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Commentationes Mathematicae Universitatis Carnlinae
10,1 (1969)

DIFFERENTIABILITY OF CONVEX FUNCTIONALS AND BOUNDEDNESS OF
NONLINEAR OPERATORS AND FUNCTIONALS
Josef KOIOMf, Praha

Introduction. The first part of this paper concerns the

differentiability properties of convex functionals. It is

.

shown that if f 1s a convex continuous subadditive func-

tional having the first Gateaux derivative +7(«) and the
second GAteaux differential V?Z# (w, A, &£ ) on some o-
pen convex bounded neighbourhood V(0) of 0 of a linear
normed space .X and if [ £/(0) |l is small, then there
exists the Fréchet derivative f’(«) on V(0) and £ 7l
is small on V(0) provided V2f (w, £, fe) 1is conti-
nuous at (0,0) uniformly with respect to « € V(0) (Th.1).
Some conditions under which the Gateaux differential Vf(«,,h)
(or the GAteaux derivative £‘(«) of a convex functional
is the Fréchet derivative are established (Theorems 2,4,5,6).
Moreover, the subsets of X which consist of the points of X
at which a convex functional (under some further conditions)
possesses the Fréchet or Hadamard’'s derivative are described
(Theorems 3,7).

The second part of this paper is devoted to the study of
boundedness of nonlinear operators and functionals. Each sec-
tion concludés with a brief note concerning some recent re-

sults in these topics. For some ,furiher references see [1],
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[2],(3] and the references cited here.

1. Differentiability of convex functionals.

The terminology and notations of [11,(2),[3] is used.
For Gateaux, Fréchet differentials and derivatives we use no-
tions and notations given in Va;]nberg’a book [4,chapt.I]. A

functional £ 1is said to be subadditive on a set q 1irf “,
My, € @ ,u,+4u, € G 1imply that f (U, +4u,) % fu, )+ L)

Theorem 1. Let X be a Banach space, f 8 continuous
functional on X , f(0)= 0. Suppose f has the first and
second Giteaux differentials V¢ (w,h), V2 (wu, h, R )
on some convex open bounded neighbourhobd Y(0) of 0€ X
such that | V£ (0, A)] &€ e I A I for every 4 € X
and some number ¢ > O and that V®f (4, k) is con-
tinuous at H# = 0, 4 =0 uniformly with respect to &« €
€V(0).Assume + is subadditive and convex on V(0) .

Then ¥ possesses the Fréchet derivative f’(«) on

V@) , I#w)jl &€ 3 ¢ for each « € V(0); ¥,
£/(4) are Lipschitzian on V(0) and f is uniformly dif-
ferentiable on V(0) -

Proof. According to Theorem 1 [51 { has Lipschitzian
Fréchet derivative F/(u) on V(0) and f 4s uniform-
ly differentiable on V(0). By our hypothesis I+°(0) Il & €.
It remains to prove that Il £'(«) )l £ 3 € -for each
«we V).

Let « e‘ V(o) be an arbitrary (but fixed) element
of V(0). Choose t > ( sufficiently small such that
th ,u*tth e V) where fL & X, Iblle 1.

? 2

An



Then
(1) $Cu+th) = f(w)+ -,,”-, frluth +
1 .
+H P [A-TIVH (usTth, b, h)dT

Since V?£ (w,#, 4 ) 1is continuous at (0,0 ) and ho-

mogeneous at zh, Ao we see that there exists a constant
N > 0 such that 1V2f(w,h, b)) &N I A2

for each & € V(0). Using (1) and emplyoing the proper-
ties of ¥ we have that

() P lu)th & £t + 4; 2N A0 .

Since ¥ has the Fréchet derivative +f/(0) at 0 and
£(0) =0, '

(3) £(th) = £°0)th +w (0, th) ,
where _
(4) 04 w(0,th) < et linl

for sufficiently small t > O . From the inequality

£/(0)! & ¢l Ll and the relations (2),(3),(4) it fol-
lows that )

P h e 2e bl N LAIY .
Choose t > (0 such small that %t N = € , Then
f'C(urh £ 3ellall for each 4 € V(0) and e X,

f+ll €1 .0n the other side, employing convexity and sub-
additivity of ¥ on V(0) we obtain

ulth 2 t(w)-ft(au-th) -
1
- %t’f{4-z)vz¢(u+th,h,h)dt 2>
[
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—-f(-th -L*NIAI? =

>

= 4’(0)th-a)(0,t(-h_))-% t2NUMmK2 2

v

-3etlinl

for sufficiently small t > 0, kol & 1 and «w & V(0).
Thus we have |¥' () a1 & 3 € l Al for eachwe V©O)
and /€ X with 4|l £ 1. Hence I$'(w)ll £ 3 ¢
for each & € V(0) and this concludes the proof.

Remark 1. We recall a certain assertion which is well-
known and useful in real analysis (see for instance [61]):
Let g be & tvice-differentia‘ble real function of real va-
riable defined on an interval J of the length £ . Assu-
me lg(x)l & ¢ ‘end Ig."(.x)lés AR for every Xx €

€ ), where €,k are some fixed positive numbers. If

4-(% )i € £ , then lg’(.x)l & ZCSk)% for

every xX € J .

Theorem 2, Let X be a reflexive Banach space, f a
convex continuous subadditive functional on X having the
Géteaux differential VF (4, , /o) at «, € X . Assume
there exists a weakly continuous functional g- on the clo-
sed ball D = ‘{ e X :llaell £ 13 such that fCw) £
£9gu) am, g(-44) & ~g () foar each « € D .

Then { possesses the Fréchet derivatiyes-F’(«,) at
u .

(-]
Progf. Continuity and convexity of f imply that
Ve, , )= $'(«,) 42, where +7(4t, ) denotes the Gateaux
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derivative of + at 4{ . Suppose that there does not ex-
ist the Fréchet derivative f’(«,) at «, .From the be-
ginning we proceed as in the proof of :l‘heorem 1 [1]l. In the
relations (1) - (4) of that proof write «, for 0 , +
for F and the remainder in (1) replace by

W, th)=$(u,+th) -fu,)-f(u)th.

Since the one-sided Gateaux derivative V, £(«,, o) 1s
equal to f'(w,)# and ¥ 1is convex, we can deal here.
only with a sequence { %, ? of positive numbers. Let -z, ,
{/h” 3, 4t 3 have the same meaning as in the proof of Theo-
rem 1 [1]. Instead of (5) in [1] we write

Flyr by $0,)) = F )= #1488, By 4 €O (Mo Eng $20)s

(5)
F(u,+ t%ho) - flu,) = fluw,) t”".h N, + cw (u,,, t"’lg h’) .

Being f convex,
6) 02 cwlu,ty,fum,), 0£& wlw,,t,, #,)

for every Ao (4o = 41,2,...).From (5) and (6) we have that

(7) 0= a)(u"t”“h%): #(“"—t”bhﬂh)—#(uv) +

+{!’(u,)t%(h,_h%)+ Wyt ) + FCy) = £ty + 0, 21, -

As tn,, > 0, t,,—> 0 , there exists an index fe,

such that &k = R, = 0 < t,,,_*'<_ 1 . Consider now on
only such & for which & = &, . Convexity and subad-

divity of ¥ imply
(8) F (&, +t, b, V- £(u,) & (1-t, YEWI+E, $lgth,,) -
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-flw,) = t,,bff'(uﬁh%)- fluw,)] & t"m £ (h"%, ) .
Similarly we obtain that
(9) P(u,)—ﬂu.f-t%h,)é {-'(a,-t,,_*,h,)—#(a,) &=
& t,m[-f Wwo-h,)~ (w1 4 'l:,,,h fi-h,) .
Since &, , hn, € D for every 4o C(he=1,2,...0,

our hypothesis imply

(10) f(h,, )& 9’(‘1‘”%.): t-h,) 5 gC-h,) & — gch,)

for every .k (fe=1,2,...). From (7) - (10) we obtain
(o = 4,) that

a1 0 = ti%wm,,t%nu) £ g, - gh) +

+ U Y My iy ) + %mw Ctly by ) .

Since 't”*'—-y 0, &8s bk —>00 and f possesses the
Giteaux derivative f7(«,) at «, , we have that

.g; & (4, tuy #,) — O . Furthermore, 4, , > h,
o

implies q'(h"%) - g;fh,,) —r 0 amd f’(u,)('hn‘h%)—’a
as K — 00 , Thus —,g’-‘-*c«)(u,,t@*‘hﬁk)——ro as
Ak —> 00 and this is a contradiction (see proof of Th.l [1]).
The theorem is proved.

The result of Th. 2 one may rewrite as follows:

Theorem 2°. Let X be a reflexive Banach space, f &
functional omr X having the Gateaux derivative f’(«,) at
A, € X, Assume { is convex and subadditive on a closed

ball D1a{ue X: lulls law, l + 13 . Suppose the-
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re exists a weakly continuous functional @ on a closed
ball D ={u e X: lwll & 1% such thet f(w) & g («)
and g (-u«) £ ~g(w) for each « € D .

Then f possesses the Fréchet derivative 4’ (., )
at «w,

Theorem 3 [ 3] and Theorem 2 give the following

Theorem 3.Let X be a separable reflexive Banach spa-
ce, £ a convex Lipsohitzian subadditive functional on X .
Suppose there exists a weakly continuous functional g- on '
Dafue Xs lael & 13 such that f(«) & g(«) and
g(-u) & -g(w) for each « € D.

Then the set Z of all « € X where the Fréchet de-
rivative f(u) of f at « exists isa F . set of
the. second category in X and hence it contains a G'or—aet
which is dense in X .

Theorem 4, Let X be a reflexive Banach space,  a
functional on X having the Gateaux derivative +£’(«,)
at w«, € X . Suppose < is convex on some convex open
neighbourhood V(&,) of 4, . Assume there exists a func-
tional g on V(u,) such that £f(«,) = g, ), f(u)é
& g(u) for each s € V(4t,) and that g possesses
the Fréchet derivative g'(«,) at «, -

Then { possesses the Fréchet derivative f7(«,) at -

Proof. Suppose that the Fréchet derivative +7(«¢, )
does not exist at «, € X . Let {«hﬂk i, 4 t.,,h}
have the similar meaning as in the proof of Theorem 1 [1]
(see also the proof of Th.2). In view of the existence of
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the Giteaux derivative 7 («,) at <, , we may restrict

our consideration only for {t,, 3 with tnh‘_’ 0+ as

M —¥ 0o . Since hﬂ,&_"_"_,.,h, and h 42, I = 1

(Jo=1,2,...), I, Il £ 1. As t"’h’_’ 0_‘_ whenever

- A& = 00 , there exists an integer &, such that fo =

2 My s Myt by Wimy s A = g Mo € VI, ) .
Moreover, 0 & co (U, , Ly, hﬂh ) for each o 3 A, ,
where c(«,, &h%h -F(Al.+t.hm*,)*f(%)-4'(a,) t,* h”‘lc .
In fact, convexity of ¥ on V(4,) implies(0<ax <1,

& 2 k,) that
f ot oty Pmg ) & N ) F () + 0 F (ot bmg Mimg ) -

Hence
~

L [F G+ oty Py, )~ F ()1 &

£ F(u,J-‘t',,,*h”* )y~ flu,) -

m 1 P = V. fw,t,, h, )
Sinc;-%p&- [#(%f@t%hn*) 'F ,)] + ? Mg e
and V+‘c(“"7t%h””h) = ') tw,,, ’hfnp., , we obtain

the desired conclusion at once from this fact and the last
inequality. Now we proceed as in the proof of Theorem 2.
For the first difference on the right side in (7) we have
that (R = &,)

(12) £ty + Ly Mo )~F (L) & QU+ T, M, ) - Q- (i,)

by our hypothesis. Since G Dpossesses the Fréchet deriva-
tive g'(u,) ot «, ,

(13) glu, +t, M0 ) -G (1) = Flu,) g Fmgt Gy (o, Ly #2 )
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where

(14) ;g— @, (u,,,'(:,,% ’e""'m.)"" 0
%

as & — 00, for tug — 0, and “h,,,,hﬂa-'f.l?ur-
ther by convexity of ¥ on {/(«, ) and according to our
hypothesis (k 2= &k, )

Flute) = F My + tyy ) & £ (Mg — by H) ~Tllt) &

(15)
< q,(u,- t,,*‘/h«,,)—*?(aa) =,

=‘9"(’a‘o )tnl./h',ﬂ'- ay (’“'0) tnh (- 'h'o ) 2

where

(16) -g— W, (b (-, N — 0, A —» 0O .
"

From (7),(12),(13),(15) 1t follows that

0 £ é% w (u,, t"ub,&yﬂuh) £ 9?!(*‘3)‘3'5ﬁ,"4@a)’"*

(17) 2 |
+ % (W, (w, ,t;%h,%n @, (u,,-z‘,,,hho I+ @ (thyy Lnf 2, ) +

* + flu, )(h,-ﬁ,,% )
for each #& = AR, . Since f has the Giteaux derivative at

“u, € X, 'é;;a)(u” t”*,ho) —_ 0 as £ —>»co.

w ’
As h,,,b———-} 4, , we have that 9,(“,)(&,,,‘“— 4,)— 0,

£, Y, - h”‘h) —> (0. These facts and (14),(16),(17) imp~-

1y that i My y Yy By, )~ 0 88 k0,
which is a contradiction (see the beginning of the proof of
Th.1 (11). Hence f possesses the Fréchet derivative f(«)
at 4, € X . Theorem is proved.

One may proved the following

- 99 =



Theorem 5. Let X be a reflexive Banach\space, £
a convex functional on some convex open neighbourhood
V(u,) of 4, € X and having the Gétegux derivative
£/(u,) at «¢, . Suppose there exists a subadditive func-
"tional ¢- on an open ball B&-.- fue Xzl < RS
contal ning 4, such that £(4,) =g (w,) and flw) £
£ 9,(41,) for each « of some convex open neighbourhood
V1 (w,) of uo . Assume g. possesses the Fréchet deriva-
tive ¢/ (0) at 0.

Then f possesses the Fréchet derivative +/(«,)
at &, -

Theorem 6. Let X be a reflexive Banach space, f
a convex functional on the closed ball D=fw e X: ulg
£ 13,£(0)=0. Suppose f 1is weakly continuous on D,
fCu)4 ~fC«) for each 4 € D and that there ex-
ists the GAteaux derivative +7(0) at O.

Then f possesses the Fréchet derivative £7(0) at
0.

We shall use a notion of the Hadamard’s derivative
L7,chapt.VIII,p.150-1511,[81,[9],[10] ,(12],[19,Theorem 3.3).
Let F  be a continuous mapping of an open set (L of
a Banach space X into Banach space Y o A mapping F
is said to have a Hadamard’'s differential at U, € X8
if there exists a linear mapping A“" of X into VY
having the following moperty: for any continuous mapping
g of J =<Q,1> into Al such that g(0) = «,
and that the derivative g’ (0) of g at 0 (with
respect to J ) exists, then t — F (g (¢t)) has at
the point t = O a derivative (with respect to J )
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equal to A“,o g’ (0) . The linear map A“O is called
a Hadamard s derivative of F at «, -

One may prove that A“. is a continuous mapping
from X into ¥ . Moreover, if F is Lipschitzian on
L and there exists a linear GAteaux differential
DF(u,, ) at w«, e £ , then F  possesses
the Hadamard's derivative A,  at «, € ) L71.
This result together with Theorem 3 [3] give the following

Theorem 7. Let X Dbe a separable Banach space,

a convex Lipschitzian functional on X . Then the set Z
of all 4 € X  where the Hadamard’'s derivative A,
exists is a F ., -set of the second category in X .

Remarks. The properties of the one-sided Gdteaux dif-
ferentials and derivatives of convex functionals are also
studied in [14,§ 3). The Fréchet and Gdteaux differentiabili-
ty of convex functionals hass been recently investigated by
E. Asplund [15]. One of his interesting results is as fol-
lows: If X 1is a Banach space which admits an equivalent
norm such that the correaponding dual norm in X* is lo-
cally uniformly rotund, then the set W of all X € X,
where a continuous convex functional # is Fréchet-diffe-
rentiable is a G, -set which is dense in X . In parti-
culer, each Banach space X such that X* is separab-
le and each reflexive Banach space which admits an equivalent

Fréchet=-differentiable norm has the above property.

2. Bounde
Let X, Y ©be linear normed spaces, F: X — ¥ a
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mapping of X into Y . A mapping F 1is said to have
the Baire property in M & X if there exists a set

N © M of the 1. category in M such that F/M-N
is c\éntinuous. A set Ac X 1is called a Baire set in X
if there exists an open set G in X such that & - A,
A -G are both the sets of the 1. category in X
(see (161,chapt.I,§ 11;[17] § 22C). Each closed and each
open set is a Baire set. It is known [16,chapt.I] that

M c X 1is a Baire set > M = G -~ P, where G 1is
a F;- -set and P 1is a set of the first category in X .
In particular a set Z = G - R , where G 1is open

in X and R 4is a set of the firast category in X is

a Baire set in X . If F: X — Y is a mapping having
the Baire property in X , then for each open (or closed)
subset G c Y the set F1¢G) ¢ X is a Baire set
in X . Conversely: if VY is a separable space and for
each G c Y open (or closed) in Y , the set F~7(G)
is a Baire set in X , then F has the Baire property in
X . It M is a Baire set of the second category in a to-
pological group @ , then the setf{x 4 ™': x € M, g € M3
is a neighbourhood of the unit element of G L 17,§ 22c].
In particular: 4f X is a linear normed space and M c X
is a Baire set of the second category in X , then the

set W of all differences W = 4« -7, where #« ,
v e M is a neighbourhood of zero in X [23]. A
mapping F: X — VY is said to be a function of the 1.
Baire class if it is a point-limit of the sequence

{F, (u‘) |1 of continuous mappings F;'n (m=1,2,...)
of X into Y . A mapping
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F: X— Y (afunctional ¥+ on X ) is called boun-
ded (upper-bounded) in X 4if for each bounded set M c
X, FM) is bounded in Y ( #(M) 4s upper-
bounded). Henceforth E, denotes the set of all real num=
bers.

All theorems of this section are stated for mappings
or functionals which are defined on a linear normed space
X of the 2. category in itself (in particular for map- .
pings which are defined on Banach spaces).

Theorem 9. Let X, Y be linear normed spaces, X
of the 2. category in itself, F: X— ¥ a mapping of X

into VY . Suppose the following conditions are fulfilled:

(8) NFa)=ial? NF )l for eve-

ry s € X, A€E, where ¥ 1is some positive number.
(b) There exist an open subset M = £ 4in X and
amapping G ¢+ M— Y of M into Y heaving the Baire
property in M and is such that I F(w)ll & 1G ()l
for each « € M .
(¢c) There exists a constant K > 0 such that
IFw-2)Il &€ Kmac CHF (), LF() 1)
for each 4, v € M .
Then F  is bounded mapping in X .
Proof. Since G has the Baire property in M ,the-
re exists a set A © M of the 1. category in M  such
that G /p _ 4 1s contimuous. Being M open and non-
void in the space X of the second category in itself, M
is o set of the 2. category in X ., Furthermore, A 1is

a set of the 1. category in X and hence M -A =+ 4.
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Therefore there exists «, < M- A such that

G/pm_p 18 continuous at «, . Thus for € > O the-
re exists an open subset N « M  such that «, € N
and 4 € N-A = I1G(w)= Gl £ g, .
But Z =N - A 1s a Baire set of the second category in
"X and hence the set W  of all differences w = «-7>
where ., v € Z , 4s a neighbourhood of 0 in X .
According to (a),(b) for w e W (1.6 w = «-72)
A, v € Z ) we have

IFwM = IIF(u-»)Il &

& Kmae LHF)N, IF()L) &

Since Z € M  and mwe Z = IFw)l& 1G] £
g€, +1GG, )l , we have that IFwr)ll& K(€,+ 116G (u,) I )
for each w € W . Hence F 1s bounded in some neighbour-
hood of 0 end in view of (a) of Th.9 , F is bounded on
each bounded ball of X . This concludes the proof.

Corollary 1. Let X, VY be linear normed spaces,
of the 2. category in itself, F: X — Y a mapping of X
into Y . Suppose the< following conditions are fulfilled:

(a) NFCAwl = A7) Flu)i for each
s € X, A€E  where 7 1is some positive number.

(b) F  is continuous at some point 4, € X  and
there exists a constant K > 0  such that

IF (vl & K mae (RFCaw)ll, NFCo) 1)
holds for each &, of some open neighbourhood V(a,)
of &, .

Then F 4is bounded in X .
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Theorem 2'. Assume X V¥ are the same as in Theo-
rem 9. Suppose the assumption (b) of Th.9 is fulfilled and
that F  satisfies the condition IF(w + %) £
4 Kmae (IF(ud, IF(v)II)  for every «, v € X ,
where K is some positive constant. If F(-w)=—F(w)
for each 4 € M , then F 1is bounded in X .

Proof. Using the similar arguments as in the proof of
Th.9 we conclude that F is bounded on some open neigh~-
bourhood W of O . Hence there exist the numbers o > 0,.
¢ >0 suchthat law l 6 0" = e W and that
Nl £0=> IFCu)l £ C . Let D be a closed ball
centered about 0 and with radius R > 0, 7 its ar-
bitrary element. There exists an integer 7, such that

R/n;"g o” . By our hypothesis
IF() 1 = WF (3 - m )1 & Kmax (IF ()00,

IFCGE (-0 &...& K™IF(Z ) 6 K™C .

Hence F is bounded on De and being .'l)'z arbitra-
ry, this proves the boundedness of F in X .
Corollary 2. Let X B V¥ be linear normed spaces,
X of the second category in itself, F : X — Y a map-
ping of X dinmto Y such that F  satisfies the condi-
tion NF(w+ v») Il &€ Kmae (IF(u)ll, KF () ll)
for every 4, ¥ € X ( K 1is some positive constant)
and that F  is continuous at some point &, € X -
If F(~-a) = -F(aw) for each & of some open
neighbourhood V («,) of 4, , then F is bounded
in X .
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Remsrk 2. We recall the result of S. Banach [18,p.79]
concerning the continuity of linear operators: If A :
¢ X = X 1s an additive operator from Banach space X
into X and such that NA (w)| &£ NG )l for eve-
ry «€ X , where G is a (nonlinear) operator from
X into X having the Baire property in X , then
A 1is continuous (and hence homogeneous, i.e. A(A )=
=AA(UL) for every 4 € X anda A€ E; Jon X .
Theorep 10. Let X be a linear normed space of the
second category in itself, 4 a subadditive functional
on X such that £ is lower-semicontimious at O . Sup-
pose there exist an open subset M & F of X , @
functional Q. defined on M  such that f(«)- f(2) &
£ q,(u)-g.(v) for each &, € M. Assume g- pos-
sesses the Baire property in M and P(-w)S-f ()
.for each & € M .,
Then 4+ is continuous in X  and upper~bounded
on each closed ball Dy = {ww e X+ laell & R 3
of X .
Proof. First ot all £(0)=0. Indeed, for some
A € M we have that
£(O)=fu-w)s ) +f(-u) & F)=Fflaw) = O -
On the other hand £(0) £ 2+ (0)  1implies f(0)2 0
and hence f(0)= 0. By our hypothesis there exists
“, € M- A , where A  is a set of the 1. category
in M, such that the restriction g /p_4 of @ to
M~ A s contimuous at &, . Thus for g, > O the-
re exists an open subset N © M gsuch that «, € N

- 106 =




amd e N-A = [gw)-glu, )l & -%‘i .

The set W  of all differences 2 = & — UV , where .,
€ N-A , is a neighbourhood of O 4in X . Hence the-
re exists o) > O  such that fw h< o[ = w e W.
For any w € W with Jlwll< O] we have

tar)=fu-v) £ F )+ f-v) & F(u)-Ff(v) £
£ Gu)-g) & Igu)-gW,)+igw,)-gwIl£E,.

On the other side + is lower-semicontinuous at ( .
Therefore there exists ) > 0 such that N /| <
< d =>fw)2 £(0)-€ = -€, . Set '=Mm ([, ),
then flawll < O == [f (w)| < g, . This denotes
that f is continuous at O . Hence +{ 1is contimuous
on X (see [19,Th.25,21). Continuity of f at (¢ and
subadditivity of imply that - is upper-bounded on
each closed ball DR . This concludes the proof.

Theorem 11. Let X  be a linear normed space of the
second category in itself, + a seminorm (i.e. ¥ is
subadditive and f(acat) = loc | $ (ar) for every 4 €
€ X anmd o« € E;, ) on X . Suppose there exist en
open subset M+ J of X and & functional @ defined
on M having the Baire property in M  such that f(u )&
& g(u) for each A € M.

Then f is continuous and hence bounded in X .

Repark 3. The above theorems can be used to investi-
gation of boundedness and continuity of Gateaux differen-

tials. One may also apply them to investigation of the exis-
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tence of the bounded differential [20]1. The following fact
is well-known: If f is a functional having the Baire
property in the space X of the 2. category in itself
and if there exists a linear Giteaux differential
Df(u,,#) st 4, € X:, then f possesses the Ga-
tesux derivative f/(«,) at &, .

In the case when f is continuous on X , this
fact can be obtained without using the Baire ‘s theorems as
follows: Denote f, (#1) = (£(u, +m ™~ "h)— f(u,)),
m=1,2,.., # e X . Then £, (/)  are continuous
on X and fm f, (h) = Df (u,, ) for eve-
ry b X. Tus Df(w,, ) 1is a function of the
1. Baire class. Then the sets P = { fv € X
Df(u,,h)% 03, Q={he X:Df (u, , )z 03 are Gy~
sets in X ([21,Th.14.3.1]), Hence N =P N G 1is a

Gy -set in X and N={h e X : Df(«,, h)=0% .
Since N is linear and (G -set in the space X of
the second category in itself, by Mazur-Sternbach Theorem
[22,§ 311t is closed in X . Now it is sufficient to use
the following asaert:l'on ([23), for functionals see also
(241, chapt.I,cor.2): Let X , X, be linear normed spaces,
dom X, < 00 , U : X —» X, alinear (i.e. additi-
ve and homogeneous) mapping of X into X, o If the set
U-71(0) 1s closed in X , then 2 1is continuous
in X .

In sequel we shall use a property of subset of a line-
ar normed space X which has been introduced by S. Mazur

and W. Orlicz in [25], A subset M of a linear normed
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space X over the field ¢ of real or complex numbers

is said to be a Mazur-Orlicz set if the space X is not
o0

the union ) M, of a sequence of sets M; = o.M+

+4; ,where x; € b , 4, € X (i=1,2,...) -

The following nostions have been introduced by M. Zorn

(261, A subset D of X is linearly open if for «, f €

€ X the elements o« of ¢ for whichuw+x b € D

form an open subset of ¢ . A mapping G defined on e 1li- '

nearly open set D c X with values in ¥ is called

linearly continuous if for arbitrary (but fixed) «, v+€ X
the function G (« + § v ) is continuous in §
(i.e. in § for which w« + § v € D ). The fol-

lowing result is due to M. Zorn [26] : Let F be a map~

ping defined on a linearly open set D c X with values

in Y . If F is linearly continuous and if there ex-

ists a Mazur-Orlicz set P c X such that F is

bounded on D - P, then F is bounded on D .
Using this result we prove the following
Theorem 12. Let X, VY be linear normed spaces,

X of the 2. category in itself, F : X — Y a mapping
of X inmto Y . Suppose there exist an open subset

D+ 42 of X , alinearly continuous mapping G from
D into Y suchthat | F(w)ll & NG (w)ll and

(18) NF(u-v)1 & Kmae (AF(w)ll, NFCr )N

for each i, v € D , where K is some positive number,

If there exists a Mazur-Orlicz set P c X such that

G is bounded on D — P, then f  1is bounded in
some neighbourhood of (O &€ X . Moreover, if F satis-
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fies the condition (a) of Theorem 9, then F is bounded
in X .

Proof. By Zorn’s result G is bounded on D .
Hence [ is also bounded on D . Since D is a Baire
set of the second category in X , the set W = {f W - W=
"=U-V; M, €D} is a neighbourhood of O . Using (18)
we see that F is bounded on W . The second assertion
is obvious.

. In next B («,%) will denote the open ball cente-
red about point 4« and with radius % > 0 . Using the
properties of Baire sets and Baire functions one is able
to prove the following

Proposition 1. Let X, VY be separable linear
normed spaces, F: X — VY émapping of X intoe Y ,

€ a positive number. Suppose that for every point « € X
there exist IL“‘)> 0 and a mapping G—c“') defined on
an open ball B (« , 2£“")  and with values in Y ha-
ving the Baire property in B (4, 2’ )  such that
IF(v)-6“@w) Il < ¢ for each v € B(u, £“).

Then there exists a mapping G : X — Y of X
into VY having the Baire property in X and
I GCuw) — F(u)ll < € for every « € X o«

The last assertion is an extension of the well-known
corresponding result [21,Th.16.6.1] which was proved for
real function\of the first Baire class (i.e. for function
which is a point-limit of a sequence of continuous functions).

Reparks: Recall that for nonlinear operators the no-

tions of boundedness and continuity are not equivalent
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[4,chapt.I]. However, if F is uniformly continuous on
the closed ball D = { € X: lwwll £ R 3 , then F
is bounded [4,p.30). The connections between linear boun-
dedness and boundedness of nonlinear operators have been
studied by S. Yamamuro [27] (see also M. Sragin: Ref.Zurn.
1964,85 # 520). Boundedness of convex functionals was in-
vestigated in [28,Th.4], [ 3,corol.1]. For some results con-
cerning the boundedness of nonlinear operators see [2,Th.
3,41. Theorem 9° generalizes the result of Th. 4 [2]. The
assumption (a) of Th. 3 [2] is redundent, thus read the
Theorem 3 [2] ga follows:

Let X, Y be linear normed spaces, X of the se~
cond category in itself, F : X — Y a mapping of X
into Y  such that the following conditions are fulfilled:

Q)Y tFum+»)l & MmacFCw) I, I FG) 1)

for every 4 , ¥ € X , where M is some positive constant;
2) w,e X, welX, 4, u =
£ Lom VFCu I .

Then F is bounded in X .
Indeed, denote X, = { « € X : NFCud)ll £ m 3 -

-
Then X _(m=1,2,..) are closed in X anmd X=,0U) X, -

~u, Il € 3. Thentor € X with lvvll & £ we
have v+ A, € D (uw,, 1) and
IE@ = Il Fr+ w,) -, € Mmax(l Far+u)l ,



IFCuN) £ Mmax (m, , NF(-w,)10) .

Thus F 1s bounded on the closed ball centered about ori-
gin and with radius x > 0 . This fact and the condition>
(1) imply that F s boundc'd in X (see the end of the
proof of Th.9").

' Some results concerning the uniform boundedness prin-
eiple for nonlinear operators and related topics will be
published later.
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