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S,4 (1968)

On B-CPACES
Z. FROLIX, Prgha

This is a summary of suthor’s paper "Separation thec-
rem and applications to Borel sets®” thst will appear else-
where., The results were included in a series of the author’s
lectures at the University of Bari in the spring semester of
1967-68 academic year. All spaces are assumed to be comple-
tely reguler (i.e. separsted and uniformizable). The nota—
tion of (1] will be used throughout,

l. Denote by N the set and the discrete space of na-
tural numbers, The product space NN is denoted by = .
The space Z is known to be homomorphic to the space of
all irrational numbers on the real line. The spsce =
plays an importsnt role in the classical theory. The method
of correspondences introduced in (3] allows us to preserve
the prominent role of X from the classical separable
descriptive theory in the separable theory in the class of
all completely regular spaces. If 7 1is a collection of
sets we denote by J3 (71)  the smallest collection 77 O
5 MM  thst is closed under countable unions and countable
intersections, snd we define J3, (70)  just replacing
unions by disjoint uniona, For a spsce P denote by zero(P)

the set of all zero-sets in P , and by cozero(P) the set of
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all cozero-sets in P . The Baire sets in P are the e~
lements of /3 (zero(P)); it is easy to show thst
JB (zerol(P)) = .’Bd(cozero(P)) o

If 7 and 70 are ccllections of sets, we deno-
teby [ M)A [7] the set of all MA N with ¥ im
M end N in 7 , If M 1is a collection of subsets
of P, then compl(”M ) consists of the complements in
P of elements of 7 .

2+ An usco-compact correspondence of a space P in-
to a space Q is an upper semi-continuous correspondence
({many-velued mapping) with compact values, that means, the
preimages of cleed sets are closed, and the values are com-
pact. If in addition the values at distinct points are dis-
Joint, then the correspcndence is called dusco-compact,
Usco-compact images of & are called ansalytic spaces,
dusco-compact images of 2 are called Borelian spsces,
see (31, Sections 2 and 2 . It should be remarked that Bo-
rvelian spaces are called descriptive Borel by C.A.Rogers (7],

The graph of an usco-compact correspondence into a
separated space is closed, The Souslin sets in a space sre
defined to be images of 2  under closed-graph correspon~
dences., Thus every analytic subspace of a space P 1is a
Souslin ‘aet in P , anéd analytic spaces are Jjust the abso-
lute Souslin sets.

The Boreli an spaces are characterized as absolute

( Lclosed]l A [ Baire ] )s;jd'
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where 6, 1is for disjoint countable union. In the case
of metrizable spaces analytic spaces are precisely classi-
cal analytic sets, and Borelian spaces sre precisely clas-
sical separable absolute Borel sets. In this paper we in-
troduce a wider generalization of classicel absolute Borel
sets, the so called B-spaces.

Definition 1, A correspondence of X  into some=~
thing is called a boxed correspondence if the preimages of
points sre boxes in X ,i,e. product sets. A boxed usco-
compact correspondence is called busco~compact. Busco-com-
pact images of 2  are called B-spaces.

Any disjoint correspondence on ¥ is boxed, and hen-
ce Borelian spaces are B-spaces.

Theorem 1. The class of all B-spaces contains all
(compact)gd. sets, and it is closed under dusco-compact cor-
respondences. The set of all B-spaces P c Q is closed un-~
der caantable intersections and countable disjoint unions.

It should be remarked thet a 6 -compact space need
not be Borelian (see [3],Remark following Theorem 10), whe~

reas every 6 -compact space is a B-space by Theorem 1.

3. Complete sequences. Let «w = {mn 3 be a sequen-
ce of coverings of a space P ., A &~ -Cauchy filter is a
filter 7 on P such that 7 A M % g for all
n . Finally, « 4is complete if Nel (M1 * /
for each ( -Cauchy filter on P ,

Theorem 2. A space P is analytic if and only if

there exista a complete sequence of countable coverings
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of P .

It should be remarked that spaces admitting a complete
sequence of countable coverings were studied in [4] under
the neme B-spaces. Here the term B-space is used in much mo-
re restrictive sense.

Tefinition 2. A B-structure on a space P is a comple-
te sequence ® = {mn § of countable coverings of P
such that

nM, = ﬂ{dﬂ{Mkl«ké mijlme N}
for any X, in 7, . A Borelian structure is s B-struc-
ture such that the ccverings are disjoint,

Recall [3] that a space P is Borelian if and only if
there exists a Borelian structure on P . In the same lines:

Theorem 3. A space P is a B-space if and onlyif there
exists a B-structure on P,

Remarke. It follows from Theorem 2 that the elements of
the coverings of sny B-structure are enslytic. It can be pro-
ved that a space P 1is Borelian if and only if there exists
@ complete sequehce of coauntable coverings such that the ele-
ments of the coverings are Bsire sets in P ,

The external characterization of Borelian spaces descri-
bed in section 2, is proved by using the first Separatiom
Theorem, For B-spaces we need a mich more complicated sepa-

ration theorem which will be described in the next section.

4, Separstion. Given a collection 77 of sets, two sets
X and Y are said to be 7 -separated, or sepsrated in
M ,if there exist X, and Y, in 7 with Xc X, ,
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Yc¥, ,and X, A Y, = 2.

Lemms 1. Let 777 be a finitely sdditive and finitely
multiplicative collection of subsets of a set P , Assume
that % 1is o finite collection of sets in P such that
any two dis joint elaments of

LFI1 A Leomnt (M) 1]
are 7 -sepsrated. Then for any M o2 NF, Me M,
there exists a family mM = {M. IFe 57 ranging in
M  such that FcM_ for each F in F , and
nm, c M.

E.g., if F 1is a finite collection of compact sets
in o separated space, and U 1is an open neighborhood of
N ¥ , then there exist open neighborhoods U, of F ,
FeF ,wmth NiUlFe Fijc U.

Leamg 2., Let 777 be a finitely additive and & -ml-
tiplicative collection of subsets of a set P , and let
PeMm o Assume that (1 is a countable collection
of sets in P such that smy two disjoint elements of [Z]N
n [ compl (M) 1 ere 9N -separated. If {M_ | Fc a,

7 finite} is s femily ranging in 7  such that
NF c Mg for each & , then there exists a family
{KA;A e A% ranging in M  such that K,2 A for all
A in @ , and

N{K,1A e Fjc Mg
fo each finite F c Q .

If P 1is a space, and if @ is a countable col-
lection of analytic sets in P , and if 772 is the set of
8ll Baire sets in P , then the assumptions of Lemma 2 are
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fulfilled by the first separstion theorem ([3] or [5]1), and
we get the following important

Theorem 4. Let ( be a countable collection of ans-
lytic sets in a space P , and let

{B,1Fca, F finite}

be a family of Baire sets in P such thet B, 2 N T
for each f . Then there exists a femily { Z, 1 A ¢ 2}
of Baire sets such thet Z, > A , and N{Z, A€ Ficey
for each £ .

5. Ihe main results

Definition. A space R is called quasi~-classical if
there exists an usco-compact correspondence of a separable
metrizable space onto R , A space P 1is said to be quasi-
classical at infinity if K - P is quesi-classical for some,
and then any, compactification of P o

The class of all quasi-classical spaces is closed un-
der usco=-compact correspondences, and the class of all spa-
ces quasi—classiéal at infinity is closed under proper map-
pings in both drections. For a metrizable space P it is
equivalent: 1) P is separabley 2) P is quasi-classical;
and 2) P 1is quasi-classicsl at infinity,

Tllg\ orem 5, If P is a B-space, and if Pc Q such
that Q = P 4is quasi~classical then
(x) P & ([closed ()1 n (Baire (Q)1). .
If P 18 a B-ap_ace that is quasi-classical at infinity,
then (x ) is true for ary Qo P,
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The proof is not easy, and requires Theorem 4.

Theorem 6, A metrizable space P 1is a separable ab-
solute Borel set if and only if P 4is a B-space.

For the classical descriptive theory we get the fol-
lowing non-trivial results {(easy corollaries):

Theorem 7., If f 1s a busco-compact correspondence
of S onto a metrizable space P , then P 4is a sepa-
rable absolute Borel sets,

Theorem 8, Each of the folloving conditions is neces-
sary and sufficient for a metrizable space P to be a se-
parable absolute Borel set:

(a) There exists a complete sequence of countable co-
verings of P such that the elements of the coverings are
analytic subspaces of P .

(b) Condition (a) with disjoint coverings. :

(¢) There exists a B-structure on P ,

(d) There exists a Borelian structure on P .
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