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Commentationes Mathematicae Universitatis Carolinae 

9,4 (1968) 

CERTAI1I GENERALIZATIONS OF THE KAT&OV THEOREM 

St. I0M£5EK, Liberec 

If X is any set, the vector space of all formal fi­

nite linear combinations 2 X± x^ , X± scalars, x^e 

€ X , will be denoted by E(X) . For any function f on 
r\/ 

X is defined in a unique manner the linear extension f 

of f to E(X) . As in [9J we identify the function f 

with its linear extension f . By a A -structure on X 

we mean (cf.[5J) the space E(X) endowed with a locally 

convex topology. This may be done by a vector space F (X) 

of functions on X and by a suitable collection Sf of 

subsets in & (X) . The topology in E(X) is defined as 

a locally convex topology of uniform convergence on the fa­

mily {C, C € <€ 1 •. 

In some earlier papers (cf.[9 J, [10J,[11]) we have de­

veloped a theory of 71 -structures corresponding to spaces 

of all uniformly continuous (continuous) functions on a uni­

form (completely regular) space X . Following a general 1-

dea of M. KatStov (cf.[6J), we are now concerned with the 

spaces of functions on X which arise in the theory of 

distributions* 

In that what follows we mean by X a completely re­

gular space, $ (X) is a vector space of continuous func­

tions on X separating points of X in the strong sense 
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(i.e. for any finite family of points {X^ , 1 £ i & M> ? 

in X there exists f in T (X) such that f(x^ ) » 

« 1 f f (x^ ) » 0 for 2 4 i ̂  n ). In this case the 

system ( TCX) , £ (X) > is, df course, a dual pair. It 

will be as3umed that T (X) ia a topological (pseudotopo-

logical) space with a topology (pseudotopology) for which 

any x € X defines a continuous function »x ; -f ~* <f, X > 

on $ (X) • In this case the space E(X) may be imbedded 

in the topological dual space T* (X) of T (X) . 

A family Jl of continuous functions on X is said 

to be regular if for any x € X and for each neighborhood 

U(x) of x in X there exist3 a function f e Jl with 

f(x) = 1 and f(y) * 0 for all y in X \ U(x) „ 

If ¥ is a covering of & (X) with subsets boun~ 

ded in the topology of pointwise convergence on X f then 

the topology in 1?(X) of uniform convergence on the sys?-

tem {C,C c *€ 1 will be denoted by t(<£ ) . 

Theorem 1. Let <T (X) be a locally convex ( X & )-

space (ef.[23), <£ a collection of subsets in T (X) 

satisfying the above mentioned conditions. 

(a) If any subset C e *€ is equicontinuous on X , then 

the canonical imbedding W ; X-* Ct (X ) , t C<€ )) is a 

continuous mapping. If $ (X) is a regular system, then 

4V is a homomorphic imbedding of X into (E(X),t(<£)). 

(b) Let the closed and absolutely convex envelope in the 

topology of pointwise convergence on X be a compact sub­

set in $ (X) in the same topology. Then the topological 

dual space of (E(X),t(<d)) may be identified with & (X). 
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(c) If any sequence f f^ ] convergent to the origin in 

9 (X) is a part of some C e S? , then the comple­

tion (E(X),t(<£)) is canonical isomorphic (in the al­

gebraic sense) to a subspace of $* (X) • 

(d) If the collection <-€ satisfies the condition of 

(c) and any C e <€ is weakly relatively compact in 

T (X) , then the completion (E(X),t(^)) is canoni­

cal isomorphic (in the algebraic sense) to the dual spa­

ce r*(X) . 

Proof. The statement (a) is trivial. Any function 

f e 0' (X) is obviously continuous on E(X) in the to­

pology t(<€) • From the assumption of the statement (b) 

it follows that t(<€ ) is compatible with the duality of 

the pair ( 9 CX) 1 E (A) > . This implies (b). To 

prove (c) it suffices, to note that &* (X) is a comple­

te uniform space in the extended topology t(<€) . With­

out going into details (cf.[10J) we recall that a linear 

function on P (X) is continuous if and only if it is 

continuous on each subspace defining the inductive limit 

topology of $ (X) . If any subset C e *€ is relati­

vely weakly compact, then t(^) is compatible with the 

duality of the pair < f(X ) . P*(X) > . Hence, E(X) 

is a dense subset in the topology t(<€) in &* (X) • 

Remark 1. If the condition of the statement (d) In 

theorem 1 is not satisfied, then, of course, the equar-

lity in (d) need not be true. An example of this sort 

may be found in [10]. 

Remark 2. Especially, if X is a compact subset of 
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the Euclidean finite dimensional space, $ (X) the vec­

tor space of all indefinitely differentiable functions on 

X t then the Mackey topology T » < £ CK) , TCX) > is 

identical (cf.£6J) on E(X) with that one of the pair 

< T* CX ) , PCX) > • Hence, the theorem of M. KatStov 

(cf.[6J) is a special case of theorem 1. Some corresponding 

results of [10J may be also considered as a special case 

of theorem 1* 

As an illustration of theorem 1 we state explicitely 

some elementary examples. The theorems 2 - 4 follow by spe­

cialization of what has just been proved. 

I. Let R^ be the Euclidean n-dimensional space, 3) 

the vector space of all indefinitely differentiable func­

tions of compact support on B^ with the usual topology 

(cf.t8J). It is well known that 35 is a regular system 

(cf .[7J»C8J). Let *£-> denote the collection of all sequen­

ces convergent to the origin In 2) .It holds 

Theorem 2. (a) The canonical mapping w is a ho-

momorphic imbedding of X into <E(X)ft(*£,,)) . 

(b) The topological dual space (E(X),t(<£, ) ) * is (alge­

braically) identical with 2) • 

(c) The completion (S(X)9t(
<€1)) is canonical isomorphic 

(in the algebraic sense) with the space 3)* of all dis­

tributions. 

It should be noticed that a subset A of E(X) is 

bounded in (E(X)9t( <£-)) if and only if there exists an 

integer n such that A £ m r X . The strong dual 
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space of (E(X),t(<£, )) is in such a way isomorphic to 

3) with the uniform topology. For the proof of these 

statements we refer to £9]. 

II• Let % be the vector space of all indefinitely 

differentiable functions on R/n' with the usual topology 

(cf#C8j). We denote by ^ the family of all sequences 

convergent to the origin in % • Similarly as in the 

case I we have 

Theorem 3> (a) The canonical mapping w is a homo-

morphism of X into (E(Xlt(
c€^)) • 

(b) It holds % *° (E(X),t(€x)) . 

(c) The completion (E(X) ,t( ̂  )) is identical with the 

space of all distributions of compact support on R<n' • 

Proof* The statement (c) follows from the fact that 

% * may be identified with the space of all distribu­

tions of compact support (cf.lBI). 

Remark 3. The topology t ( ^ ) may be defined as the 

topology of uniform convergence on the family of all pre-

compact subsets in ^ • This follows from the fact that 

in a metrizable locally convex space E any precompact 

subset is contained in the closed absolutely convex enve­

lope of a sequence convergent to the origin and, conver­

sely, any such sequence form a precompact subset in E • 

III. Let SL be an open region in the open complex 

plane, Jl (SL ) the space of all holomorphic functions 

on XI 0 With the topology of compact convergence on SL 

the space Ji (SL ) is (^)-SDace. The family % is 
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defined similarly as in the case II. 

Theorem 4. (a) The canonical imbedding W : -fl- ~~> 

-*(E(Sl) , t (*€% )) is continuous on Jl . 

(b) It hold similar statements to (b) and tp (c) of the 

theorem 3© 

Remark 4. The above stated procedure may be appliedf 

of coursef to the spaces K(M^) (cf.f3J) and to the 

corresponding spaces of functions on a &-compact indefi­

nitely differentiable variety. 

Let X be a locally compact apace f $C ~ XCX) the 

space of all continuous functions on X of compact sup­

port. For any compact subset K £ X we denote by 

yC ( K j X ) the vector space of all continuous functions 

of the support contained in K . The norm topology in $C 

induces on each X ( K , X ) a Banach topology f K * 

Let T be the inductive limit topology in % defined 

by the family yC ( K, X ) , K compact in X . We recall 

that on each % (K y X ) the topology f induces the 

uniform topology VK • The dual space X * to 

( yC , X ) is identical with the family of all Radon mear-

sures on X (cf.tll). Although the space X need not 

be an {%£,& )-spacef we may apply the above stated proce­

dure due to the pseudotopological structure of X . Let 

^^ be the family of all sequences convergent to the o-

rigin in X (i.e. any such sequence is contained in a 

suitable JC ( K , X ) , K being compact subset of X ). 

Theorem 5. Let X, X and ^ 3 have the same mea­

ning as stated above. Then it holds: 
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(a) The canonical imbedding W of X into (E(X), 

t ( *€^)) is a homomorphism. 

(b) The topological dual space (E(X),t(^))* may be 

identified with H (X) . 

(c) The completion (l(X),t(<£¥ )) is identical with the 

family Ji (X ) = JC* ( X ) of all Radon measures on X . 

Proof. The mapping W of X into (E(X),t(*^)) 

is, evidently, continuous. The continuity of ur""1 fol­

lows from & (E(X)f X (X)) 4 t( ̂ ) and from theorem 

6,§ 2,chap.II of £ 1J• This proves (a). Any closed and ab­

solutely convex envelope of a subset in ^ is closed 

in the topology of pointwise convergence on X , hence, 

the topology t ( ^ ) is compatible with the duality of 

the pair (CfC (X),E(X)) . Prom the Mackey theorem it fol­

lows (b). 

Let § be an element of (E(X),t(^)) . From a 

theorem of A. Grothendieck (cf.£4J) it follows that f 

is a linear function on CK (X) continuous in the to­

pology of pointwise convergence on X on each closed 

and absolutely convex envelope of a subset of ^ . Hen­

ce , for any sequence { f^ ? in CXf , f^ —> 0 , it 

holds f Ci„, ) —y 0 . This implies fe.JA.CX)* 

Now, let (U be a Badon measure on X . Let C be an 

arbitrary element of ^ . There exists a compact K £ 

S X such that C £ % (K,X) • Because of the equicon-

tinuity of C it follows from the generalized theorem of 

Ascoli (cf.[9l) that the topology of pointwise convergen­

ce and the norm topology f K coincide on the closed 
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absolute convex envelope of C • Thus, (u, i s by the 

above mentioned theorem of A. Grothendieck an element 

of ( E ( X ) , t ( ^ )) • This completes the proof. 

We not ify that the statement (c) may be d i r e c t l y 

proved as in theorem 1. 

The space of a l l Radon measures of compact support 

was described in C10J as a completion of a c e r t a i n A -

s t ruc tu re (E(X) , t o c ) (for X loca l ly and & -compact)• 

The main part of these r e s u l t s was communicated in £12J. 

We sha l l re turn to some questions of t h i s paper in ano­

ther communication, espec ia l ly , i n connection with ade­

quate app l ica t ions . 
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