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ON PRODUCTS IN GENERALIZED ALGEBRAIC CATEGORIES
V&ra TRNKOVK, Pavel GORALEK,Praha

0. Introduction.

Universal algebras of a given type A = {at’.2~ A<=t
(A is & family = as a rule increasing - of ordinal numbers
indexed by ordinal numbers) form the category A(A) whose

objects are operational structures, the pairs

(X;{w;l&</&}) where X 1s a set and a):

%, -ary operations on X , i.e. mappings w: : Xy X,
X Yy

and morphisms from (X; fw, 3§ ) to (Y5 f@,1)

are mappings f : X — VY compatible with operations in

are

the sense that a): ° -f-"!’-’= £ o wax for every
A<f3 , where 10 X2 5 vy is f acting co~
ordinate-wise on %, =tuples from X%,

Here the operations play a role of a "device selecting
suitable mappings® - the morphisms of A(A) . Now, we can
let this device work in a more general situation. Take two
tunctors F and G of the same variance from sets to sets
and define the generalized algebraic category A(F, G, A)
as follows: objects are again pairs ( X, 1 o):g ) but ope~
rations co: range over FX and take values in

GX (8o they are mappings w’; z(FX)“’* — GX ),ana,
morphisms are in the coveriant case mappings +: X — Y

such that . o (Fg)T)

X
x = (Gf) . @, for every
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A< ﬁ; , S0 we have commutative diagrams
X

[ 4
(FX) 2 %2 6x
(Fe)™® Gf

@Y
(FY2__* . Gy

(In the contravariant case the vertical arrows are reversed
and compatibility of ¥ means the fulfilment of the identi-
ties c._\;( o (F¢$ )m“) = (Gf) ° c.); for every A </3.)

We shall refer to functors F  involved on the first
place in A(F , G , 4) , for obvious reasons, as to
domain-functors, an& to functors G as to range~functors.
Taking F = G = [ = an identical functor, we get
clearly A(CA) .

T4 is ¥nown that A (A) always has products (in usu-
al categorical sense). Unfortunately, this pleasant property
is very often lost for categories A (F, G, A) with
non=identical domain and range-functors.

It is easily seen that the existence of products in

A(F, G , 4) such that the natural forgetful functor
preserves them is equivalent to the requirement that &
preserves products. Much less transparent is the general pro-
blem of oxistence of products in categories A(F, G, A)

- the wain objective of the present paper. Then the condition
that G preserves products is, of course, far from being
necegsary and there are many other interesting categories

A(CF y 6, 4) possessing products but with G not



preserving products. But generally it 1s true that the be-
haviour of the range-functor with regard to products mat-
ters here, and, if it does not preserve products, then al=-
80 the behaviour of the domain-functor with regard to sums
(aisjoint unions) becomes relevant to the problem.

Presented material 1s exposed in five sections. The
first one brings basic definitions and facts, including con-
ventions about notations used. In the section 2 there are
given some necessary conditions for the existence of pro-
ducts in AC(F,G, A) . With aid of these it is proved
in the section 3 that for F, G contravariant faithful
md 2A4>0 A(F,G,A) fails to have products,
Section 4 is devoted to more close study of certain proper-
ties of covariant functors. The final section 5 gives a mm—
ber of theorems on products in A (F, G, 4) with
covariant functors F, G .

Some problems remain open here, nevertheless, our theo-
rems account for most of familiar functors F end G ,

In final remarks some possible generalizations are in-
dicated.

l. Ba de facts notati

All functors throughout this paper will be functors
from sets to sets (i.c. from the category & of all sets
and meppings - including void ones - to & ). Observe that
for our purposes we con congsider functors only up tc the na~
tural equivelence = + When systems of functors are dis=~

cussed, we use the set-theoretic symbols € , & , U, N



for ghortness sake.
Let F and G ©be functors of the same veriance,

F is 2 gub-functor of G 1if there exists a monotrans-
formation @w : F— G 3

F 4s a factor fupctor of G if there exists an epi-
- transformation » : G — F

F 18 o petract of G if there asre a monotransformation
(i F — G end an epitransformation » : G —> F
such that ¢ is the identical transformation of F .

Recall the usual operations over functors (cf.[1]):
(a) The product F =< G ,
(b) the coproduct (disjoint union) F V G defined
for functore of the same veriance, both can be extended to
en arbitrary family { FL e e T} over a set J of
functors, the results written as t"LT.‘] F'b and LY’ F‘_ )
respectivelye.
(¢) The guperposition F « G of arbitrary functors G
and F  written (as anywhere else) left-hard, i.e.
(FoeG)X=FCGX). 1 F and G ere of different
variance, then F o G is contravariant, otherwise it
is covariant.
(d) The hom ~functor ( F , G > for functors of different
variance, its variance being the seme as that of G . Re-

mind that, writirg H for ¢ F , @2, we have HX =

={yglg:FX —>GX3 andfor f;: X — VY and H
covariant (Hf)(g) = (GFf) o ¢p o (Ff) .



Let us last some of the most commonly used functors:
denotes the identical functor,
C - a constant functor to M ; it is both covariant
and contravariant;
P* = the covariant power functor:
PTX=§AIACK3, (PH)(A)= £4(x)IxE AT for £: X = Y

N = a subfunctor of Pt assigning to every set X
the set NX of all its non-void subsets, evidently
+
PP Nv(,
P~ = the contravariant power functor, P"X ¢ I  C, > ;

(3 - 8 subfunctor of (P~)? = P e P~ assigning
to every set X the eet (B3 X of all ultrafilters
on X ¥ ;

@y = & certesian power, 8, = <c,, 1> .
‘e shall often use the next fact from [2]:
Propogition l.,1. Every faithful covariant functor has
I for its subfunctor. Fvery faithful contravariant functor

has P~ for its retract.

Let {X‘;cc,e A}, A+ ﬁ, be an artitrery family of cob-
Jects of some cetegory X . Any pair (X, {7 loxc € A?)>
- an object X of K together with a family of morphisms

xy, * €A - 18 called an inverse hound
¥ ) An alternative description of the functor ﬁ : & T
is the category of 4l completely regular topological 'T; -
spaces, & : F —s < the forgetful functor, F: ¢ T
the free functor and ¥ : F—» 7T the functor 28~

signing to each space 1its /3 -compactification, then 3 =
=hPo¥YoF.



(further "inverse” is often omitted) of the family
{XolxeAd.

If every other inverse bound < Y, {7, |« € 4§ >
of {X, |laxeAl factorizes through
(X, £/, 7 > , 4.e. If there exists a morphism b : Y-
—+X such that 9 =~ o o4 for all cc € A , then
(X, {m 3> is called a pgeudoproduct of the family.

A pseudoproduct is product if the factorization is uni-
que.

A category ) 18 said to have (pseudo)products if

every family of its objects has a (pseudo)product.

2. Necessary conditions

et X = ACF, G, A) amx,,-/\(l:',,(r“%)
be two catedories with all the functors F, G, E’ , G;' of
the same variance and (possibly) of different types A =
=fot,IA <3 and A =i, (@ < 2 3 . Denote the
objects of K by X = (X, {0} IAX < 33 ) endtw

a
ebJectsot.‘)C, by Xw-()(, w”X I« < $3).1ra

©

mapping £: X —» Y 48 a morphism in ¥ or 7('1 , wri-
te simply 4 ; Xr — ); or f: X,—* )2, , respectively.

Lepma 2.1. Assume thst there are assignments ¢  and
¥

@)‘a=xo, and YX,-X(‘, ,

between the objects of X and X, with the following three
properties:
(a) f1 Xy —> QZ, = f:¥X, — £, ,

) 4 ,:u_—’ Zw = 9_:@)'“—-’ d’za
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(€ h:dY,— X, = h: Y, —> ¥X, .

Then the existense of pseudoproducts in X  implies
the exigtence of pseudoproducts in X', .

Proof. let § X, |lx € A ? be an arbitrary fa-
mily of objeets im x, e The family { & X:} has - as
eny other family in X - a pseudoproduct, say,< X,, 1 £7>
with £ : X, — ® X, , o« €A . Byla)itis
£ ¥X, — X , therefare (¥Y_ {i£ 3> s
a bound of the family §XJ 7 .

Let ¢ Y, | {g. 7> e en another bound of {X3 3,
le0e g : Y, — X5 faor x e A JBy(),<QY,,
{9,‘;) is a bound of { $ X% § , therefore am A :
: 0¥, — X, must exist such that g, = f, e A forall
x € A.By (¢) it 48 g, : % —> ¥ X, , 80 it 1s shown

that (¥X_ 44 7> 1s a pseudoproduct of the family fX:f.

Theorem 2.1, let a category X = A(F G, A) ha-

ve (pseudo)products. Then also any category X . =

= A(F, G1,A) of the same type A but with /G,
being retracts of F and G ,resp., has pseudoproducts.
With aid of natural transformationa
F;—S‘i’—-) F-—‘-”—-»F“ G1——E-‘-—) G I 3
such that » o « = 4,,1 and T e € = 46,, define assign-
ments
é:ﬂ,"" — X%  ana ¥:XF — ¥
by

X X )
X, 83 =(X, {0)¥7) with o= € cw, = » ¥
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and

(%)
(X, §053) = (X, {@)1) with ) = o, i
It is easy to show that @ and 3!' thus defined
satisfy the conditions (a),(b),(c) of lemma 2.1.

For example, the computation in the covariant case
runs as follows:

(a) (64)e 0} = o« F8Y™ with of = .0 o ¢ %

" » 2 2 implies
o€ ) o, )
(Q#)oa): = a): o (F;F)'e‘ for a): =:§ao':o(a;" :

X, o) o oy A
(G #)ew) = (G e Me0)e @™ = M0 CGF)og o e

%)

z (2,) v cey)
Woate(Ff) gt = Mo 0f o LIFHe @ 17

h

ey g, %) ey
=ﬂ;00’ af‘(,cz CF'F)J 2 E.a.‘:\. a2 o(ff')

- e el e Vi Wl (E Y 0l (r )T

(v) (&'9,)' w;' - a): . CE, 9,)"“’ implies (Gg—)-d{-—-

0¢y)

- A2 Y_ Y €y)
A (Fg) far 0 = B cw o, and
z_ o ¥ .

g, ezoa) », :

o 4 (d“) . o y‘ (‘a
(eg),o;: (Ggle g cay 3 F=¢, 66,9_) @ »y

¢ _;) rﬂa . F] at,o (!‘)
(2q)
(e) (Gh)-o'a- ‘/4( o cF;m‘"a with 0= € -2 - V)
4 X cey)
implies (G, )~ @, = w} o (Fh) for

X ot
a)as,}rxodin(q,x [
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\’ X o€ 3) X (%) ) "a", wty)
.“)ao (E'h) - ﬂ;ooa’ .‘wx ’(F‘;h) =J&¢¢:'(Fh) ﬂ}’ -

y ®a)
-]"xo (G'h)-o.;n(.c‘;'“)= (G"h)o,ﬂ;-fa '(“y -

Y (24’. (z",-_- G )e Q)y .
= (Gh) o cE e e Py, (G,h .

The assertion of the theorem follows by lemma 2.1.

There is another way of "collapsing®™ a category
A( F; G, 4) so that pseudoproducts are preserved, na-
mely, an essential reduction of the type 4 1is possible.
Before stating the next theorem assume the type A =
= {06, | A< 3] dincreasing 34 > 0 and denote by
d" the first index with %, % 0 . Thus, in the case
>0 it is %, =0 for alIl A < 07 md mllary

A
operations enter into consideration.

Theorem 2,2, Let a category A (F, G, 4) have
pseudoproducts. If o > O , then also the category
A (F, G,{0,1%) has pseudoproducts. If o= O, then
ACF, 6,
Proof. Write the objects of X = ACF, G, 4) 1n
the form (X, {Uax! ) and the objects of X, = ACF,
G,40,13) = in the case 0> 0 - ss
ik, @X1) = (X, dfl i =0,1).
For every A,d % A < 3  take natural transforma-

A
tions (@ ! I — Q*.‘ and T2 8, —*1 sueh
q

§1%) has pseudoproducts.
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that o (.L = and dcfino assignments

r’
$: x,"r.--vyc*m g A% s K%y,

(X, el = cx,io;n vith o = & rw4<¢'

oXa’ex? forasd,
A1 FX

Y(X,{O’:!) = (x,{@‘?; ) . Iith(d'xc a;x, G,I'x —‘Oa',xﬁ(a—:;.

In the case ¢ = ( simply disecard mullary operations
wX .

Again, complete the proof by showing that § aend ¥
satisfy the conditions of lemma2l.We shall content oursel-
ves with doing this for the covariamt case:

(a) Assuming (Gf)e0) = of - (FEP) with o: - &
for A<d and a-:-_-a,)fo.ﬂ:" ‘ for A » d° we muat
prove (686 wX = @ (FHY o @)X = g*,

Py
’”ifx' (“ex » Pt

(G)owX = (GF)o g¥= 0o (FFIP = e (FOI®

(GF)e X =(G#) e g0 = of o (FOT o iy =

= Wk 1% (FO, wly = entyo @lye (FF) =
=l e (FF) = wfe (FHYY .
(b) Assuming (Gg)e @) = @y (Fg)(“ we must prove

(Gg)egy = 0': +(Fg)? for e ) ta @f

A 2 a
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Yy _ .y _oF
if.ﬂ<d°mdo'.-a)4a.n'-=7’ %’o‘ofr:z 5P

A > d but (Ggreq'=(Gg)e &Y= e (FI P =a)fe (Fg)™¥

for A<d, am, (6g)eq)=(6glea eal =
‘ ) coy)
=cfo(Fgrem® waftoml o (Fgf¥m ) o (FQ)™ tox A 20,

X coey) Y 4
(¢) Assuming (Gh)eq) = ¥ o (FMIT?  witn ¢'= @,

2
Y 4 a
if A<d ad g'= @’ D iIf A 25, we are
to prove (Gh) e a)!. a)i" o (FRI far a):‘ = a;" and
X x s
@y =G (e but

@S o (FRI= GRe (FIT= (Gh)o G = (Gh) e 0

(&’,)

G)x ° CF/’L)= (“'FX’ (Fh)s' o(Fll—) .(«IF’

=(Gh)e (u,, (Gh)o @, o JrF, oy, =
Y _ o Yy
= (Gh). Qe 4Fy = (Gh) e @’ .

Both retraction of functors and reduction of type in
categories A (F, G, A) by the above theorems can,
of course, be made simltanecusly a;md thus obtained catego-
ries are then the first ones to be considered when a negati-

ve result on products in some A (F, G, A) 1s expected.

3. Contravariant case
Theorem 3.1. No categary ACF, G, 4) with
SA >0 and faithful contravariant functors F, &

has products.
Progf. Since P~ 1s & retract of both F anmd G




(Propositionl.1), we have, with regard to results of the pre-
ceding section, but to show that A(P~,P~, 10, 13)
fails to have pseudoproducts. In fact, unary operations do
the whole job, the following proof that A ¢P~, P~ {13)
has not pseudoproducts shows it:
Suppose that < (S; @,), f , £ ¢ > is »
pseudoproduct of the family consisting of two objects
(X, @), (Y, @), where- X = {fa, &3, ¥ = {c,df,
and, <), - and a)y are identical unary operations on
P X and P Y , respectively.
Take & well-ordered infinite set Z = {2z | o < 2% 2
with card 2 > cand 2° and define a bound
((Z,a,),1g;, 953> by
R B~ K= @) G BPm Gy 5y) = &, G (%) = b for K> 3,
|Gy x,) =gy Zy)=0, Gy 2,V =gy & )=d, g X ) = foret>3;
denote Zp {2z la<p3? for A< 2% the segments
of Z  endput o (z,3) = Z;, @, (E) = Zg., for
sl1 A 5&€ 3<2 , on the remaining part of P~ Z

take coz identical.

There must exist A : (Z,c),) —> (5, awg)  such

that
92-“‘:‘911,, qyt‘gr‘h.

Since P~/ 4s a homomorphism of (P7S; @)) 1into
(P2, @z ) and at the same time a homomorphism of the
complete boolean algebra (P~S ; U, N) into
(PP2;, U,N) , the image & of P°S by P-4 must

be closed under Wz and boolean operations.
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Cleerly {z ,z,{ , {%,,z,7 € P 5 hence

{z,3cd ena Z‘_e.‘&. Assum Z_e 4 for
8ll o« , S5&oc<@3. If £ is isolated, then Z,-~

= w,(Z, Yed. If B 1salinit number, then
Z = U Z e & . Therefore catd X+ > caxd Z
A LB X s

and this, together with cerd 2° = caed & , 1s a

contradiction.

2

4. Covariapt fupnctors and their properties

It has been mentioned, that, dealing with categories
A(F, G, A) in the covariant case, it is importamt to
know the behaviour of F and G with regard to sums aml
products, respectively. From this point of view, consider
first a following separation property of functors:

Definition 4.1, A covariant functor F 1is said to be
a separating functor if for any two disjoint subsets M, N
of a set X 1t is

(1) [ P*e F(1, )I(FM) NLP* FGIIFN) = 4
where »i.M: ™M — X, 1ﬁ~: N— X are the corresponding
inclusions.

Denote 4={03 = a standard one-point set. For e~
very non-void set X and an element X im X define
w, X : 41— X by wxx(()) =X , am, X
—+ 1 b a,(x) =0 forall x in X .

Statement 4.1. A functor F is separating if and only
i

(@) wy # w! = [P% F 0 NICFAN O CP*-F a1 (FA) =0 .
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Proof. Condition (2) is equivalent to (1) with M =
={x3,N ={qj . Comdition (1) reads then as

LP*e F iy 21 CFixd) 0 LP+e Fliyy ICFiyd) = 4

bt Fixd = CP*eF(w™)1(F1) |,  therefore

[Pt P4 T CFix3) = [P*s F(4, 0] o [P* F () I(F1) =

. fod X
= [P*F( cw, ) I(F) = [P*eFlw, 1 (F1)

[P*e F 4, ))(Fiyl) = LP*e F(wy )1(F1) . So the condi-
tion (2) is meceassary.
Assume that (2) is fulfilled, but F is not separs-
- ting, that is, for some set X and two disjoint subsets M,
N of X we have

G) [P FEDIFMINIPYFE)I(FN) + 4 .

In this case both FM + 4 asd FN #+ 4 | hen-
ce M+#4 and N g  since otherwise it would be
FA + f and F would have a distinguished point, which
contradicts (2).

Choose an element x 4n M and 4 4n N and de-

fine mappings f: X — M, g: X— N by
t for teM t for teN
A =] gt = { )
x for t e X\M np for t e X\N
Note that
H 3 . . X
(4) "'M'fo‘ﬂ..?-“’xx"“‘x’tN.g'o"’M.f-w"}.'«’x )

(5)  Foedy =4, Gy =y -
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By (3), there exist elements f1 in FM and g

in FN such that

(6) (Fi )(p) = (Fi (@) = 1 € FX .

It follows by (5) that (Ff)(k)= (FF)e(Fiy)p) = n

and
(Fg)(rn) = (Fg) e (Fi)(g)=q ,

and, by (6),[(F¢M)9(F1")J(IL)=/:, CCFiy)o(Fg)lin) = x .

By (4) it is then (Fw;"‘)-(Fux)(u)- (F'w;)o(f-‘axnn) ,

that 18, (Fw)(a) = (Fw))(a) for a =(Fu, Xr)e F1

- in comtradiction with the fulfilment of ( 2 ).

For every functor F different from Cl denote by

F* 4ts range-domain restriction to non-void sets and map-
pings (such a restriction exists, since F # C’ implies

FX *= f  for every non-void set X ). Taking a standard

two-point set 2= {0,1}% , denote

G = [P* Flu I (FONLPHFa)I(F) c F2

Ao = CP*eFlu,)1(a,) .

let 'xﬁx : @ —> X be the empty mapping.

For a set X
is separating.

Statement 4.2. If A_ = §, then F

If A+ 4 , then Q* is a subfunctor of F¥* .

It is always
Lp*. F(d)I(F@) c Ap -

Progf. First show that a non-separsting functor F

- 63 =



has AF*ﬂ:

Take & set X with points x 4, x =+ ny  such that

the condition (2) does not hold for w and w;‘_ , .g.

(Fuf)e)= (Fu)d) = » €eFX for some c,d 1in F1.

Define an injection 4 : 2 — X by d(0) = x ,
d 1) = Yy, and, let »x X— 2 be a retraction of
2 X 2 X
d , l.e. 1 -d,='12.Thenfw; = o WX 5 ’ll); Ed /L"l(@_,
therefore
(Fw?)(e) = (Fr)(m = (Fw)(d)e @

and AF=I=9"

Agsume further AF # 4 . The mappings F"w;’
and Fw;,’ coincide on AF : For an element a in

A, ‘there must be elements ¢ in Q. eamd &, c in

F1 such that a = (F',{A:2 ) () and g = (Fw;z)(ﬁf)=

- 2 2 2
= (Fw )e). sinee a4 » w, = w, ow, = 1, it 1s

(F%)(%)=I(f=c = Q .
Moreover, for every non-void set X all mappings

wax far X € X  coincide on Ao : Take

.

X, Y
in X , X #* 2, and the injection & : 2—> X as abo-

2 2
ve, then fw‘: = d‘“’p , w; =d o w,, and

the preceding assertion applies.

Now, define a transformstion @ CA* — F* by
. x F
(u—x(a.)=(Fu&)(a) for a,eAF sand x € X .

Clearly, (“x does not depend on the choice of Xx in X,

.1t 4s an injection (for wxx is an injection), and
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X y
it is a transformation because of { o wy, = 71/;(_‘0

for every f: X — VY.
Ag to the last assertion of the statement 4.2

w‘jzo 12 =} = wz o implies [P¥o F(’Z&)J(Fﬂ)c QF’

2 1 1
and we get the assertion using '12, =4y ° ’Zﬁ

Statement 4.3, Every functor F F + (, cen be
written as

F=F v,

where functors f and F, have following properties:

* *
a) F, is C, o F has a subfunctor CAF;

b) F is the greatest separating subfunctor of F
in the sense that every separating subfunctor of F is a
subfunctor of F, .
This decomposition of F is unique up to the natural equi-
val ence.

Proof. Denote KF = (F1)N A, - the comple-
ment of AF in FA1 and for every non-void set X
put

FX= [P s Flg )ICA ), EX=CP e Flu 1A ).

For an arbitrsry mapping f : XA——-> Y it is “w, =
=, ° f , therefore [P*e F(MI(F, X)) c £ Y

and [P*e FIOICE XY EY . Define F f  and
F £ , saccordingly, as range-domain restrictions of Ff.

»

Tt is proved that fer, that F* = E* v F* .




We can now define F g4 = Fg and F, %
is a domain restriction of F'ﬂ'x for ’ﬁ;\, : 4 — X, and,

Fo=0, B8 =4, 0 EX.

BX

It is easily seen that A_ = A_  and A = g,
d 2

F
therefore, by statement 4.2, if A_ o J  then C: 1e
‘ F
a subfunctor of ﬁ* and f; is a separating functor.

Finally, le¢ A : G — F  be a monotransformation
of a separating funetor G inte F . Then necessarily
1‘(1:) € KF forevery t € G1 , therefore

Praa)) (6X) = F X for every X + f eand, of
course, G4 =~ J = F 0.

This property of f-; seaures uniqueness of the decom—
position.

Corollary (to.Statement 4.1). Every separating funo-
tor F is faithful amda Fg = & .

Proof. Assume Ff = Fg-  far some mappings +, g.: X~

Y o X = o x = Y
~> Y. Then Fw“x)s Flfew, )= Flgow,) F"ur?(w for
all x in X , therefore, by (2), #(x) = g (x) for all

X inx ,i.eu F“Q/-

Defipnition 4,2, A functor F 1s said to be tight op
X, X+ g, 1t
(73 x%JXEP*- F(w;‘ JJ(F1) = FX .

If this identity does not hold, then F 1is logse on X .,
If F ie tight onevery X, X = J then it is a

ight functor, otherwise it 1s a loose fumctor.



Statepent 4.4. If F is lose on Y, Y # 4 , and
YCX’ then F is loose on X .
Progf. Denote iy s Yy — X an.inclusion of Y

into X and choose some retract # : X — ¥ of t'y .
X Y -
Then % » w, = w, ex) for every x in X . Now, assu

me that F is tight on X , that is, (7) holds. Since %

is a surjection, we get

FY = [P*e F(x)I(FX) = LP* F(r)I (), [P¥e FwOI(FE)=

= ULPFMn)ILPY F(wX)1(F1) =
XEX <

= Y PP Flagy DI(F) = ) LP* F(o, )1 CFA)
in contradiction with looseness of F on Y .

Corollary. If F 1is loose ona set X, X# 4 , then
it 18 loose on every set ¥ with caxd Y 2 carad X .

Equivalently, if F is tight en X , then it 1is tight
onevery Y, Y # F  with card ¥V £ caed X .

Froof. - Immediate consequence of Statement 4.4.

X X
Define 'u.ry’y_:l—-?)( by 'u{,q_(O) = X ,

.w«x (1) = ap . For a given functor F  denote
Xy

W, = LP* Foul 1(F2), W= LP* Far)1(F1) .
Statement 4.5. Let a functor F be loose on a given
set X with caxd X > 2 , d.e.

- X
FX\*LéJxW* » 0 -
Then

FX N xke'jx fo # f for arbitrary 2 in X .
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Proof. First note that W' = w*  for x 1in X

X
and for any mapping + : X — X it 1s

+ Xy _ X
[p .F(MJ(WJW) = Wi °
Assume, now, that x%,jv v\‘/w = FX for some g

in X .

’Choose an element f©1  in FX N\ .,8( Wxxx . Then for

some X, X *a, fr € w:x . Take an elemnt £~ in
X so that & + a, & % x , and a bijection + :

: X —> X such that f(&) = a . Then
o X E +o =
[P*e F(EIC ) Wh ) = U IP*eFCe)I (g, )

U w Uw,, = FX,

= =
X &X aflx) XEX ax

therefore U W, = FX and, for some 4 4 4, it

)
1s pe w,fy
It remains to show that .n e W:y n Wlf/y— leads

to a contradiction: Teke a mapping g : X —* X such

that a,iffy.ﬂa:;

g@)=a, glx)=x, 9(&)-9(@)={x if y+a.

Then

X

X
o= (Fg)p) e [PTe Flg)HIW, W, ) c

X X

X X
S W, N “g,(l,)g,o,,) € %a, UWea -
Statement 4.6. If F is tight, then for every set X

and for its arbitrery two subsets M, N it holds

(8) [P*= F (43 )1 (FM)ULP*F (i) 1(FN)=LP* F(i )] (F5)
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where S =MUN , and, i* : M — X, il : N—= X,

. X
ig : S—> X  are the respective inclusions of M, N, S

into X .

Proof. Denote éS:M-—-rs, i;:N——rS the
inclusions of M, N ‘into S , respectively. Then we
have

X X .S . X 't .5
(9) Ay = dge by 5, ty = A5 o Ty

It is easy to see that (8) holds, if one of the sets M,N,S
is void, Assume further that M # ¢ N # ¢ . Then, by
tightness of F ,
= +o M = +o N
FM x%[? F(Wx YI(FT), FN XHVIP F(w, JI(F1).
Using (9), we get

[P*o F(&} 11(FMY = CPTe F(43)1 () [PYe Pl ') I1(F1D) =

+ . K M +, X
’xLeJMLP -F(tnnurx )](F'ﬂ}g-xLeJMEP F[»w"x J1(F17) P

and, similarly

[P*e FU4X)I(FN) = LALPTo Fw)1(FT) , therefore
[P*s F(5X)1CFM) U [P F(3X)IFN) = L P FlDI (F ),
X

: X
but uﬁx = 15

finally,
x 'x [ s =
uLer LP*e Flwy )I(FE) =[P Flig )J(x%EP* Flw;, )I(F 1)

. 'w': for X in S , so it is,

=[Pt F(iJ)1 (FS)

by tightness of F .

- 69 =



Tight separating functors are exactly the functors
preserving sums. let us formulste this as

Statement 4.7, If F does not preserve sums, then F
is either loose or it is not separating.

Remark. Denote by ’J’, Y , & the systems of all
separating, tight, loose functors, respectively. Each of the~-

(se systems is closed under v,X,o0 for functors, P is

closed on subfunctors, Y 1a closed on subfunctors and
factor-functors, & 18 closed on extemsions ( F & ¥ ,
g F’==p F'e¢ ¥ ). Every F in % splits by

==,
statement 4.3 imto F, + E; . such that g* -1 C,_::

snd F, preserves sums.
Itis 1 € PA Y , constant functors C(, are in

Y, N,P* pBe it B € % for card M = 2.

Y M

Turn now to range functors.

Stategent 4.8, If G does not preserve the product of
a family { Xxl o € A} , ‘then it does not preserve the
product of any family {Y la € A} - with card Y, =
> eard X, for all o« in A .

Proof. Choose for each oc in A mappings <
— Yo, %% > X, suchthat e < =9 . Deno-
te (X,'Lq:}) and (Y,{yrﬁ;) the products
of [le and {Y § ,respectively. Define mappings

:,X‘-»

L3 X—>Y anmd x2: Y—> X by
10) N P AR o = afe 1.
o< o o 4 o o -

Tt 18 then £ » £ = "x .
Assume that G  preserves the product o LY ? end



show that then it preserves the product of {X_7 too:

For an arbitrary family 11X §, X, € GX, for

& in A there must exist 4 in GY such that

(GJTOZ)(@) = (64 _)(x, ) , and, using (10), we get

(6% ) ()= x, for x =(Gr)(gy ) by easy calecula-

tion. The element x with (G’\ﬂf‘)f Ix) = X must be

unique, since (GaX)(x,) = (Gn})(x,)  1implies

(Gar) ), )= (GaY)(y,) for 4y = (Gi)(x,) , apy =
= (G )(.xz ) by simple calculation using (10).

Next three definitions reflect certain properties of
the functors not preserving products.

Let $={leope)\3 be a famlly of sets.
Denote by ( X, {.fr:? > its product X = T X_
with. .Tr: s X.— X, =~ the ordinary projections. If a

functor G does not preserve the product of the fami-

1y ¥ , then either

(I) there exists a family {x 1, X_ € GX_
% € A7such that there is no x in GX with
(GAE W x)=(x ) for all & in A ,

for

or
(IT) there exist two points X, 1in GX, x #* 4,

such that (G'n: WX) = (6.@)(9) for all o in A .

Definition 4.3, A functor G not preserving pro-

ducts is said to blow up products if for some family of sets
the alternative (II) takes place. If, moreover, the al terna-
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tive (I) takes place for no family, then G 41a said to

inflate products.

MM. A functor G not preserving products
is saild to filtrate products, if for an arbitrary family
({ Xo |t € A3 with the product <X,£a'rx]> the fa-
mily of mappings { G low € A} is separating on GX

in the sense that

(11} Va e AWGH, )(x)=(Gm ) y))=> x =y

for X,y in GX .

Remark. The system of all functors with the propert;
(11) is closed under V X , o and subfunctors. We obtain
the system ‘f of filtrating functors by removing functors

preserving products.

Definition 4.5. A functor G  guperinflgtes products
if there exists a family { X _laa € A} of non-void sets
with the following property:

There exist X, 4in X_ am a4  in GX_  for

ol
all o« in A such that, denoting < X, {7, 3% > the
product of {X‘} , for an srbitrary set S  and mappings

6,: XvS—» X, suchthat 6 |X =7,  and
a, (k) = X, for all 4 4n S , it holds

caxd {2 e G(X v S)(GEIZ) = g, for all o
in AY > 1+ caed S .

Statepent 4.9. The functors N, 3, (P7, I >  super-
flate products. For the system N of functors superinfla-
ting products it holds:



(cc) G has a subfunctor belonging to ¢ =% Ge I,

(BY Fx 2 c for any functer F

() F 4s a covariant faithful functor => Fo L c 2,
NeeFca,

('} F, G are contravariant faithful => Fe G ¢ 7 ,

(€) F 1is contravariant faithful or constant, G € 9L =~»
= (F,G>e 9 .

Erocf.
1) N  superinflates products; choose X ‘= {a, 63,
Xpo=4c,dd, x=0a, x,=¢,4,=1{a,4% y,=ic,di  then
the family {X X,3 and poimts X X, 44,7y meet
the requirements of the definition 4.5.
2) {3 superinflates products; choose X =4{q, 0,3

2
m=1,2,3,,.,%X,=a,, o, ={{a,¥,1a,, 6, %% , then
the (countable) system {X, Im=1,2,,.,% end points
Xp oY meet the requirements. (If carel S < &, use
the fact that {x e BX | (A, Nx) = 7, for
m=1,2,...3 > 92" , 1f ecaxd S 2 %, , then use
card 35 = 227 )
3) <PT,10 superinflates products; again choo-

se the family { X X, 3 where X1={a,b3, X, =

= fe,dl x=a, X,=¢, a,: P7X, — X, 1s the con-
stont mapping to @ , a4 : P°X, — X, is the con~
stant mapping to ¢ .

The assertions () = (€) can be easily proved with
aid of the Proposition l.l.
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5. Covariant ease. We suppose always F+(,, G ¥* G-
Iheorem 5,1, Let A (F, G, A) be & categary whose
type A ={ae.z A< f3% contains zeros, say, &, = U . Then
A (F,G,4) has producta if and only if G  preserves

products.

M. Ir G .preserves products, then, clearly,
A(F,G, A) hes products, so we have to show the con-
verse implication.

Take an arbitrary family { X, l<c € A ¢ of non=-void
sets and choose a family { x € GX_,_ | x € A3 . Denote
(X {7 Ix € Ai) the product of {X $ with 7, = the
ordinary projections. We must show that
(a) there exists an element x in GX  such that

(G.ﬂ;‘)(‘x‘) =X, farall o« in A,
(b) 1f for some X,y in GX 1t is (G )(X)=(Gm XNy)=
=X, for all &« In A , then X = 2 .

By theorem 2. 2 , the category A(F , G, {0,13 ) *)
has pseudoproducts. To show (a), take the family
{( X, 105, %)l a € A} of objects of A(F, G,

f0,13) with operations defined so that for each o
x o
K e A , selects X in GXW and A carries
the whole FX_ into X o
Let < (S,4¢°, o’y , 16 3> be a pseu-

doproduct of this family. There exists a mapping fr: S— X

%) Unary operations play no role in our proof and it works

in the case %, =0 for all A, A<}, as well.



such that

(1) G - e h for all oc in A .
Denote 4 the element in GS  selected by 0;5 . For
X = (GM)(H) 1t 18 (G NX)=(GIL)e (CRI()=(GE N A= X
for all oc in A , as required.

To prove (b), assume (G )(X)= (G I(y) = X,
for all ¢ in A , and, take inverse bounds<(X,{c", o1),
£33 wth ¥ eelecting x am &' carrying FX
it X amd (X, 4, X 3), 4743 > with @)
carrying FX into 4 veoiccted by a)‘x. .

Let £, g : X —* S be the respective factoring
morphisms, that is ‘
@) I =6 of=6_09g forall «c in A,
and, in particular,
3) . (68X (x) = Ggir(y)= 5 .

By (1) and (2) we get M ef = ho g = 1, which

applied to (3) gives X = Yy = (Gh)nr) .

Consider further only categories A (F, G, A )  with

a completely positive type A = { 2, 1A < B3, i

%, >0 forall A, A < /5. 4s a corollary of theo-

rem 5.1 we get
Theorem 5,2. If F@ #+ @ and G does rot preserve
products, then a category A (F, G , A) has not products.

Proof. Assume that ‘A (F, G, A ) has products. Then
A(C,, G, {13) has pseudoproducts, by theorems 2.1 and 2.2,

since Fg@ # @  means that (,  is a retract of F .

Now, unary operations ot X — GX Just
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select a point in G X , therefore A (C,, G, {13)
coincides with A ((C,, G, {07) which fails to have.
pseudoproducts by theorem 5.1,in contradiction with our as-

sumpt ion.

Theorem 5.3. Let A(F, G, 4) be a category of
atype A ={2,|d< /37 with arange-functor G not
preserving products.

If the functor G.,eav F 1is loose for some A A< f3,
then A(F, G, A) has not products.

Proof. Assume G”r o F loose. Combining state-
ments 4.4 and 4.8 of the receding section find a

set X such that a"r e F is lose on X amd G
does not preserve a power < XA ,im, 1l € A3 D far
a suitable set A

(1) Denote P = XA and first assume that for some fa=-
mily { x, € GX|x € AJ there is no point 72 in GP
with ((CGm YV (v) = X x for all o in A .

Using the notation introduced in statement 4.5, define
operations 0 1 (FX)*—GX, x e A, A </b , as
follows:

Choxse zn element a in X and an element d in the

part [P*e G (w11 (G1) of G2 , denote D} =
= A [Pe Gy o F (X V1(FD), dy = (Gu V() , ena

o«

d, for te D
(1) g (t) = *{

L]
X, for te(FX) N\ Dy

Define (2, {0‘:? ) by o::(f): d  rfor =11 t 4n
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)
(F2) 2 and note that every Waxx , x€ X , 18

a morphism of (2, {0":3) into ( X ,{0,°F) , since

( Gw;’;)(d )= (Gug’; d) for every X in X , The-
refore <( 2, 40':3), {w:q“)}) with an arbitre-
ry ¢ :A— X 1is an inverse bound of the family
X, 4o Iwe A} = & .

Suppose that ( (S, {0':1 ), {6,3 > 1s a product
of £ and denote S : S — P the mapping uniquely
determined by

(5) 6, =g M forall x in A .

Denote £, : 2 —+ S, xe X , factoring morph-

isms of inverse bounds < (2, fo23) | {w_‘_’;m,i >  with

¢(x) = X for 811 &« in A , i.e. "“Q}.{, ’Jx"fx
for all & in A .,
Then for a mupping = ¢ X — S defined by T (x) =
- - X = =
£, 1t 18 x = wX (1) = g o f (1) =g Tx),
hence

(6) q"o’va'ix for a1l & in A .

Now, by statement 4.5, choose t in (FX )x"\ D: ,

€,
denote 4 = (Fz) 7~ (t) ,v=(GhI)(Z(»)) , md, using
(5) and (6), get

s S
(G ()= (G ) e (GhI(0 (#)) = (GG )0  (»)) =

%.) ) )
= % (F T ) = o (Fe ™2 (P )Vt )= o 1=

for all o in A , in contradiction with our assumption.

(II) Assume further that (I) happens for no family in GX ,
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e GX|ax€ A there are

but for a family { X _
such that (G ) (V) =

v,zr' in GP, 'U’:F’I/'”
for all « in A .

=(Gm (v’ = X
fo1)l e A}

Toke again the family {( X ,
with operations defined by (4) and suppose that it has a
. S
<(S,10°3) , 167> .

product
(P, {073) , {35 ama

Define inverse bounds

<« P,{wl,:i), £33 > as follows:

Define w: X—> P by ;o =
a
DP ’pVP[P+° a¢ °F(w(«.m)fl-

for all o

in A , denote Y1(F2) ,

d acewﬂmm‘,nd) and put o (u)= W] (u)=d,
for ue:D:, P(M,)-_'zr,ca:(u,)-v—' for

e, F(g)J(CFX)‘“\ D), on the rest of (FP)" *

umelPte@
define O’; and c.): so that all 1, become morph-
isms, which 1s possible by our assumption.

Note that sll W;“,ﬁ_ , fL€P , sre morphismspof
and (P, {a)$).

(2,{0') 1ntoboth (P, {qf3)
Let £, ¢': P— S be the respective morphisms of

v ?
P P S
(P,{O'a_i) and (P, {a@w, 3) into (8 ,{o " 1)

with T = @ o $=6_ o for all « in A .

Together with (5) we get oo £ = o’ = 1, ,
so £ and £’ are 1njection§ ad, it cennot be + = £,
since then it would be « e (FEYTlu) = (G#) (v) =
=(6£) (v*) for any 4 inlP? *Q,, oF‘(@)JC(FX)"'\ ).
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Therefore it is £ (n*) =+ ' (n*) for some
.p* in P .

Now, ((2,{0:3) ,-i:rr-awP «3 > 1s an in-

o w@In
verse bound of £ with two different factoring morphisme
through <(5,{o’:}), {G_‘f>_, namely,
P y P i
4 e ‘w’(“‘_,ﬂ. and F L4 W‘“(‘,ﬁ‘

As a simple corollary we have

Theorem 5.4, If F is faithful, G not preserving pro- ‘
ducts, and, A contains a number %, different from 1
then A(F, G, A) has not products.

Proof. G, ° F  has a subfunctor a"a which

A

is loose for 'c)e:‘L > 1.

Theorem 5.5, If F 1is not separating and G  blows up
products, then A (F, G ,A)  has not products.

Proof. Assume that for a family { X_lox € A} with
the product P, {7 3 ) there are v, 7’ in GP,
v % v’ such tﬁat (Gm ) (v) =(Ga ) (v?)  for all
oo in A .

. Take a family {(Xa’;o;")\ac.é/\? of ob-
Jects of A(F,6 G, 113) with 0;(‘&)3(6'.11’”)(1)’) for

all t in F’X“_ , *« € A | and, suppse that the family

has a pseudoproduct < (S, o), {6,1)> .
Define inverse bounds < ( P, o, ), {m 3> ana

(P, o), dimi > vy G(t)=v, ¢ = v’
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for al1 t in FP , denote £ ,¢’: P — S the
corresponding morphisms such that m = 6;. f = 6, e £/
for all «x in A .

If F 1is not separating, then there exists an element
£t in FP  such that (Ff)(t) = (FF)(t) = w .

It is then
(7) (G£)Y () = (Gf-")('zr’)=¢7$(,u)'

Now, ¥ and +’ have a common retractionfr:S — P
defined by O;_ = I e h, x € A , that i, h o f =
*fof’ = 4P . Applying to the identity (7) we get +» = 27

- a contradiction.

Let us call a type A = {2, | A < f3 ] with s, =
=/ for all A,A < (3, aunary type.

Theorem 5,6, A category A (F_ G, A) with G
not preserving products and whose type is not unary has pro-
ducts if and only if F@ = @, F* = C: and G

filtrates produets ( F* is a range-domain restriction to
non-void sets and mappings).

Proof. If A (F, G, A) has products, then F
1s neither loose nor faithful. Therefore Fw‘xx = Fw'y’f

for arbitrary X, 4y in X and F 'urxx is - by tight-
ness - a bijection between [4 and F X independent
of choice of X in X . Putting € = Fw ¥ we obtain

s nat. equivelence ¢ : CX —» F* .
Since F is not separating, O must then, by theo-

rem 5.5, filtrate products.




The condition F/J = 7 has been established by
theorem 5.2+

Assume, conversely, that the conditions imposed on
F and G are fulfilled. Let

X=X, {0 lA<B7)ec € AT be an erbitrary fa-

mily of objects of A(F, G, A). Let (P, f37.3 >

be the product P = G‘I& X, with ordinary projections.
If, for some »m in M%a , there is no . in GP

such that (G ) () =0y (mm) forsll a in A ,

then every inverse bound < ( Y, {ani ), 4,3 of

X must be void and is, in fact, a product of £ .
If, for every m 4in Mx", A < (3 , there exists so-

me 4 in GP such that ( G Y (w) = a';(m)
for all o« 4n A , then < (P, {0y ), 4, 7>  with

a; defined by
o

(Gm gl = o for all o in A
is a-product of X .

Theorem 5.7. A category A(F, G, 4 ) with a
unary type VAN and G filtrating products has products
if and only if F 4is a tight functor with FJ = J  1in
particular if F  preserves sums.

Proof. The condition is necessary by theorem 5.3and 5.2.

Let £={(Xx,{0;3)loceA? be an ar-
bitrary family of objJects of A (F, G, A), let
< X,{m I« € A3> be the product X =_IT X .  with

ordinary projections JT_ , o« € A .

Define a system ¥/f of admissible subsets of X

- 8] ~



by the condition that M e ‘U if and ;only ir fort eve~

ry t in FM , there exists a family { 4, € GMIA<3}

such that

D) e [F (e i%)] ()[GUL 4,3 (4,) for all oo

in A , ‘

where i¥: M —s X 1is the inclusion of M imto X .
Since G filtrates products, the family {f« 7 4s

uniquely determined by t ‘and <(M,{cr;'3 ), tar . i': 3>

with o'(t)=u, for t in FM _becames an inver-

se bound of ¥ .

Denote S =U U = the unicn of all admissib-
le subsets of X , é::M—%S,Me,‘E/L, - the

inclusion of M into S . Since F is tight, we have
by statement 4.6 -

+ ;S =
W&, [PYe F(Z)1(FM) = FS

therefore, for every A 4in FS | we have (F‘i:)(b?.s

=(Fi:| ) ('L')’ for some admissible set M and. t inFM.
Putting v = (6L, Yo (t)) we get

00 [F(m eif))(n) = gfe LF (Mo iy )](4) =
=[G (7 0 i% )10 0 Ct)m [G a0 151+ (G i) )00} )= [B(. i5 N,

therefore S 1s admissible. Moreover, it is easily seen
that ‘Lfo is a morphism of (M, {O}‘tM 3) into
(5,4083) -

It remains to show that <( S, {o': 1,
. i) 3> 1s a product of X .

Let (Y, {0 3), i7_3> be an in-




verse bound of ¥ , 1.e. q‘OCFQ‘)=(GQ¢)'O&-y

for all ¢ in A , and let £ : Y —> X be the mapping

uniquely determined by I e h = N, * € A .

Denote M = (P*h)ICY) and let z?z:Y—-»M be
A

the range restriction of 42 . Then we have f2 = 1 o B

(%
and Ne = T * 1}:' ° j\p , therefore

(2) o s LF(a i) ))e(FR) =[Gl eiy)) =GR, .

Now, for every t in FM there exists an ¢ 1in

FY sueh that (F .5 )Cag) = t . By (1) and (2) it must
be M
(Gh)e gl (y)=gct) =g < (FRh)(y),

Py y ™M

therefore 4/ is a morphism of (¥, {;"3) omto(M, {0;3),
M  is edmissible, and f: -i:' e B is the unique

factoring morphism of (Y, {or;! ) into (S, {0: 1)

such that 7 = (% e i))e £ farall « in A .
As a corollary we have
Theorem 5,8, A category A(F, G, A) of a unary
type and with F  not preserving sums has products if and
only if F  is tight with FZ = @J and G filtrates
or preserves products .

Proof. If A(F,G,A4) has products, then F
must be tight by theorem 5.3, F@ = g by theorem 5.2,
therefore it cannot be separating and G then cannot blow
up products by theorem 5.5.



The converse has been asserted in theorem 5.7.

Theorem 5.9, If G superinflates products, then
A(F ,G,A) has not products.

Proof. Having in view the theorems 5.1, 5.6, 5.8, we
shall have only to prove that A (F, G, A ) has not
products in the case of a unary type A and the functor

F  preserving sums. Then it is F = I x CM and
thus A (F, G, A ) 1is isomorphic to some A(L,G, A")
with a suitable unary type A’ . Therefore to prove the
theorem, it will do to show that A(1, G, 413 ) has
not pseudoproducts. The proof then runs as follows.

Let {X_lox € A}, X € Xe 4y, € GX_ . enjoy
the properties stated in the definition 4.5, Let q,: Xx-}
—GX_,
very X fron Xco the element 4 . We shall show that the
family :£={cxx,a;)laceA2 of objects of
AL, G,4{13) fails to have a pseudoproduct in this

x €A , be the constant mapping assigning to e-

category.

Assume that the family % has a pseudoproduct, say,
< ( P,o;, )i lx €A3Y .Llet . be sn arbitrary
infinite cardinal number. It will be shown that card P> 4.

Let (X, {; laec A3 > be the cartesian
product of the family {4 X, loc € AJ. Let S be a set
with caxocl S > . . Define an inverse bourd £ = <(Z,q);
1 6 lae Al > of the family £  as follows:

Z=Xv5,0: Z — Xx is a mspping such

that G I X = 7

7 6 (A) = X for a1l A in S.

H
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To define the operastion 9 denote
M={zeG(XvSII(GE I(x)= ¥, for allecin Af,
Let <. be a well-ordering of S, for a given » in S,
denote S = {t eSIlt < %H3 . Foransks in S
denote further M, = MnL(P*eG)(i, )1 (G(XVvS,)),
where 1'%: Xva—a Z 1is the inclusion. Since G super-
inflates products we have caxd Mé > 1 +card S, .
Therefore, we can now define o Z —>GZ by the
transfinite induction in such a way that % (X)n % (S) =
=0, g; 1s one-to-onme on S and for every » in S
itis g (X vS§ )e M_ . Then, clearly,
(Ge ) - g = g, e 6 so Z vreally is an inverse
bound.

Let £: Z —> P be a factoring morphism, i.e.
(1) fy e £ = 6  forall ov in A ,

(2) (G£)e g .

R
°
-+
[l

We shall show that ¥ is one-one. On X it follows
immediately by (1), further procede by transfinite induction.
Let ne S and let £ ¢ €, be ane-to-one,z, : Xv S -
—» Z being the inclusion. Then also G (f ¢ i, )1is one~to-
one, therefore G f is one~to-one on M, . It remains to
show f to be ane-to-one on X v S, vis3% . Butit
would be, otherwise, £(n) = f(s’) faor some 4’ in

Xv S, , and, by (2),(GFf)e 0 (H) = (GFf)o oy (n),
in contradiction with ¢, (H) + g (&), (»), G (s VeM,
ond Gf  being one-to-ane on M, .
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Appendix

A. Although the problem of products in A(F,G,A)
is not solved completely in the present paper, we can never-
theless show that the theorems proved here clear up many si-
tuations. Let D  denote the least system of functors con-
taining I, N,ﬁ, Q'\dth M # f,closed with regard to opera-
tions v, X (over sets), o , ( —  — > (whenever
defined) and to natura) equivalence. From this recursive de-
finition of ) and with aid of the results of the section
4 we can prove easily:

If F in & 1is covariant, then either FZ * 4
or F=1 x Cy or F 1is loose;

if ¢ in D 1is covariant, then either G preser-
ves products end G = @ , or G  filtrates products
and G z‘ ‘\g Q,ML , or G has for a subfunctor one of
the functors 3, B3> I, N, N1 <KP7 15> and hence
superinflates products.

_ Therefore, from the theorems stated in the paper it fol-

lows that:

If F, G are covariant functors belonging to the
system 2D ,then A(F, G, A) has products ex-
actly in the following two distinet cases:

1) G = Gy

2) A 1fumry,F21xCM,G=Le\;'QMb.

B. Beside categories A(F, G, A ) treated in the
text it is but natural to study also the categories



P(F,G,4) whose objects are all pairs (X,0 ) with
X - aset and - a system of partigl operations of the
type A from the set F X into GX , or, the cate-
gories R (F,G, A) with objects . ( X, 0 ) - a aet
with a relational system, i.e. the system of miltivalued par-
tial operations of the type A  from FX inta GX
(see also [3]).
The authors have chosen for study the categories
A(F, G, A) since the behaviour of categories
P(F,G,A) and R (F, G, A) with regard to
products is essentially simpler. The theorem 3.1 is valid -
after some quite formal modifications - for categories
P(F,G,A) =and R (F,G,A ) . Therefore, for
faithful contravariant F, G and > A > 0  the
categories P(F, G, A) and R(F, G, A) have
not products. If F_, G  are covariant, then
R(F, G, 4) always has products and the forgetful func~-
tor preserves them. '
In situations treated in the paper, the behaviour of
P(F,G,A) aiffers from that of A(F,G, A4 ) on-
ly in the following case: If G filtrates products then
PCF, G, A ) always has products and the forgetful func-
tor preserves them. All other results and their proofs
brought in the text can be with Jjust formal changes trans-
formed to P(F, G, A) .

C. It is, of course, possible to regard a system of

structures simultaneously. If J 1is a set, then categories
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AGE G

?

Adleed), P({F:_,G;_,A“.fll.éj),

RU{F , G, A3l CeT) are defined in an obvious way.

It is clear that all proofs of non-existence of products

are of that kind that, as soon as for some L, in J
the category A (F, . G, A‘_ ) has not pro-
o o o

ducts by some of the stated theorems, then

A ({FL , G'_ , AL }lL €T ) has not products either.
Further, we can assert the following: Let for every ( 1in
J G preserves products,or, for every L €J, A be unary,
G, filtrate products and F_  be tight with & = 7.

L
Then A ({F G ,A3lce 7)) has products.

7
We do not bring explicitly the results for categories

PC...) and R (...) .

D. Let A*(F,G, A) be a full subcategory of
the category A (F , G, A ) whose objects are exactly
the objects of A(F, G, A ) with a non-void underlying
set. All the results in the text claiming the non-existence
of products in A(F,G, 4 ) are without any changes
valid in A* (F, G, A ) as well. The positive re-
sults on the existence of products are slightly different.
Completing in a simple way the proof of the theorem 5.6 we
can for example prove: If the type A is not unary,then
A* (F, G, A ) has products if and only if G  pre-
serves products.

If G filtrates or superinflates products, then



A* ( F, G, A) has not oroducts even for a unary ty-
pe A ..

The same problems on products as in A(F,G, 4)
remain open for categories A* (F, G ,A) .
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