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Commentationes Mathematicae Universitatis Carolinae

9,4 (1968)

CONCERNING MINIMAL PRIMITIVE CLASSES OF ALGEBRAS CONTAINING
ANY CATEGORY OF ALGEBRAS AS A FULL SUBCATEGORY
Jir{ SICHLER, Praha

Some primitive classes of algebras contain sny cate-
gory of algebras as a full subcategory. Such primitive
classes are, e.g. the primitive class of semigroups (1],
the primitive class of commitative groupoids [5], the pri-
mitive class of all algebras with two unery idempotent ope-
rations [4).

The natural question arises - are there minimal (with
respect to inclusion) primitive classes of algebras of given
type with the mentioned property?

For the precise formilation of the answer we need so-
me not ation.

By concrete category ( X, 1)  we mean concrete ca-

tegory K together with a fixed forgetful functor (I .
Categories of algelras are treated as concrete categories
with the usual underlying-set forgetful functor., Full embed-
dng ¢ : (K,0,) — (£,0) is a ene-to-one
functor onto a full subcategary of £ . A castegory (K ,0)
into which sy category of algebras can be fully embedded is
called binding (see [2]). A full embedding ¢ is called
strong if there exists a set-functor F with [J, o ® =
c Feo O, . Acategory (¥, O) is strongly binding,
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if any category of algebras can be strongly embedded into
it. The class (L (1,1) of all algebras with t wo unary
operations is strongly binding [3] ,as well as the class of
semigroups [6] (7] , eand commtative groupoids [5].

A sequence A = {2 |l oo < B 7 of ordi-
nals, indexed by ordinals will be called a type. (L (A)
designates the class of all algebras of the type A , De-
nte A = {2 €Aloe, >0%¢. ZA.-.‘gﬂae,o
means the usual sum of ordinal numbers.

The main result of the present note is the following
assertion:

Every L (A) for A= 2 and card (A’) = 2
containe a minimsl binding primitive class X, . ¥, is
strongly binding.

Note that L (A) 1is strongly binding if and only
1f 2 A 2 2 ([2] md (3] ), so that the requirement
card (A’) 2 2 is the only essential assumption of the
above assertion. Thus, we have

Problem 1, Are there minimal primitive classes X <
c W(A) 1in the case of card (A" ) = 1 2

This problem is not yet solved.

Notation. Let & < (L (1,1) be a primitive
class of all the algebras ( X 53 ¢, ) (X is a set,
g X -> X end 7y : X — X are unary operations)
such that

I
]

P y) = (o y)(2)

y2xX)= yliy) = (¥ o ¢)(2)

p2(x)

fa every x, y, z in X._bza_



Theorem 1. The primitive class & is strongly bin-
ding.

Proof. A strong embedding & : £ (1,1) — &£  will
be constructed as follows:

For A = (X300, 3) = an object in (1,1) -
put ®CA) = (Z; ¢,y ) , where

Z = (X =xF)u “"x?f’x i

(XXQY)ﬂ{a«)(,‘ef,}g’g'

The operations & ¢ Z —> Z , 3 : Z —» Z  are defi-

ned as follows:
SEX,0)) = pX,5)) = (x,3> ,
PUX, 1>) = (0 (X),3> ,
PEUX, 25) =<B(X), &> ,
PX, 35 =X, 4 =g@)= o) =a,,
PR, 65) = &,
YEX 00) = YwEX,23) = y((X,65)= <X, 42,
YPCX, 1) = <x,3> ,

Y(<x,3>)

h

Y (KX, 45) = yla) =y ()= &,

VX, 50 = &y
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A bit of éomputation shows that & (A) e &£ .
Far A’ = (X'; «’, 37) let us denote & (A’)=
= (25 ¢/, y"), = (X'x ¥)uia,, &, 7 end for £1 X
- X’ put
P (KX, 1 ) = {F+(x), 1> if xe X,
£ = 0y:0.,6 ,
dtia) = ay

ot (&) = J%X .

It is easy to see that for any homomorphism f: A —
—+ A’ the mapping & (4£) 1is a homomorphism in &£ . Hen-
ce, $ : A(1,1) — & is a functor, it is, clear-
ly, one-to-one.

It remsins to prove that $ 1is onto a full subca-
tegory of CZ2

Teke F : O (A) — P (AY) - a homomorphism
in &
As a, ( Qs resp.) is the only fixed point of &

(of g’ resp.), then F(a,)= @, - Similerly, ue-
sing ¢ snd 3y’ , we find that F (£, ) = &, -
Note thet & ({45 ) = X x 46} end ¥ '({a, §)=
= X » {5% enalogously for P (A’) . It follows
F(Xx{53)€ X'=x{53 , F(X={6}) X =x{63 .

Let us denote ( £(x),5> = F(<x,5>),<g(X,6)>=F(x, 6>).
Now, we have F (<X, 4>) = F(y (X, 6>) =¥ (FKx,6>)=
= 3 (Kg(x),65 = <G (x), 4>, F({x,3>) =

= FlgKX, 5 >N =g (K£(x),55)=<f(x,3> . It follows

-630-



HF(x),3>=F(Kx,3>)=Fyrx,1)= v (Fx,15).

But (y/)T({<#(x),3>7) ={<$f(x),1>7 ,  hence
F(<x,1>) =<f(x), 1>,

Further, ¢’(F({X, 0>)= FlgrKx,0)) = F(Kx,3>)=
=<f(x), 3> and Y(FKX,0)>N=Fyx,00N=<g ), 4.
On the other hand, (") '({(x,,353 N(y ) (4<x,, 433 = &
for x, * X, em={{x,,0>3 for x, =X, . Thus
F(<x,0%)=<g(x),0? = (f(x),0> , t.e. f=9
F(K<x,03) = <£(x),0> .

Finally, ¥ (F(Kx,25)=FKx,4>) = <f(x), 4>
and (Y UCECx), 4 53) ={CF (05, <F(x), 25 , <FUx), 65F +
Ift F(<{X,2>) = <f(x),0)> , then FI<A(X),4>)=
= Fl@x,2>N) = ¢/ (F(<X,0>) =<f(x),3> -a
contradiction. If F((X,25>) = <f(x), 6> , then
FBIXYH4>) = p/(Kf(X),6>) = &, =~ acontradic-
tion again.

Thus, F = P(+) , ¥: X — X’ . Moreover,
f 1is a homomorphism, £ : A — A’ as {f(x(X)),3>~=
= FKot(x), 32) = Fl@p (KX, 15N =GUF (KX, 13 W= (<F(x),1>)=
=Cou/CF(x)),3> and <F(B(X)),4>=F(p(<x,2>)) =
= (KF(X),25) = <BFCXD), 45 .

This concludes the proof.

Remark. A binding concrete category (3 ,0) has
the following property:

For any cardinal number of there 1s an object A €
(P){e(’x’ﬂ) such that Hom (A, A) =4A and
caxol (O(A)) = o
(ef.[2]).
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Theorem 2, No proper primitive subclass of &£ is
binding.

Proof. Note that for any slgebra (X ; &,y) in
¥ both ¢2? and 3 ? are constant mappings. Denote
@2 (X) = {as , y2(X) = {4£¢ . In particular,
@) = a=9@), y@)=r=y&).let w=w(P,y) =
= q;k"o zyg’o...cph”a 'qrz"‘, v =1 (¢, y ) be words in ¢
end ¥ . Let us denote L(w) = Sh; + =4, .

(1) Let £7 € & be a primitive class in which @
equation (@ o w )(X)=@ew )(X) holds. Then, in
particular, (@Yo w)(a) =(y » ») (a) . It follows

e =b . Every algetrse A € &, has the constant map-
ping connt, as an endomorphism., &,  is not binding
(see (P))o

(11) (gow)(X)= (e 2)(Xx) holds in L &
e¥.1t L(w)> 0 < L(v)
quation follows from the eqations of the class &£ ., If

5 then the above e~

L(w)=0, thn a = ¢?(x) = @(x) end &
is a constant mapping. SC,, is, in fact, some primiti-
ve class in- (X (0, 1) , hence not binding.

v (111) (¢ o w )(X)=(yeo 1r)(X) = the same
as in (ii).
(iv) From (g o w)(X)= X it follaws a = ¢ (X),
x = a ., We have a trivial. primitive class.

(v) (¥ ¢ w)(x) = X is quite analogous
to (1V)o

Proposition. In general, strong embedding does not

rreserve primitive classes.
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Proof. Compose the trivial strong embedding £ —>
—» UL(1,1) with strong embeiiirg & : £ (1,1) — X£.

Theorem 3. Let A = {2, |0 < 3 % be a ty-
pe such that S A 2 2 , card (A7) 2 2 . Then
X (A)  contains s minimal binding primitive class X .
The class X is strongly binding.

Proof. Algebras in (L (A) have, due to the ss-
sumption, at least two at least unary operatiens. Suppse
s¢, > 0, %, > 0 ; operations will be dencted by
Wy (€ < (3) .

Let us define a primitive class X € CZ(A4) by
following equations:
w; (X, ng,e-) = @ (X,2,...)

W; (e (X000 )y )= @ (@) (gyyeen), een)

for i, § = 0,1 . Hence, any algebra (X ; {a, | < [33)
with X = #  hes elements a,b such that

W, (W, (X,:ee);00.) = @ ,

Wy (@ (X5.0)y0) = & .

Let us finish the list of equations:
W (x,..)= &, (x,...) for o« > 1,23 >0,
We = @ for %, = 0 .
It is easy to see that J 1is an underlying-set-preser-
ving copy of & in (£ (A) end that primitive sub-
clasges € &£ and X are in one-to-one corréspondence.
We conclude that X is minimal (strongly) binding

primitive clase in CL(A) .
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Remark. There does not exist a smallest binding pri-
mitive class in L (2) as well as in (£ (1,1) . It
follows for CCL(2) from the fact that semigroups and
commitative groupoids form binding classes, but not their
intersection, For CL (7,1) it follows from [4].

Using those facts and srgument similar to this used
in the proef of Theorem 3, we obtain that in no (£ (4)
with A = A’ exists s smallest binding primitive class.

Problem 2, Does sny binding primitive classe X <
€ (A) contsin a minimal binding one?
Problem 3. Describe all minimal binding primitive
classes in CL (1,1) .
Problem 4. Is the class of semigroups & minimel bin-
ding primitive class ?
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