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SOLVING OF NONLINEAR OPERATORS ° EQUATIONS IN BANACH SPACE
Svatopluk FUSIK, Praha

1. Igtroduction. This paper deals with the generaliza-
tion of the following well-known theorem: Let X be a Ba-
nach space and A : X — X be a bounded linear operator
with the norm N Al < 4. Then (| + A)X = X . Some sur-
jectivity theorems are obtained for nonlinear mappings un=-
der similar conditions as the condition IA ) < 4 in li-
near case.

Section 2 solves the following question. If an opera-
tor H possesses the fixed point property which condi-
tions we have to supplyon H or | + H that (1 + H)X =
=X . .

Section 3 deals with sufficient conditions under which
an operator H possesses the fixed point property. The
proofs are not given. Some lemmas are true under weaker as-
sumptions (see Remz;rk 3).

Substituing the hypotheses concerning fixed point pro-
perty by sufficient conditions from Section 3 we obtain se-
veral surjectivity theorems containing as particular case

some known results.

2. Main theorems. Let X be a real Banach space with

the norm fl + I , @ its zero element; X™ denotes the
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adjoint (dual) space of all bounded linear functionals on
X . The pairing between x* € X* and x € X 1is de-
noted by (x, x*), Let Sp (or  Kg ) denote the
set of all X such that [x Il = R (or lx l « R ).
Definition 1: ((61,(71,(81,[91)
a) A gauge function is a real valued continuous func-
tion (@ defined in the interval (0, c0 ) such that
o~ (0)= 0,
tl:_':n; @ (t) = oo,

“ is strictly increasing.
b) The duality mapping in X with a gsuge function
@ is a mapping J from X into the set 2** of
all subsets of X* such that

{9*; , X =6
Ix =
o ke X* (¢, %) = Il oD, o b= e Cllx 13, x+0.

Remark 1: ([6]),(71,(8],(93)

a) The set Jx is non-empty.

b) Let X be a Banach space with a strictly convex
dual space X* . Let J be the duality mapping in X
with a gauge function « - Then the set Jx consists
of precisely one point.

Definition 2: Let 4  be a mapping with domain X
and values in X (h: X = X).

a) /v 1is said to be surjective if for every 4 €

€ X there exists x, € X such that h X, = 4, (i.e.
HAX=X )
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b) 4 1s said to be coercive if

" ('h\x, *) = Po'e)
I1X1500 X + :
y*e Ix

Theorem 1: Let X be a real Banach space and J
be a duality mapping with a gauge function « - Let

)
Lom /au{be:——< 4+ 00 . Suppose that fa: X— X is the

t~e0
mapping such that for every x € X is
hXx = X + Hx
and that the following two hypotheses are fulfilled:

I. For every 4¢; € X and R > 0 so that the
inequality (g - Hx , %#*) < «w (lx ) llx Il  holds
for each X € Sy amd ¢* e Jx , there exists X RE
€ X such that Hx, o = 4 - x4 g

II. # 1s coercive.
Then 4 1s surjective.
Proof: Let 44 € X . For ry,*e Jx  there is

(- Hx, 4™ _ (“(u,xup._"_‘k_) WX,

Ix lx 1
(u(l(x D hx,y®)
By assumption A{um @ @) < + 00 and
t oo t

the hypothesis II we obtain the existence of R, > 0
such that for every x| > R, and ry,* € JX  there

(u,(f!.xll) (hx, y )4 (Yo - Hx, %)
o M ST T T 2 0 Then SRRy

1030

é(x(nxﬂ) for every X € Sp . and ry.* e JX ,
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(g, - Hx,ﬂ}*)é @ (x| for every X € SR,
and @*5 JX . By the hypothesis I there exists
Xy, R, € X  such that HXy R, = Y% — Xap,R, >
i.e. M"’(V’ng, = Y

Definition 3: ((12]) Let X be a real Banach spe-
ceand H : X = X be a mapping. H is sald to be
quagi-bounded if there exist K 2= O, [ 0 such

fTHX |

that WéK for every X € X, Ixl=>2¢@ -

By the quasi-norm for the quasi-bounded operator H we

- NHx
mean [ H laﬁ‘s"“’" ﬁ“{;? —ixh [
~Theorem 2: Let X be a real Bansch space, h. X —

~» X be & mapping such that for every x € X 1is
X=X+ Hx and 0 & K < 1. The following hypo-

theses are fulfilled:

III, For every a4 € X and R > (0 with the

property (a4 - H)(Sg) e KR there exists X, g € X

such that Hx, . = Y = Xepr

IV. H 1s the quasi-bounded operator with the
constant K .
Then /. is surjective operator.

Proof: Let a5 € X , € > O be such that

K+¢e<A4, Q= M m O =0+@ (p is

from definition 3). For every x € X, Ix#2>@©,



have "—'!'-’—'— 1 €£€. For X € S we obtadin

Ix © P
from the triangle inequality and the hypothesis IV

| —HXI 'n‘ _’Ui‘z(_ﬁ._—
l%l!od “ z(I +xT  <E+K=1, 1.

loy- HXI4 Il x| and by hypothesis III there exists

Xy, 0, € X Buch that HXg,, p, =% = Xy, 0, 5 1e0e
'%‘xy,,P, = % -

Exagple: If H = — I ( I denotes the identity
mapping) we see that if K = 1 the theorem 2 is not va=-

lig4.
Remgrk 2: If J 4is the duality mapping with gauge

. ct)
function & snd t%m ‘afb < + 0o then the

theorem 2 is a consequence of the theorem 1, for

(Copp- Hx ), IX V& llagy=Hol 1T x 1l & Ex Il @ (I 1)

and
TIX0 It

3. Sufficjent copditions for the hypotheses,
Definition 4: Let X Dbe a real Banach space and

F: X~ X be « mapping.
a) F  1s said to be strongly continuous if X, —>
= X, (weak convergence) implies FX,, — FxX, (stromg
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convergence).
b) F 1is said to be weakly continuous if X, ~—>

~ X, implies Fux,— FXx, .
e¢) F 1is said to be completely continuous if for

each bounded subset M c X, F(M) is a compact

and continuous on X .
' d) F s said to be a nonexpansive mapping on

X if for every X, 4 € X there isllFx- Fy ll«

£ Ix-a4ll.
e) F is said to be a contractive mspping on X

if there exists g (0< g < 4) such that for eve-

ry x,y € X we have IFx-Fyl € g lx-4 1.
£) F is said to be a monotone on Hilbert space

X if (Fx- Fy, x-m4) > 0  for every X,

y e X.

g) F 1is said to be demicontimuous if X, —> X,
implies Fx,— Fx, -

Lemmg 1: ([23,[10],[17]). Let H be a completely

continuous operator on X . Then the hypothesis III is

valid. .
Lemma 2: ([2],[10]) Let H be a completely conti-

nuous operator on a Hilbert space X . Then the hypothe-

ses I and II are fulfilled.
Lemma 3: (Banach contractive mapping principle) Let

H be a contractive mapping on X . Then the hypothe-

ses I and III are valid.
Lemma 4: ([2],[7],08],[9],{18]) Let H be a weak-
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1y contimuous mapping on a Hilbert space X . Then the
hypotheses I and III are valid.

Definition 5: A Banach space X 1is said to be u-
niformly convex if given € > 0  there exists o(e) >
>0 suchthat lX-4l=>€ for Ixl& 1 and

byl 41 dmplies | Z2% 1 61 - () .

Lepmse 3: ([5]) Let X ©be a uniformly convex Ba-
nach space and H be a nonexpansive mapping on X .
Then the hypothesis III is valid.

Lemmg 63 ([9]) Let A be a monotone demicontimu-
ous mapping on a Hilbert space X and H = I - A .
Then the hypotheses I and III are valid.

Lemma 7: ({11],{13],(15]) Let X ©be a Hilbert spa-
ce, A: X = X be completely continuous and B : X—
~—> X Dbe a contractive mapping. let H = A+ B . Then
the hypotheses I and III are valid.

Lemma 8: ((11],[13],[15]) Let X be a real Hilbert
space, A: X = X be strongly continuous and B: X — X
be a nonexpansive mapping. Let H = A + B . Then the
hypotheses I and III are valid.

Remark 3: We can show that G -operators (L61,L7],
(83,[9)) and P =-compact operators ([19]) have the fixed
point property. We write the consequences of this for Hil-
bert space only. Lemma 5 is true for Banach spaces in
which every ball has uniform structure ([51).

Remark 4: The sufficient conditions for the validi-
ty of the hypothesis IV are given in [12]1,[14]1,1161,(19].
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The mapping H : X — X 1is said to be assymptotical-
ly differentiable if there exists a bounded linear opera-

tor H: X — X such that m H—H-"-‘—‘-ﬂ'—‘x—"—-= 0.
I x {00 K

If H is sasymptotically differentiable then H is
@asi-bounded and IH I = IH" I .

4. of T 2 Sec~
tion 3,

Theorem 3: ({12]1,[161) Let X be a real Banach spa-
ce and . : X — X be a mapping such that for every
Xe€ X 18 hAx= X+ Hx , where H 4s completely
continuous. Let the hypothesis IV with 0 < K< 1 e
fulfilled. Then 4 is a surjective operator.

Theorem 4: Let X be a real Hilbert space, f: X —
— X be a mapping such that for every x € X is
hx =X+ HX, where H is completely continuous and
M 1s coercive. Then 4 1is a surjective mapping.

Theorep 5: Let X be a real Hilbert space, #2: X =
— X be a mapping such that for every X € X is hX=

=X+ HX , where H 1s weakly continuous. Ir 4 is

)
a coercive mapping then f» is a surjective one.
Theorem 6: Let X be a uniformly convex Banach spa~
ce and H be a nonexpansive mapping on X satisfy-
ing the hypothesis IV with O < K < 1., Then faxX =X+
+ Hx 1is surjective.
Theorem 7: ([4]) Let X be a real Hilbert space,

#f: X— X monotone, demicontinuous and coercive. Then 4
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is surjective. (This is a consequence of Lemma 6.)

Theorem 8: Let X ©be ® Hilbert space, A: X = X
be completely continuous, B': X — X be contractive
and A X=X+ AX+ BX be coercive. Then /o 1is a
surjective mapping.

Remark 5: This theorem is a generalization of Nas-
hed=Wong [16]) in Hilbert space case.

Theorem 9: Let X be & Hilbert space, A : X = X

be strongly contimious, B: X— X be a nonexpansive

mapping and AX = X + AX + BX coercive. Then
L is surjective.
Theorem 10: ([14]) Let X be a Hilbert space and

F: X— X be a mapping such that for every x € X it
has the Giteaux derivative F’(x) . Let PF’(x) be a
normal mapping for every x € X ( A is normal if
AA¥= A* A , where A*  denotes the mapping adjoint
to A ) suech that (PF(x)h, ) 2 0 for every

X € X,heX where P 1s a linear mspping of X on-
to X having an inverse P’ IPI < (supe | F'x n-".

If the quasi-norm l I-PF Il < 41 , then the equation Fx =
=n¥ has at least one solution for every 4™ e X .
Proof: The equation Fx = fg/* is equivalent teo
X - Gx=x*, where x*= Py* Gx=x-PFx 15 a non-
expansive mapping and by means of Theorem 6 we conclude
this proof.
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