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ON EXTENDED CQNNEC?IQNS
Ivan KOLAR, Brne

Dr. Bernard deduced the frll wing result,[1],p.225: Let
S be a G-structure on a meniferld X , defincd by a tenser ¢t
and let Y be a linear cennection on X , then - is an
extensien nf sn S-connectien if and enly if the abselute dif-
ferential of t with respect to 7y vanishes identicelly. -
The purpnse of the mesent note is to formulate and prove a
mere general ’

Theorem. Let P be a principal fibre bundle, let R be
a reduction of P determined by a germetric ebjct C” and
let C be a connectirn an P , then C is an extension of a
connection en R if and only if the absnlute differential of

(" with respect to C vanishes identically.
We remark thet ~ur methnds differ entirely from these of

D, Bernard.

1, Our consideratirn is in the cstegery C *°

Let P(B,G) bYe a principal fibre bundle with bese B ,
structure group G and projection 1T and let @ Dbe a
left action of G on a manifeld F ., By a geometric object on
P of type @  will be mesnt s mepping U : P— F such
that

O’(uqf)zgﬂg,")- O(w) for every 4 € P, g€ G .
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Consider the assncisted fibre bundle E(B,F,G,P) . The ele-
ments of E are the equivslence classes {(u,s8)} , wue P,
6 € F , with respect tn the equivalence relatisn (u,s) ~
~ (ug, @ (") . 8) , g€ G. ( determines a glrbsl sec-
tion cw of E defined by

(1) w (17 () ={(u, O (u)}

and canversely, every glebal section of E determines a geo-
metric nbject of type ¢ on P,

Let s F be a given element, let H be its stable
group, let A dennte the orbit of s in F and let O be
a germetric nbject on P of type @  whoge values are in A.
Suppnse that A is a proper submanifeld of F (see [1], p.
171), then

R ={weP; (O (u) =9}

A
is a reductien of P te HC G, which will be called the re-

duction of P determined by the couple ( 0 ,s) o a reduc-
tion of P determined by (O .

2. Let ® be a groupnid over B with projectiens a, b,
and let 1, be the unit of @ over xe B . Let Q1 ()
dennte the fibre bundle of 211 elements of connectinn of the
first order on @ , see [2], Every X € Ql (d) is a 1-Jet
of B into ® suchthat «X=x, 3X=1,,a =31 %,
X = jfx (= j; id, ) , where % denntes the constant map-
ping %(t) =x , te B, In particular, let & = PP be the
greapeid ass~rciated to P, let R be a reduction of P and
let ¥ =RR-" be the grrupnid assnciated to R , se thst

Y  is a subgreupeid of &, A first apder connection C on P

(i.e. a global section of () is called an extension of a

connection on R, if C(B)c QW) .
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The general definitian of the abs~lute differential with
reapect to an element of connection was given by Ehresmann,
{2]s We gshall use the frllnwing particular case of this con-
cept, Let X e Q:( (®d ), then X can be expressed in the
form X = J;go » where © (t] is & local mepping of B
inte $ such that
(2) So(x)=1x,a§o(t)=x. bp(t) =t .
Let B be a fibre bundle assnciated to P and let & be
a local section in E . Then the absnlute differential X (&)
of © with respect to X is defined by

@)=yl (@' . & tNe ] (Br,),
where P is the fitre wer x in E . ¥e say that X (&)
yapishes, if X~ '(@) = ] &(x) , where @:) is the
constant mapping 6/(:)(0 = @&(x) , teB . In particular,
it O isa gecmetric nbject on P and <2 is the correspon-
ding section (1) in E(B,F,G,P) , then X~ 7(cy) will be cal-

led the gbsolute differential of (7 with respeet to X .

3. Now, we mrove the theorem.

Let PE,8,A,(0 , w and R, be as in item 1, then
the subgroupeid ¥ =R, R,‘.‘ of & =FP-" dees nnt
depend on the ehnice of 8 € A and is characterized by
(6} Y=<{0€e $; 0.w@bP) =wd)}.

I.Let C:B — Q' (¥ ) be a connectienon ¥ , then
Clx) = 3! @ (), where (© (t) is a local mapping of B
inte ¥ satisfying (2). Then €' (x)Mw) = 3! (@ "(t) .
e v (t)) = J: w/}x) according te (3), so that 6'4(1)(&))
vanishes for every x €B ,
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II, Let X €Q) () andlet X“"(cw) vanish, i.e. X
can be represented in the form X = J; @© » vhere go"(t) .
e w (t) = a)/(?)(t) = ¢ (x) o Then (3) shows that the
velues of © are in ¥ , which gives X ¢ Q:( (¥ ),QED.
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