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Commentationes Mathematicae Univers i t a t i s Carolinae 

9,4 (1968) 

RELATIONS BETWEEN THE ^-COMPLETENESS AND THE PA.RACOB.f-

PACTNESS OP CLOSURE SPACES 

K. WICHTERLE, Praha 

The main r e su l t in t h i s paper i s Theorem 1 (known for 

sequences and normal S-spaces (£2J,theorem 9))« 

On the other hand, the asse r t ion of t h i s theorem (or 71 -

completeness of < P . <uu > ) i s su f f ic ien t for the pa ra -

compactness of ( P , ^ ) whenever u i s a g e n e r a l i ­

zed order closure (Theorem 2 ) . 

Some def in i t ions from C3.J used i n t h i s paper. Let 00 

be a (cofinal-closed) c lass of d i rec ted s e t s . A 00 -net 

i s a net whose domain belongs to ty • A 10 -space i s 

a closure space whose closure i s determined (as in £ U , 

35 A.5) by some convergence r e l a t i o n *i? such tha t &**€ 

consis ts of 10 - n e t s . (P i s 00 -complete i f f IP i s 

a 10 - regula r ( i . e . any 00 -net N converges t o Nx 

whenever f © N —> fx for each continuous funct ion 

f ) 00 -space and every 10 -net remarkable in (P con­

verges in (P • 01 denotes the c l a s s of a l l monotone 

ordered s e t s . The 00 -modification of a closure u i s 

the coarsest 00 -c losure f iner than u • 

Theorem \ . Let (P ** ( P , <u* > be a paracompact 

space. Then every monotone net remarkable in (P i s con­

vergent in (P ; equivalent ly , any monotone net ranging 

- 583 -



in P does not converge in fl(P to any point of 

\(h(P\ - P . 

Proof. Let < H0 1 id > be a monotone net remarkable 

in (P which does not converge in (P • Then there ex­

i s t s a b i ject ive flt* -net N ( i . e . , D N i s regu­

lar ly ordered) remarkable in (P which does not conver­

ge in (P (we can choose a regularly ordered cofinal 

subset. 1 of JD> N0 and m mapping n of oo * card E 

into E so that /tn fe /n f =-> N0 mi, e P ~ N0 rrt [ £ J , 

because N0 i s not frequently constant and hence 

C W CE n N; f No /n C f ] < oc ; w e c a n d e n o t e 

PN = m lac 1 ) . 

Let us demote for each nx *£ 0)0 and for each -f e 

e 9 9 Jh,= -&*«• f c N and U. = P -

- f " ' l T ^ - 4 J'V"** J- ( ^ ^ i s the co l lect ion of a l l 

continuous functions of (P into 1 , 1 i s the unit 

interval I 0 , 1 3 with the usual topology). Then % « 

a ^ U f w | f e ^ ! P , < n e coo } i s an open cover 

of (P (whenever x e P then N does not converge to 

x in (P and hence fx -*- k for some $ e (F (P , x € 

e EL for th i s f and for any nth > f ^? x '^ ^ f ) • 

Thus there ex i s t s a l oca l ly f i n i t e part i t ion of the unity 

subordinated to 16(Cll 930 C.4), i»e . there ex is ts F c 

c 9* P such that S < -f«x > * € F 3 * 1 for each 

x € P and the loca l ly f i n i t e cover {L^ ** P--fmi(0) Me?} 

refines U . If f e * then there ex i s t s > g e T (P 

and n e ax so that L, c U , the net N i s 
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eventual ly i n P - O ^ ^ , hence a lso in P - L̂ , = 

« f~1(0) , therefore k* = 0 and we can choose c e 

6 D N such tha t rm,kCf**$tNm = 0. 

Let us construct (by induction) a family M * 

s { Mf I f e oi, =r caftd D N } of points of the 

set £ If c P and d i s jo in t neighborhoods V of M« 

by the following way. 

Let v\ e oc- and l e t the s e t s V- c" P and 

E = ^ 6 F l V f n L ^ ^ J be chosen for a i l £ € ^ . 

Becaase U { F | f € * 2 j *• f in i t e i f oc*8c a i t f f f c ^ U f n f e ^ j * 

= 7 ' *\,-* oc i f <x > H0 the se t E-C^ I f e 4/{ If If € ?j ? i s 

bounded in B l ; l e t us denote d* some i t s upper 

bound and M„ a l l d^ • Let us choose g~ € P so t h a t 

g ^ M^ 4- 0 . Then g^ £ -ft> and hence L~ n VU = 

= fb for each £ e V . L^ i s a neighborhood of M^ 

and therefore we can choose & neighborhood V~ c l* of 

the point %% so t h a t the s e t f^-«C*e F /V^^ L^ * 0 } 

i s f i n i t e * 

We s h a l l prove tha t t M i s d i sc re t e in (P • 

Let A c E M . I f y 6 E M then the point y = M̂  has 

the neighborhood Vr. and ^ n A c (M~ ) • Let us con­

s ide r tha t ^ . e AA* A - E M . Let us denote /3 -

^ m ^ n / t ^ e oc u (oo)\<y. e AA,(A A M C y J f • obviously /$ i s 

a l imi t ordinal number. Let us choose a net at -* <i0t£lj.e 

* K ? , £ > ranging in B » /3 n M~ 1 1 A J such 

t h a t M • W converges to y in P . Let f £ P . I f 

E(f • M • *>)« C0> then f* -• 0 . Let f M*e£ -£ 0 . 

Then f e P ^ • • Because a e i s not f requent ly in y 
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whenever f e /$ (by definit ion of /3 ) there ex­

i s t s Z e K such that i ^ i «-» ae t £ dCfr + 1 . 

Therefore i fe i ^ ^ - C ^ ^ i " 4 ^ f Mdti -

= f N 4 * i ~ ° for each i e K ; thus fy * 0 • But 

th i s i s the contradiction with the assumption that F 

i s a part i t ion of the unity. 

Because (P i s paracompact, there e x i s t s ([1J# 

30 CIO) a discrete family «f W- | £ e <x, ? of open 

s e t s so that M. e W for each f e GO . 

Let us choose a set , S c <K so that S and 

cC - S are £ -cof inal in oc , l e t us choose a func­

t ion f^ePiP for each £ € S so that f M~ * 

= 1 and -Pf C P - Wf J - CO) , l e t us denote by f the 

sum of functions f« over S • If y e P then there ex­

i s t s a neighborhood U of y such that U n W 4* 0 

for at most one nj e S ( f lJ,26 A„8)# For t h i s -̂  f -

=- f̂  on U and f i s continuous in y • Thus f i s 

continuous in (P • 

The s e t s d £ SJ am d C oc - S J are cofinal in 

I> N , because card d [SJ * card S » ac » card d TS -

- oc] 5 along with i t fNz » 0 for each ^ € d toe - SJ 

and fftz> * 1 for each &,€ <rf [ SJ . Therefore f * N 

does not convergef N i s not remarkable and i t i s the con­

tradict ion* 

The second assertion of Theorem 1 i s equivalent to 

the f i r s t one, because the net i s remarkable in (P i f 

and only i f the one i s convergent in /$ (P . 
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Corollary 1. Every metrizable space (and every pseu-

do-metrizable space) i s 2t -complete. 

Cfiroliary 2. The 71 -modification of any paracompact 

space i s 1tl-complete. 

Proof. Let < P, AX > be a paracompact space, l e t 

v be the Ti -modifl cat ion of u f l e t N be a 9t -net 

remarkable in < P, v > . Because 9< P, AX > c &< P, t r> , 

N is remarkable in < P, u > , converges in < P, <<-t > 

and hence converges in < P7 ir > -

Theorem. 2 . Let u be a generalized order c losure . 

Then < P, AX > i s 9 t -complete i f and only if <P,<a. > 

i s paracompact. 

Proof. "If" i s an immediate corol lary of Theorem l t 

because every generalized order closure space i s a 0 t -

space and obviously 71 - regular (L4] f 3. 11). 

Let (P * < P, AX > be not paracompact. Then there 

ex i s t s a wall —ordered cover which i s not uniformizab-

le by L31| hence there ex i s t s a r egu la r ly ordered cover 

1 i ~ {U- . I f e T- ? which i s not uniformizable 

(a cof inal siibcover of the preceding cover) . 

For each x e P l e t us denote ft^* £ i^f e P I 

I C «x1 of 1 u lty7 iX 3 c (Jo for some f e ^ J . For 
any x e P , y e P e i t h e r QL n Q^ ~ 0 ( i f f Cat, 

y J u Cy»x J i s not contained in U« for any £ € y ) 

or ( i x = Q ^ . For any x e P Q,H i s i n t e r v a l - l i k e 

(obviously) acod open-closed in P . ( L e t x e P . Then 

Up i s a neighborhood of x for some f e y and thus? 

there e x i s t s an i n t e r v a l - l i k e neighborhood W^ c U« 
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of the point i • If a point y belongs to W^ f then 

fTx, ^ J u toj,7 * J C W^ c UL and therefore the point y 

belongs to 0,y • Consequently, WL i s contained in 

Q, ? which proves that the set fl^ is open# Further, 

the set Qx i s closed as the intersection, of the col­

lect ion { P ~ Qz t *, 6 P - Q x } of the closed 

seta. 

Therefore there exis ts x € P such that the open co­

ver %x =* * Uf n Gx I £ e T ? of the subspace fl^ 

of *P i s not uniformizablef l e t us choose such x ( i f 

GQ belongs to a continuous uniformity tyo>x for Slt x 
and { Oa t(n^)l I <ty e 0,^ ] refines Û  f then G =-

=t U { (r̂  l » x e P J belongs to a continuous unifor­

mity i U iKa^ \xe P} IK&^ e $ ^ ; f 0 r &> and 

-f G CCV-)J l ^ e P } refines U { Ql^ I CK e P J which 

ref ines ^ J • 

Let z -J a0 be two different points of Q • Let us 

consider that the cover V - - C ^ n Q l ^ e ^ / of 

the subspace 21 with f&l--- ( 3 > ( 3 ^ J i t , ^ t tf&* 

i s not uniformizable; otherwise the cover { U* n R I ^ £ 

£ X 1 of R - 6^ ^ £ «—, *& T i s not uniformi­

zable (easy) and the other proof i s analogical. 

Let us define V <ty »mUov { f e y I t^ e ^ J far 

each y £ Q • The aet %> £ Q J i s cofinal in <y , be­

cause V i s not uniformizable; and i^TJ « , ^ 1 ] i s 

not cofinal in y for any y e Q • Therefore we can con­

struct (by induction) the family N « ( Nf I ^ 6 ^ / 0 f 
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elements of 0, and the family $e * { &e f / f e 2~ ? of 

elements of y 3 0 t n a t N f -< N ^ and %> t -a de $ < 

< i> H ^ whenever ^ € ^ , £ < ^ ? ^ - j t i N§ . 

Indeed, l e t ^ e y and l e t N£ and de £ be chosen 

fo r each £ e 77, / then ae C -ri J i s not cofinal in y 

and N ^ can be chosen so that f <: ?£ -*• &€ f < 

< V N ^ , thus N ^ £ J ^ , Nf J ; hence 

|\|P -*4 N^ for each £ e ^ • seeing that V f i ^ ; 

N'V} J J i s not cof ina l in y , we can choose 9€ ^ 

so tha t t d N^ =$> T>i gi veil . For each 

t e Q t ^ N £ = - = - - » : P t ^ a e f - = - » i e (J =̂ > t € V^f , 

hence the open cover W ~ { W * ] Z 7 Nf [ I f 6 ^ / 

of the space «£l re f ines 2^ and therefore W i s not 

uniformizable. 

Obviously, the net ( N., ~ > does not converge 

in <to and, consequently, in (P , we sha l l prove tha t 

( N , = > i s remarkable in JP • Let f be a funct ion 

on P ra^nging in £ 0,1 J such tha t the net ( f <>M7 Ik > 

does not converge in I • Then there exis t s e t s BQ and 

C0 separated in I so that f « H i s f requent ly in both 

E0 and 0o . Let us denote B = (3 n T 1 [ B, ] , C » 

m (X n £ "* C Cd J . We can choose an increasing mapping h 

on 2T in to ¥ (by induction) so t h a t N i i ^ 6 B i f 

o] a 0 or TJ i s a l im i t ordinal or H A\ ?i - A € C> 

and N ^ ^ e C i f N <#i ?l - ^ € B , because b t ^ J 

i s not cof inal in X foT a n ^ ^2 € T a n d N i s f r e ~ 

quently in both B and C • 
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Let us denote nm m nnurt { § e f i t J N <h$ } and 

grt a* JiCwi + A ) fo r each t e Q • Then t e Q, *—> 

=» t d N A m t - ? N y t ^ Vv^t i s a neighborhood 

of t • There ex i s t s a set R e Q and a point y so tha t 

y fe AA, R - II-C W t I t 6 R j ( [ l J -24 E.4 & 24 E #2) . Let 

us denote S - ~ - C N i o , £ | f ^ m%± for some t e R J • 

Seeing tha t for each t £ R t ^ N fa rra^. -< /j^. and 

N h,sm e S } y belongs to u S • 

For each r e S there ex i s t s t e R so thatJz^N"1^^ ni , 

for t h i s t tt, d W ^ i n . > 9>^ ^ ^ N A ^t^ • o?t and 

* - N i i l m ^ MHCrm^ + A)^ Hc?t d y. ; therefore y e 

6 u B and y c u C , the function f i s not continuous 

and the net N i s remarkable in (P . 

Theorem 3^ Let 00 be a cofinal-closed c lass of d i ­

rected s e t s . Let (P be the ca r tes ian product of a family 

4 & I (X € A ] of closure spaces. Every 00 -ne t remarkab­

l e in (P converges in jP i f and only if every 00 -net 

remarkable in (j£ converges in Q f o r each a e A • 

Consequently, (P la 00 -complete if and only i f (P i s a 

Of) -space and ^ i s 00 -complete for each a € A . 

Proof. Let N be a ^?-net ranging in \(P\ which 

does not converge in $ • Then TT o N does not conver-
Ms 

ge in ^ for some a 6 A . For such a the 00 -net 

]T * N i s not remarkable in Q by assumption, -f °V^° 

o N does not converge in I for some f 6 ? ^ . hen­

ce N i s not remarkable in (P . 

On the other hand, l e t a e A and l e t N be remark­

able in j£ . Let ;* e I $> I , l e t a mapping y on ^ 
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into (P be defined so that \ if <y~ ~ <& and 

Tf̂  Y <ty m \>YX for each i ^ e A - ( a ) . I f f 

i s a continuous function on (P , f y i s continuous 

on (%, and f y N converges; hence f N i s remark­

able in (P and converges in (P by assumption. Let z 

be i t s l imi t , then N - ^ ^ /V converges t o /7^ z . 

Example. If (P i s the (naturally) ordered set of 

real numbers endowed with the closure of the right appro­

ximation, then the uniformizable space (P x> (P i s not 

normal ( f l j , 3 0 C.14) and (P x (P i s 22-comp lete. In­

deed, £P i s 7t -complete by Corollary 2 (or by an easy 

direct proof) and <P x (P i s a S-space as the product 

of two S-spaces. 

Theorem 4. Let /^ be a (cofinal-closed) c lass of 

directed s e t s , l e t oc be a cardinal number. Then the f o l ­

lowing conditions are equivalent: 

(a) The sum of any family { ^ U € !4 ? o f ' J f ? -

complete spaces (resp . such that card A <: 00 ) i s 10 -

complete. 

(b) Every discrete closure space QL (resp . such that 

card l & l < <x> ) i s ^ - c o m p l e t e . 

(c) There ex i s t s no proper u l t r a f i l t e r on any set A (resp . 

sudi that card k < <X ) which has a base order-isomor-

phic to some element of 1/) • 

In particular, the sum of 1Q -complete spaces i s 

10 -complete whenever 70 c 7t • 

Proof. ( b ) = - > ( a ) : Let N be remarkable >^7-net 

in ^ = I ( ^ U 6 A ? . Let 1/f be a mapping 
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on (P onto the d i s c re t e space Si with \Si\ » A 

such t h a t iy T I ^ / J * Cx ) for each z € A . I f 

i e FU then -f o yr e F <P ( y i s continu­

ous) and f p f « N converges i n I • Thus y * N 

i s remarkable i n & , converges to some z in ^ by 

(b ) f hence 7//" ° N i s eventual ly in (z) and N i s e -

ventua l ly in {% . T h e r e s t r i c t i o n of N on I {£ ) i s 

remarkable i n ^ , hence converges in ^ and N 

converges to the same point in (P . (&) «••> Cb) is tr ivial . 

(c) =4> (b) : Let < N? -? > be a ^ 7 - n e t remark­

able in SI i l e t us denote Ol i t s l imi t in the u l -

t r a f i l t e r space ft> I & I ~ [h Q, ? l e t us denote B m * 

» { N m, \<m -4 m J for each ^ r t e j D N . E B i s 

a base of the u l t r a f i l t e r Ol ( ( N, -* > i s eventu­

a l l y in each U e CI ) , fu r ther < E B , ^ > and 

( D N , - f ) 6 ^ are order-isomorphic. Therefore Ol i s 

f ixed and ( N ^ > i s convergent in 0, . 

(b) = ^ ( c ) ; Let B be a base of an u l t r a f i l t e r 

OL on A f l e t h be an order-isomorphism of < E 1 & >€ 

6 Tp onto < B , ^ > • Let us choose Nb e b for each 

b € B . Then the ^ ? - n e t < N *<^, <T > converges t o Ofc 

in the u l t r a f i l t e r space /3 A , hence in /S 2L (where 

i & ) » A and £ i s d i s c r e t e ) , thus < N - A 7 (T > i s 

remarkable in & and convergent in £L by ( b ) . There­

fore VL i s f ixed . 
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