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9 f 4 (1968) 

ON EXTENDED CONNECTIONS 

Ivan KOLAfty Brno 

Dr., Bernard deduced the fo l lowing r e s u l t ,11] fp»225- Let 

S be a G-structure on a manifold X f defined by a tensor t 

and l e t X ** a linear connection on X f then y i s an 

extension of m S-connection i f and only i f the absolute dif­

ferential of t with respect to f vanishes identically. -

The purpose of the present note i s to formulate and prove a 

more general 

Theorem. Let P be a principal fibre bundle, l e t H be 

a reduction of P determined by a geometric object & and 

let C be a connection on P f then C i s an extension of a 

connection on R i f and only i f the absolute differential of 

Of with respect to C vanishes identically* 

We remark that' our methods differ entirely from those of 

D. Bernard* 

1* Our consideration i s in the category C °° # 

Let P(BfG) be a principal fibre bundle with base B $ 

structure group 0 and projection TT and l e t g> be a 

le f t action of Q on a manifold F . By a -geometric ob.fect on 
p of type g> wil l be meant 8 mapping CTs P —> F such 

that 

(fC-u cy) -r <p (<f1)' &(a,) for every AA, e P, Q*e G . 



Consider the associated f ibre bundle E(B,PfGfP) . The e l e ­

ments of F are the equivalence c lasses { ( u , s H > u e P » 

$ £ F > with respect t* the equivalence re la t ion ( u f s ) /%/ 

^ (ug f 9? (g"'*) • 8) t g £ G • C determines a global sec­

t ion cO of E defined by 

CD CO CTT (u)) * { ( u f (T (*)) J 

and conversely, every global sect ion of E determines a geo­

metric object of type g> on P » 

Let s e F be a given element, l e t K be i t s stable 

group, l e t A denote the orbit of s in F and l e t (X be 

a geometric object on P of type g> whose values are in A. 

Suppose that A i s a proper submanifold of F (see [ l ] f p» 

171) , then 

H^ » { u i e P , (X lu)• • <J } 

i s a reduction of P to H c G , which w i l l be ca l l ed the r e ­

duction of P determined by the couple ( (T Ps) or a reduc­

tion of P determined by (7 • 

2# Let $ be a groupoid over B with projections a f b, 

and l e t 1^ be the unit of $ over x e B . Let Q A ( £> ) 

denote the fibre bundle of a l l elements of connection of the 

f i r s t order on <£> f see t 2 ] # Every X e Q^ ( <J> ) i s a 1-Jet 

of B into <f> such that cc X = x f /3X = l x > a X = ; J ^ x f 

bX * j x ( * j id& ) f where x denotes the constant map­

ping i ( t ) « x , t € B , In part icular , l e t <£> « PP~1 be the 

grrupoid associated to P , l e t R be a reduction of P and 

l e t ¥ * RR"1 be the groupoid associated to R , so that 

Y i s a subgroupoid of $>, A f irst order cmneotion C on P 

(l,e« a global section of Q.*<.$)) is caUed an ex tens ion of a 
connection on R , if CCB) c QJC¥) . 
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The general definition of the absolute differential with 

respect to an element of connection was given by Ehresmann, 

[2]. We shall use the following particular case of this con­

cepts Let X € d'1 ( <$> ) f then X can be expressed in the 

form X m j * p f where p ( t ) is a local mapping of H 

into <$> such that 

(2) pix)*!^ t a (D ( t ) * x t b t © ( t ) « t * 

Let X be a fibre bundle associated to P and l e t G£ be 

a local section in E • Then the absolute differential X" (<2>) 

pf & with respect to X i s defined by 

X"U& ) » il (rTf rU) . & ( t ) ) e J* <Bf?j, ) t 

where F is the fibre over x in E m We say that X~i{&) 

vanishes., i f X~'(<g) • J* ©(x) t where <£>(x) i s the 

constant mapping & ( x ) ( t ) * <& (x) , t e B • In particular, 

i f 0" is a geometric object on P and c*> i s the correspon­

ding section (1) in E(B$T,QJ?) „ then X**/f(o> ) wi l l be cal­

led the absolute differential of CT with respect to X • 

3. Now, we prove the theorem* 

Let P»E98tAt0' t cJ and R^ be as in item 1, then 

the aubgroupoid V * R^ R^ ctf <$ * PP~' does not 

depend on the choice of 8 6 A and i s characterised by 

0\ y « { 0 € $ ; 0 , a) (a 9) -= <vc*>a )* -

I . Let CtB —> 0.* (*f ) be a connection on *f f then 

C(x) * Si <p ( t ) f where {0 ( t ) Is a local mapping of B 

into f satisfying <2). Then C~* (x)(o>) « J^<{©"'<t) -

• O) ( t ) ) * } ^ CJ (x) according to ( 3 ) t so that C~'(x)(oO 

vanishes for every x €. B . 



I I . Let X e Ql ( $ ) and l e t X ~ f ( o > > vaniaht i . e . X 

can be represented in the form X » J* p f where p ( t ) » 

• G> ( t ) » cO (x ) ( t ) « &) (x) • Then (3) shows that the 

values of p are in y t which gives X 6 ^ (VT ),QED# 
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