y ) £, - g, %5 0.
X is said tobe a (R) -spsce if S, contains no

open segment and X is called (LUR) [ (URY] if it
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is true that:
X +
X, Xo € S,, "Jz—xg Il = 41 imply Xn- X, — 0,

X,
([ Xn,Yn € S,, u—-ﬂ—;ﬁl—y 1 imply X, - %, 0],
respectively.

‘X 18 (G) respective (F) , respective (UG), res-
pective (UF) space if the norm of X 1is Géteasux dif-
ferentiable on S, , respective Fréchet differentiable on
S, , respective uniformly Géteaux differemtiable on S, ,
respective uniformly Fréchet differentiable on 5_' .

2. Some positive results.
Proposition 1. Let A  be an arbitrary countable

subset of (0, 1> . Then there exists an equivalent
norm | x IA oo C<0,1) which has the following
property:

(X o & 1, Lo lg 2 1,172 — 4 supiy

a) (X, -Yn)(t) =0 foreach te A

and

b)  X,- % —> 0 inthe sense of the space L,<0,1).

Proof. et A = {t,} . Denote

1=VE L oxtct,), ixu= X4y for X €CCO, 1>,

i=q

Define
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Ixly = VIxi2s Zox)+ 0 x 0

where I x ! is customary supremum - norm of C<0,1).

By Minkowski inequality we have that [X | A 18 @ new
equivalert norm of C <0, 1> .
Suppose now
Xn + Y,
Xn a1, lls e 1, | =251, — 1.

We have
flx,, + Y e T2(X 0+ Y )+ X+ gy, W T2 (X, - Y] +
+ M Xy - 2t W? =
= U+ g 124 2 (12 (X ) + T2 (ag )+ M W24 Mgy, n)
£2 (1%, I+ Doy, 124 T2 (%) + T2 (g0 )+ M X W24 Mgy ") =
=21 % 15 + 1, 15 = 4 .
Then 2
D2 18(xp- gy ) 4 M X = Yy WP &t = (WXt fn 17+

2
T2 (%t )+ N X+t 12) = = 1 Xt A L

By our assumptions |X,+ a,z”l% — 4 , Thus

[2(%p-gn) — 0 and lxp-, N2— 0 .
Let t; be an arbitrary but fixed elemert of A .

Then for every £ s 0

2‘0'

there exists an index m, €
€ N such that for each m e N, m 2 'm, we have

I!CX,‘- 4‘;,‘) £ ’% . But %2(3(,:%)1(1;) £ Iz (xﬂ"'y'a) .
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Thus ( Xpy -'@m,)z('t,.;) € E for m > m

> -

Remark. The method of the proof of Proposition 1
is similar to that of M.I. Kadec ([101).

For a bounded A c X  we denote the diameter
of A by 0(A). A point xe A 1is a diametral
point of A provided sup{llx-y4ll, y € AT = FCA) .
A convex set K © X is said to have -normal structure
(e£.[3]) if for each bounded convex subset H of K
which contains more than one point, there is some point
X € H vwhich is not a diametral point of H .

Proposition 2. Let X with x| be a separab-
le space. Then there exists an equivalent norm [l x (i
which has the property that each convex subset of X

normal structure with respect to Il x lif

has

Proofs If X is a separable Banach space, then the-

re exists a total countable subset M < 54* £ (see
{9;chapt.II,§ 1,4 d)). Let M = {¥; 7 . Denote
Wx i = Vi 1?2+ I2(x)
where -
Ixy=VE L g2exy .
=1 ARG
Then Il x Ml is an equivalent naom of X to

Xp+
BxH . Let Wx & d, Ny, M &1, 1) Zatimy , 4
Analogically as. in Theorem 5 of [23) we obtain

£, (X~ %) 20 esm —> 00 forevery < € N.
Now, let K  be a convex bounded subset of X  which
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contains at least two distinct points “, v, Then

—‘ii—t is not a diametral point of K . Suppose on
the contrary -‘i'-—z—lf- is a diametral point of K .

Then there exists a sequence X, € K  such that

[l u.-;v‘ =X M- JU(K) ( = diameter of K  with respect
-X - X
to Il x Ml ). Then WEZZE & 1, WETps £ 4,

LoXnt V= Xy 4

1. (Ml = Xy = (=X, )
oy M 7 Thus ; (U =Xy = (V= X, ))>

— 0 as m-—>oo0 foreach i &€ N. Then f; (u-7)=

= 0 and thus 4 = 7 = a contradiction. V.L. Klee
([15)) has proved that if X 1s separable, then there
exists an equivalent norm of X  which is (G) and (R)
jointly and whose dual norm is (R) .

Since X is (UG) iff X* 48 (WX*UR)
([191,a short proof [6]), we have the following generali-
zation of this result of V.L.Klee:

Proposition 3. Let X be a separable Banach spa-
ce. Then there exists an equivalent norm of X which
is (UG) and (LUR) and whose dual norm is then
(W*UR) .

»

)}

Proof. M.I. Kadec [10] has constructed an equiva-
lent norm x|, which is (LUR) and in the paper
{231 we constructed an equivalent (U G) =norm fl X “2 .
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Then the dual norm of I xl, is (W*UR) .
A method of E. Asplund [1] gives (sece [24]) an equive-
lent norm which has the desired properties.

Remark l. It followe from a result of R. Vyborny
[22] that a new equivalent norm of X constructed in
Proposition 3 has the following property, too:
X Yy xp y UXp l— Ix, | imply X, —> X, -

Broposition 4. Let X* be a sepsrable space.
Then there exists an equivalent norm Il x I’ of X
which ia (LUR) and (WUR) and whose dual norm
is (LUR) and (WXUR). Thus Jl x I’ is (F)
and (UG) .

Progf. In this case we have: M.I. Kadec ([11]) has
constructed an equivalent norm [x N, of X  whose
dual norm is (LUR) .

He has also constructed in X an equivalent norm

IxH, whichis (LUR) ([10]), The methad of E. As-
plund mentioned sbove gives an equivalent norm lx I, of
X which is (LUR)) and whose dual norm is also

(LUR) . In the paper (24] we have constructed an equi-
valent norm W, of X which is (WUR) and
whose dual norm is (W*UR) . The method o E. Asplund
used for hxH; and HIXx1, gives an equivalent
norm fix N’ ' o X  which is8 (LUR) and (WUR)
and whose dual norm is (LUR) and (WAUR) . It fol-
lows from the result of A.R. Lovaglis ([16)) that §x 1’




is (F) . That it is also (UG) it follows immedia-
tely from the duality between (UG) of X and
(W*UR)Y of X* mentioned above.

Corollgry. Let X Dbe a reflexive separable Banach
space. Then there exists an equivalent norm of X which
is (WUR), (LUR) , (F), and (UG) and whose

dual norm has the same properties.

3. Soge counterexamples.

Remark 2., Let X be a (WUR) =-space, Y be
& closed linesr subspace of X . Then Y is (WUR)-
space.

Proof. It follows immediately from the Hahn-Banach
theorem.

Remgrk 3. A space X has an equivalent norm which
is (WUR) 1iff X is isomorphic to a (WUR) _spa-
ce Y -

Proof. One part of this assertion is obvious. Suppo-
se X is isomorphic to @ (WUR) -space Y . Intro-
duce an equivalent norm of X by

x|l = 01Tx My, -
Let |X,|=log, |=4,| ZaL¥n| » 4, This neans

1Tt by = 0T = 4, 1 B9 T80 ) 510y 16 (WUR)Y-

space we have TX, — T4, Xy 0 in the space Y .

As T-' is continuous and linear, we have
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X, - gy = T (TN~ Tey,, )% 0 in X .

Remark 4. £ (N)  has no equivalent (WUR) =
norm.
Proof. It follows immediately from the fact that the
weak and norm convergence of sequences coincide in .84 (N)
‘and from the fact that 11 (N) has no equivalent
(UR) =-norm as it is not reflexive.
‘Remark 3. C <0, 1> has no equivalent (WUR) -

norme

Proof. It follows immediately from Remarks 2,3,4 and
from Banach-Mazur Theorem concerning the universality of
the space C<0,1) .

Remark 6. If we introduce in the space C < 0,1 )
an equivalent (LUWR) -norm by a method of M.I. Kadec
({101, we obtain an example of ( LUR ) -space which has
no equivalent (WUR) -norm. ’

M.M. Day ([9,p.191]) has proved that X* is (R)
iff each two-dimensional X/ 18 (G) .

V.L. Klee ([15])) has proved the following assertion:
Ir B is a separable normed linear space and L. 1is a
non-reflexive closed subspace of B such that the di-
mension of B/L is not less than two, then there e-
xists an equivalent norm X Y of B which is (G)
and its corresponding norm of B /|  is not (G) .

Remark 7. Let X be a separable Bgnach space
such that X* 1is not sepsrable. Teke L. -any nonrefle-
xive closed subspace of X  such that X/  1s two-
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dimensional. By the result of V.L. Klee there exists an
equivalent norm I x I’ of X  which is (G) but its
corresponding norm of X /| is not (G) . Thus (as

it was pointed by D. Cudiam [6]1) we have an example of a(G)
space Y  such that Y#* is not (R) . Thus this
space is not (UG) . As X* 4s not separable, Y
has no equivalent (F ) -norm ([11],(171).

Remark 8. Let X be a separable Banach space such
that X* is not separable, If we introduce an equivalent
(UG) -norm in X ([23]), we have an example of & sSpa=
ce VY which is (UG ) but has no equivalent (F) =
norm.

Let S be an index set, X be a Banach pace
of real-valued functions on S . If for each 4 € S a
normed space N, is given, let E‘ N, be the space

of all those functions X, on S such that

(1) X, 1is anelement of N, for every 4 in

S, and

7
(11) if § is the real-valued function defined

by E(zb)-.-ll.x@INé for each 5 in S , then § is
in X . We define the norm of X (= x,) in B N, by
Ix it = Bgh, .
If X satisfiegsthe condition that whenever § is
in X eand
Im (A)] & 1§ (A

for all 4 , then % is in X and

Imh & Hgh ,
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then Px N, is a Banach space if each of the N,,

are Banach spaces. For the references see [9]e

Remark 9. It follows from the result of A.R.Lovaglia
({16)) that Y= Pzzf,,,,zmq (N) is (LUR) . But
from the results of M.M. Day ([7]) we have that this space
is reflexive and has no equivalent (UR) -norm. The dual
space of Y is then (F ) =-space ([16]) and has no e=
quivalent (UF) =norm ([19]).
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