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GRADIENT MAPS AND BOUNDEDNESS OF GATEAUX DIFFERENTIALS
Josef KOLOMY, Praha

Introduction. There is a number of papers devoted to
the study of properties of gradient mappings. The following
result is essentially due to E.S. Citlanadze {1),[2]{see al-
so [3,§ 7]) : Suppose X 1is a reflexive Banach space with
base, f a continuous functional on X which is weakly con-
tinuous in the open ball Il x | < R+o (R>0, & >0)
and such that f possesses the Fréchet derivative f°(x) on
the bell D (Ix Il « R ) ., Assume that the remainder
w(x,h)of £(x) (i.e. w(x, h)= (X +Hh) - f(x)~
- #(x)# ) is uniform on D (I x # < R), Then the gra-
adtent map F(x) = /(X)) 4is compact on D (Hx Il < R).
In [1,2] there are also established the sufficient conditions
under which e gradient mapping is strongly continuous on
D(Ix Il < R), These results have been extended by M.I. Ks-
dec [4] ta separable reflexive spsces X without assuming
of the existence of the tase of X and by V.J. Anosov [5] to
nonreflexive spaceswhich satisfy a certain restrictive con-
dition. Another results in these topics have been obtained
by E.H. Rothe [6],[71,(81.According to Rothc [81 a Banach
space X 1is said to have the property ¢(P) if there exists
a sequence | z;ri’"} o linearly independent elementa V»i*
of X*¥ (X*isduel o X ) and @a number M > (0 with
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the following mroperty: closed linmear span of {1//4* 7 is
X* and for esch positive n there exists a linear projec-
tion f norm at mest M on the intersection &ﬁ N; , where
N, = {xe X: YyX¥(x) =03 . The main result of [7],[8]
is as follows: Let X be a Banach space with property (P) ,
f @& functiomel defined on a convex sutset V c X . Assume
f possesses a continuous Fréchet derivative f£°(x) in V ,
Then the following condition is neceesary and sufficient that
a gradient map F(X) = f/(X) be completely continuous in
V i For each 7 >0 there exist functionals <} ¢ X* ,
i=1,2,...,8 , such that
12 (x+ ) =fC)< Nbll, XV, x+heV

for all A € X which satisfy the inequalities
le*chrl< F i, G=4,2,..,N).

T. 4néo [9] has established the sufficient conditions for the
ccempactness of greadient map in Banach spaces X without the
assumptiom of P-property of X . Recently J.W, Daniel [10]
has established the result of E.H. Rothe [6][7]1 to collecti-
vely compact sets of gradient maps.

The purpose of this note is twofold .In § 1 we shall es-
tablish sufficient conditions for the strong continuity of
gredient map F (X) = $'(x) where a potetial f is a

convex subadditive functional with $(0)= 0 meanwhile

?
§ 2 deals with the bound edness of GAtesux differential
VE(x, , M) where € is a continuous functionsal on the
space X of the second category (in particulr on compléte spa-

ces). Moreover, the boundedness of “"homogenecus® maps is also
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considered.

Notstions and definitions. Let X,Y be real linear normed

.

spaces, X* a dual of X , E, a set of allreal numbers, f :
X — Ed a functioml of X into E,; . We shall use the
symbols "— ', *—%5 ¢ 5 denote the strong and weak
convergence in X ., A functional f 1is ssid to be
(a) corvex on a corvex subset M < X if for each x, y €
€ M smda A€ <0,1>

FOUX + (1-A)y) & Af(x)+ (1-2)F (),

(b) subadditive on X 1if for every X, y-€ X
flx+y) £ f(x)+ f(y) ’

(c) weakly continuous at X, € X ir xﬂ-"% X, implies
FUXp)—> £(X,)

Amapping F: X— ¥ o X into Y 4s said to

be
(d) compact on M c X 1f for eech bounded subset N ¢ M

F(N) is compsct in Y (i.e. each sequence {4z 3 € FCN)
contains a subsequence { Mg, § which is convergent in Y },
(e) strongly continuous at X, € X ir X, € X

Ko 5 X, implies F (X, ) — Fdx,) .
(f) completely continuous o V ¢ X if F is compact and
continuous on V »
(g) bounded (a functional +: X — E is called
upper-bounded) in X if for each bounded set M c X ,
F(M) 1is bounded in Y ( £f(M) is upper-bounded).

For Gateaux, Fréchet differentials and derivatives we

use the notions md notations given in Vajnberg’s book [3,
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chapt.I], let F be a mepping of X into Y . A Fréchet
derivative F'(x) (or Fréchet differential d F(x, 4 ) )
is seid to have an unifarm remainder o (X,fh) on Mc X
if for any € >0 there exists J°> (0 such thst

D< i< = lwix, L)l < € 10l
for each X € M | where wix , P )= Fix+) - F(x)-Fx)h
tor w (X, )= Flx+h)-Fx)~dFix h))y,
Assume that a functional f: X — E, has the Fréchet
derivetive £(x) on M c X. By gradient mapping F :
M —> X* there is memnt a map defined by F(x) = f'(X),
X € M, We denote by Dg  a clesed ball centred about
origin with radius R > 0 . Throughout this paper we con-
sider the finite functionals only.

§ 1. Gradient mappings. We shall prove the following

Theorem 1, Let X be a reflexive Banach space, DR a
closed bsll in X , G an open comex subset of X containing
Dy + Suppose £: G — E.,, is a convex subadditive
functional on G with $(0) = 0 and that f is upper-
bounded on some convex cpen subset M = 4 of G . Assume
f poesesses the Fréchet differential df(x, /) on Dy
and that the remsinder co (X, A ) of dAf(x,f) is uri-
form on D, . Then the gradient map F(X)=+4"(X) where
£°(x) denctes the Fréchet derivative, is strongly continuous,
campact and uniformly contimious on J; and f is weakly
contimos on D, .

Proof. First of all f is continuous on G by Theorem

- 616 -




2 [11,11,§ 5]. Let x be an arbitrary (but fixed) element
of Dx , M, —0, h,e X.Then

Ik 80x, B, 0 & 14k + B, ) = FCx) |+ 100 (X, g DL
The first term on the right side tends to 0 as M —> &

by continuityof £ on G whil o (x,%, ) — aw as
m — 00 by our assumption and in view of 41, —% 0 . Be-

ing df (X, 4) linear in 4 € X , continuity of
df (x, &) at h =0 implies df(x,f)=Ff(x) M
for each x € Do . Assume {x, ¢ € D, X,€ D >

X, ~—°‘-£r X, . Suppose on the contrery that £°(x) is not
strongly continuous in X, .Then there exist ¢, > 0
and the subsequence {‘x”"k? such that

(1) /(g ) = £ (X1 > € .

let h be an arbitrary element of X with [H | £ 1.
Then for t > 0
$ (X 4 t ) = F(Xng)) = £/ (Xmg VP + (X, th),

f(x+th) - £(X,) = Pl It + @ (KXo, t B) .

Hence

(2) 4'(xﬂm)th —f (Rt = f (Xpp + th)—f'(.xﬂ:k ) -

W (X, I+ £(X,) =X+ tA) + (X, , tH) .

For sufficiently small t > 0 Wwe have that X, r
f
lth eG,XxttheG, th 6. sine
additive on G ,

£ is sub-

(3) £ lx,, +th) - Fompe ) & £CtH) .
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Employing convexity of f we hsve that
fx)-F(X,+th) € €-th) - f(X,)
and by subadditivity of f
(4) Flx,)=Fflx, +th) & F(-th) -
By our hypothesis
fF(th) = £(0)th + @ (0,th) ,
) *f(—th)=—-F’(D)fh+a)(0,t(—h)) .
Since f 1is convex and posmesses the Fréchet derivati-
ve f'(x) on D; , there exists a number t > ( such thst
for each t e (0,t ) we have

0£w(,th) < 7etlhl ;
(6) 0 g w(,th)< § &t Ial
02 wix,th) < 5 &t 1Al

By our hypothesis the remainder w (X, A ) of f£(x) is uni-
form on DR . Hence there exists a positive number t, such
that 0 < t < t implies

M 0 ¢ @(x, ,th) < Z & Lal

o

far each k (k =1,2,... )o The relations (1) - (7) ioply
that
f’(x,%)toh -fx )t < gt 1hl.

Hence

(8) £ (%, ) B = #Cx ) < € 1l

On the other hand, using the following inequalities
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F (Xt th)=F0X,,) 2 £Xy ) = Fp = th)2-f(-th),

fx,) - F(x, + th) = —F(th) ,

employing (5) with changes - f(th) for f(th) and - £(~ th)
for £( -th) and (6),(7) with change of sign to minus, we ob-

tain as above that
{-"(.x,%)/h -fUx)h > —¢, Inll -

This inequslity together with (8) imply
I-F'(.x,%)h - fUx, )l < g, Ll .

Hence

‘ - o = ’( - ,( ’é go .
I f (x%) fx )| um £ .X%Lh fix, ) h

But this is & contradiction with (1). Hence F(x) = f£'(x) 1is
strongly continuous on D; . By Theorem 1.4 [3] F(x) is
compact and uniformly continuous on DR (see also Th.l.3
[3)). According to Theorem 8.2 [3] f is weakly contimous
on Dy . This completes the proof.

Remark 1, It is easy to see that the first assertion
of Theorem 1 remains valid if Di  is replaced by an open
convex neighbourhood V(o) of O which is contained in G ,

Theorem 2 [12] is valid if an open comw ex neighbour-
hood V(o) o O is replaced by closed ball D, and f
is a convex subadditive functional on an open set G which
containe Dp . Thus we have the following

Corollary 1. Let X be a reflexive Banach space, D

a closed ball in X , G an open convex subset of X con-
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taining D‘z . Suppase f: G — E, isa convex subedditi-
ve functional on G with f(o) = 0 and that f 1is upper-
bounded on some convex open subset M + # of G . Assu-
me f possesses the Fréchet differential df (0, ) at
O and the Gétesux differential Vf(x, ) for each xe
€ Dg;, X % 0 and that the remsinder cv (x, ) of the
Fréchet derivative f£°(x) (which exists on _DR according
to Th.2 [12]) is uniform on DR . Then the gredient map
F(x) = £°(x) is strongly continuous, compact and uniformly
continuous on Dy end f is weakly continuous on J; .
Remark 2. The remainder co(x,42) o £°(x) is
uniform on D, if F(x) = £°(x) 4s uniformly continuous on
Dy (see (3,5 41). If X is e linear normed space, f: X — E,

a convex uniformly continuous furciional on the open ball

B

R+oC
Fréchet derivative f'(x) on B, (I x|/l < R)&= £ is

(lxlh< R+ o), then £ has an uniformly continuous

uniformly smooth onm BR (see [13,Theorem 8]). This asser-
tion gives necessary and sufficient conditions that a gradi-
ent mapping F(x) = £°(x) exista and be uniformly continuous
on B; (see also Th.7 [13]).

Corollary 2, Suppase X is a lire ar nommed space, G
en open convex subset of X containing D; . Assume f se-
tisfies the assumptions of Theorem 1. Then the gradient map

F(x) = £°(x) is strongly continuous on Dg -

§ 2, Boundedness of Gatesux differentials and maps,
First of all we recall some well-known notions and result .

We sh3ll say that f : X — E is a function o the
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first Baire class if f is a point-limit of the sequence of
continuous functiors on X . A function f: X — E, 1is
=aid to have Baire property if there exists a subset A c X
o the l.,category in X such thet f /x_a is continuous.
We shall use the following

Lemmg 1 [14,Theorem 14.3.11 . f : X — E_ is a func-
tion of the first Baire class ¢=> forevery c¢ € E,
fxe X:f(x)>c},{xe X :f(x)< c} are Fy-sets in X .,

Theorem 2. Let X be & linear normed space of the 2.
category in itself, f : X — E_, a continuous functional
on X . Suppase f possesses the Gatesux differential
Vf(x,, /o) at X, e X ma that there exists a con-
stant M > 0 such that for every A, A, € X

(1) IVE (X, b+ 40| & Mmax (IVE(x,, R, IVE(X, , 2,01),

Then V¥$(X,,4 ) 1is bounded in X .

Proof. Define & sequence {f (A )7} of functionals
£, (o) Dby

£, (M) = (Flx,+ m™ ") - £(X.))n
for every 4+ € X . Then {4, (fo) ? is a sequence of
continuous functionals on X . By our hypotkasismjén;ﬁ,,_ “h)=
= Vf(x,, ) for every /r € X . Hece V-F(.:, , ) s
a function of the first Balre class and according to lemma 1

for every n (n = 1,2,...)

Ap={he X: VE(X, h) < m ] ,
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B,={heX: Vf(x,, ) >~-m 3

are F. sets. Since the intersection o two E:- sets is sgain

a F.set, G, = A, N B is a E.-set for every n
o0

(n=1,2,...) . Hence G, = ”L__J1 Fowm 5 where £, eare

closed sets in X . Since
G, ={heX: IVE(X,,A)| < m }

far every n (n =1,2,...) , X =M(2 G, snd therefo-
oo
re X = U F . By Baire category theorem at least

m,m=q TN
one df E»m (/n’/m- 4’ 2, vor )’ say Fno mo 1 mist con-

tain a closed ball. Therefore there exist x~ > (0 and # €
e X such that [ - N, | £ n = h 6 F,, .0
and for such h we have that [VFf(X,, #2)| < m,
(for F, ;oG G,, ).Set y=h-h, ,then lagpl <
end

IVE(X,, 4)] £ Mmax (IVF (X, 2) |, IVE(X, - £2,)1)<

<M/W(/no7co> 7

vhere ¢, = |VFf(x,, - %, )| . Hence Vf(x,, %) is
bounded on the closed ball .t | £ & and by homoge-
neity of VF(x,,#) in h we see that V+F (X,, ) 1is
bounded on each bounded subset of X . This completes the proof.
Corollary 3. Let X be a limesr normed spaced the 2,
category in itself, f: X — E, a contimous functional
on X . Suppose f possesses the Gatesux differential
VEix,, A ) at X, € X and that there exists a constant
M > O such that for every b, , A, € X
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VE (X0, Ary + Ay ) & MVE (X0, Frg )+ VE (X0y 42, ))
Then VF (X0, £2) is upper-bounded in X .

Theorem 2. Let X,Y be linear normed spaces, X of
the second categcry in itself, F: X — V¥ a mapping
of X into Y such that

Ca) H FAM = 1A F(w) Il for every A e E,
and «4 € X .

(D) IF(u+v )& Mmae (Il Fdl, I Fla) )
for every «, v e X , where M 1is a positive constant.

(c) My € X, e X, u,— w =
=3 JF(w)l £ m sup IF(wn, ) .
m ~% o0

Then P 1is bounded in X .

Proof. Set F, = {xe X: IF(x)Il £ m ¥
Then X=,,,§j,sn.' If x, e F, xeX X, — x,
ten [ F(x)N & Lom sup IF(xe) I € m .
Hence F, (m =4 2,...) are closed in X and thus st least
one of them contains a closed ball, Now we proceed as in the
proaf of Theorem 2.

Theorem 4. Let X,Y be linear normed spaces, X of
the 2.category in itself, F : X— V¥, U: X— Y
mappings of X into Y . Suppose U possesses the Baire
prorerty, F satisfies the conditions (a),(b) of Theorem 3
and that for every x € X  there 1s | F(x) Il £ 11U,
Then ¥ is bounded map in X .

Proof. Use the arguments o Banach’s proof [15,Theorem
1,p.78] and the ones of the second part of the proo of Th.2,.

Remark 3. The conditions (c) of Theorem 3 and [l F(X) /4

£ YUcx)HI , X € X of Theorem 4 are sufficient
- 623 -




that an additive map F be continuous and hence homogene-
s on X , Both are due to Bamach [15,p.78-79].

Remark 4. Theorems 3,4 can be used far investigations
of the boundedness of the Gatesux differentials VF (X,, ).
Some other results concerning the boundedness of such dif-
ferentials can be found in [3,§ 3], [13].

Remark 5. Theorem 2 can be derived at once from Theo-
rem 4: A functional f 1is continuous on X , hence
V$ (X, , #v) possesses the Baire property and thus the
condition of Theorem 4 is satisfied with U (41 ) = V£ ,#2).
We have the proof of Theorem 2 becamse it is somewhat diffe-
rent from the Banach’s proof [15,Th.1,p.781.
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