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RELATIONS BETWEEN THE ‘%) -COMPLETENESS AND THE PARACOM-
PACTNESS OF CLOSURE SPACES
K. WICHTERLE, Praha

The main result in this paper is Theorem 1 (known for
seqQuences and normal S-spaces ([2],theorem 9)).
On the other hand, the assertion of this theorem (or 2¢ -
completeness of (P, « >) 1s sufficient for the para-
compactness of ¢ P, 4 ) whenever u is a generali-
zed order closure (Theorem 2).

Some definitions from [3] used in this paper. Let %
be’ a (cofinal-closed) class of directed sets. A %) -net
is a net whose domain belongs to % .+ A Y -space is
a closure space whose closure is determined (as in [1],
35 A.5) by some convergence relation ¥ such that DY
consists of U -nets. P is % -complete iff P is
a 4 -regular (i.e. any 7) -net N converges to Nx
whenever f o N — fx for each continuous function
£f) %) =space and every %) -net remarkable in & con-
verges in P . N  denotes the class of all monotone
ordeved sets. The %) -modification of a closure u is

the coarsest %) =-closure finer than u .

Theorem 1. Let P = <P, « > be a paracompact
space. Then every monotone net remarkable in 5 is con-

vergent in H ; equivalently, any monotone net ranging
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in P does not converge in B to any point of
IBPI - P. ’

Proof. Let { N,, £ > be a monotone net remarkable
in ® which does not converge in % . Then there ex-
ists a bijective 91" -net N (i.e., D N is regu-
larly ordered) remarkable in P which does not conver-
ge in P (we can choose a regularly ordered cofinal
subset E of P N, and @ mapping n of o = card E
into E sothat m& mf=> Nm e P-N, m[(£],

because N, is not frequently constant and hence

cw:d.(EnN;’Nom [f] < x ; We can denote
DN: mULoc]) .

Let us demote for each m € &, and for each fe€
€?@ j(#: MFDN and U =P—'

+,m

-'F-‘lfk{ -;1;,_ ,k?*',%, J.( #P is the collection of all
continuous functions of P into I , I is the unit
interval [ 0,13  with the usual topology). Then ‘U =
={U,’”l#e?@,m.ecoo} is an open cover
of 7 (whenever xe& P then N does not converge to
x in P and hence fx # k. for some fefFP ,x¢€
€ Uﬂn for this £ and for any m > WRJ:-_—R;T) .
Thus there exists a locally finite partition of the unity
subordinated to U ([1],30 C.4), i.e. there exists Fc
c FP suchthat S {fx1fe€F3 =1 for each
x € P and the locally finite cover {L = P-f7"(0)1f € F}
refines U . If f e P then there exists g ¢ ¥ P
and n € @, 8o that L4 c Um” y the net N 1is
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eventually in P - U%n » hence also in P - L¢ =
= £"(0) , therefore k, =0 and we can choose e €
€ DN such that m e_cf.—.=>¢Nm=o.

Let us construct (by induction) a family M =
={Mc |l e o = card DN}  of points of the
set E Nc P and disjoint neighborhoods Vs'. of H;‘
by the following way.

Let 7 € oo and let the sets Vs c P and
FS = {f¢ F'VS AL, %+ § 3 be chosen for all § €.
Because U{F (fe7 ] 1s finite ifa =8, sndcamed UfFIfenie
£, <o if ot >H, the set E{c, | felUif/feniis
bounded in P X ; let us denote dy some its upper

bound and qu =N dqZ » Let us choose € F so that

En
-2 M, + 0 . Then 8 ¢ Fg‘ and hence Lg,nn VS =
=0 for each § € 7. L‘é’n is a neighborhood of My
and therefore we can choose a neighborhood V,Z c L9"'z of
the point M, so that the set F,,'L={€e FIV,Ln L+ 2%
is finite.

We shall prove that E M is discrete in # .
Let AcEM, If y e E M then the point ¥ = Mg has
the neighborhood VF eand Ve N A C (lls‘. ) « Let us con-
sider that 44 € 4 A~ EM . Let us denote B3 =
smmiyexu(x)ly e u(AnNMCyl}, obviously 3 is
a limit ordinal number. Let us choose a net s¢ = {{aejlje
e Ki,=> ranging in B= 3 A M- '[A] such
that M - 2¢ converges to y in P .Let fe F,. If
E(fe M.oe)= (0)  them fy =0. Let f Maej + O,

Then f e 1?’,_ PR Because 2€ is not frequently in 7Y
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whenever < € (3 (by definition of /3 ) there ex-
ists £ € K suchthat ¢ = £ => 2671 = 9z + 1.
Therefore 1 = £ =bd,; & dy;,, £6 = fMar =

= fNd,;, =0 for ecach ie K ; thus fy = O . But
this is the contradiction with the assumption that P
is a mrtition of the unity.

Because /°  is paracompact, there exists ([1],
30 C.10) a discrete family { W If € oc 7 of open
sets so that M‘c € W for each § e o« .

Let us choose a set S c o so that S and
o« =S are £ =-cofinal in o , let us choose a func~
tion fo e F P  foreach { € S 8o that £ M=
=1 and 'Ff LpP- WSJ = (0), let us denote by £ the
sum of functions f?v over S . If ye€ P then there ex-
ists a neighborhood U of y such that Un W"L * 7
for at most one M € S ([1],26 A.8), For this # £ =
= f”l on U and £ is contimuous in y . Thus f is
continuous in P .

The sets d[S] ané d@ Lo - S) are cofinal in

P N, because card A[S] =card S= oo =card d [S -

- oc)l; along with it f£Nz = O for each =~ € d [ -~ S)
and fNz =1 for each € o [ S1. Therefore £ o N
does not convergey, N 1s not remarkable and it is the con-
tradiction. /

The second assertion of Theorem 1 is equivalent to
the first ome, because the net is remarkable in 7 if

and only if the one is convergent in ﬂf’ .
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Corollary l. Every mctrizable smace (and every pseu-
do-metrizable space) is 3! -complete.

Corollary 2. The 9! -modification of any paracompact
space is 1l -complete.

Proof. Let <P, > be a paracompact space, let
v Dbe the 71 -modification of u , let N be a ¥ -net
remarkable in { P, v > . Because F<P, > c FC(P,v),
N is remarkable in <P, a4 > , converges in (P, « >
and hence converges in P, o > .

Theorem 2. Let u be a generalized order closure.
Then € P, w » is 9l -complete if and only if (P, >
is paracompact.

Progf. "If" is an immediate corollary of Theorenm 1,
because every generalized order closure space is a e
space and obviously ¥l -regular ([41,3.11).

Let = (P, 4 > ©be not paracompact. Then there
exists a wall - ordered cover which is not uniformizab-
le by [31, hence there exists a regularly ordered cover

U= {1Ug | §e7r 3 which is not uniformizable
(a cofinal subcover of the preceding cover).
For each x € P let us denote @ ,=E {y € P

ILx,u1 v [y,x1c Uf for some § € ¥ } - For
any Xx€ P, ye P either G N Qy.= g (ire [=,

¥yJuly,x] 4is not contained in U forany (€7 )
or Qyu = Q,y_ o« For any xe P Q. 1is interval-like
(obviously) and open—closed in 5 .(Let xe P . Then
Us is a neighborhood of x for some £ € 9 and thus
there exists an interval-like neighborhood 'x c U?
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of the point x . If a point y belongs to W, , then
Ix,yluily, xlc W, c uf and therefore the point y
belongs to @, .« Consequently, W, 1is contained in
@, , which proves that the set @, 1s open. Further,
the set O'x is closed as the intersectiom of the col-
lectiom {P -Q, Iz e P -Q, § of the closed

gets,

Therefore there exists x € P such that the open co-
ver U, =41 U; NG, 1§ € ¥} of the subspace Q,
of P is not uniformizable, let us choose such x (if
Gax belongs to a continuous uniformity Q/Qx for X,
and { G Lol ¢ €@ ¢ refines Uy , then G =
= UiG, | xe€e P3 belongs to a continuous unifor-
mity {U{KaxtxeP}lKaae Gg, ¢ for & and

{G ly)] Iy e P? refines UW{%, |x e P7 which
refines % ).

Let 2z 3 2z, be two different points of Q'.x o Let us
consider that the cover U= { ¥ n Q@ l§e o 7 of
the subspace L  with [Ql=Q@=Ayn Jz,—>I[ & &,
is not uniformizable; otherwise the cover { Uf n R §€
€ 3 of R=Q, n [ ¢,2% [ is not uniformi-
zable (easy) and the other proof is analogical.

Let us define vy =min {fe o~ lye Vg 7 for
each y€ Qe The set v [Q] is cofinal in - , be-
cause 7° is not uniformizable; and [ J z,41]1 is
not cofinal in ¢ for any ¥y € Q « Therefore we can con-
struct (by induction) the family N = L Ngl§e o ¢ of

- 588 -



elements of Q and the family ge = { el [fe g 7 of
elements of ¥ so that N§ <5 N7y and YVt g %<
<1)Nn whenever m € 37, § < % , 23t 3 NE .
Indeed, let 7 € 7y and let Ng and 8¢ { Dbe chosen
for each § € 7 ; then 8¢ L7 1 4s not cofinal in y
and N7 can be chosen so that { < 7 = 2¢ { <

<»N7%n , tus N7 ¢ J 2, N0 J | hence
N§ < N%  for each § € M ; seeing that »[1 2,
qu 11 is not cofinal in ¢  , we can choose 3¢7)
sothat t 3 N% = »1t < 2¢7 . For each
teQ t%Ng=>vt-f-ae§=ssteuxf=>te Voes 5
hence the open cover U = {WS =1z, NgsLIfe€ rf
of the space % refines ¥ and therefore U~ is not
unifornizables.

Obviously, the net ( N, £ > does not converge
in 2 and, consequently, in R , we shall prove that
(N, £ > is remarkable in P . Let f be a function
on P ranging in [ 0,1 J such that the net (f e N, £
does not converge in I . Then there exist sets B, and
C, separated in | so that fo N is frequently in both

)
B, and C, . Let us denote B = Q nf~"[B,1, C =
=Q N+ C,1 . We can choose an increasing mapping h
on ¥ into 7 (by induction) so that Nhn € B if
m =0 or M is a limit ordinal or N 7n -1 € C
and N/Ivm el if Nan -1€ B, because hinl
is not cofinal in 9 for any 7) € ¥ and N is fre-

quently in both B and C .
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Let us denote mt=/m4'fn-f§‘€ It 2 Nhg and

gi::)’b(’)'rgt-t-’)) foreach t€ Q. Then t € Q =>
=2t 2 N ’h’m’t Nyt = Woe is a neighborhood
of t . There exists a set RC Q and a point y 8o that
Y € uR-U{\Ac/ﬂl'te R 3 ([11,24 E.4 & 24 E.2). Let
us denote S = {NAhE|§f £ m  for some teR}.
Seeing that for each te R t 2 N hrm,_t Sy and

Nhm €85, y belongs to us.
For each T € S there exists t € R so that & 'N~ "% £ 'm{;,
for this ¢t w3 Nhm , g1 < oNhm =gt am

nw=Nhm 3 Nh@m+1)3 Ngt 3 Y ; therefore y &
€ uB and y € uC , the function f is not continuous
and the net N is remarkable in JP .,

Theorem 3. Let %) be a cofinal-closed class of di-
rected sets. Let S be the cartesian product of a family
{® la € A} of closure spaces. Every 2 -net remarkab-
le in P converges in 57 if and only if every ) -net

remarkable in ?  converges in £ for each a c A .

a
Consequently, & is %) ~complete if and only if 2 is a
%) -space and > is ) -complete for each a € A .
DProgf. Let N be a 2)-net ranging in || which
does not converge in 5 . Then T e N  does not conver-
ge in 52, . for some a€ A . For such a the 2) -net
M e N is not remarkable in 2 by assumption, fTf o
o N does not converge in I  for some f e FJ , hen-
ce N 1is not remarkable in P .
On the other hand, let a & A and let N be remark-

able in . Let x € |P|, let a mapping 3 on P
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into # be defined so that T, % o = o and
T, ¥vy="TyxX for each &€ A~-(a) . If ¢
is & continuous function on P , £ y is contimous
on .7;’, and f o N converges; hence Y N is remark-
able in % and converges in P by assumption. Let z
be its limit, then N =, ¥ N converges to JT, z .

Exagple. If 7 1s the (naturally) ordered set of
real numbers endowed with the closure of the right appro-
ximation, then the uniformizable space P =P is not
normal ([1],30 C.14) and P =< P 4s % -complete. In-
deed, 3 is 2 -complete by Corollary 2 (or by an easy
direct proof) and P x P is a S-space as the product
of two S—spaces.

Theorem 4. Let %) ©be a (cofinal-closed) class of
directed sets, let o be a cardinal number. Then the fol-
lowing conditions are equivalent:

(a) The sum of any family {J} la € A ? of W -
complete spaces (resp. such that card A<oc) is %) -
complete.
(b) Every discrete closure space & (resp. such that
card 121 < o© ) is 72 -complete.
(¢) There exists no proper ultrafilter on any set A (resp.
suh that card A < of ) which has a base order-isomor=-
phic to some elemermt of %) .

In particular, the sum of 2) -complete spaces is
%) =-complete whenever % < T .

Broof. (b) =>(a): Let N be remarkable %) -net
in P=3I{Rlae A?. Lt 7 be a mapping
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on P onto the discrete space £ with /2| = A
such that % [ | B |1 = (x) foreach zeA.If
fe F2 then o Yy FP ( % is contim-
ous) and f ey ¢ N converges in I . Thus oy o N
is remarkable in 2 s converges to some 2z in 2 by
(b}, hence ¥ o N is eventually in (z) and N is e-
ventually in J3 . The restriction of N on |R | is
remarkasble in Z-’ , hence converges in @ and N
converges to the same point in J° . (&) = (b) is trivial.

(¢) => (b): Let (N, 3> bea 7% =-net remark-
able in & , let us denote (f its limit in the ul-
trafilter space B 12| = 3L , let us denote Bnm =
2 {Nm Ilm <m 37 for ecach m e DN . éB is
a base of the ultrafilter L ( ( N, > 1is eventu-
ally in each U € (U ), further ( EB, > > and
(DN,% )Y€ ) are order-isomorphic. Therefore (£ is
fixed and (N, 3 > 1is convergent in 2 .

(b) => (c): Let B be a base of an ultrafilter
(L on A, let h be an order-isomorphism of <E, &)e¢
€% onto (B, >>. Let us choose Nbe b for each
be& B . Then the 2)-net { Nodr, 6 > converges te (£
in the ultrafilter space (3 A , hence in B2  (where
| ) = A and 2 is discrete), thus (N £ 6 > is
remarkable in @ and convergert in &2 by (b). There-
fore Ol 1is fixed.
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