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A REMARK ON THE THEORY OF LATTICE POINTS IN ELLIPSOIDS II
Bretislav NOVAK, Praha

The aim of this remark 1

a certain "dual" relation in the theary of lattice points

is to refer to the use of

in ellipsoids. Combining the basic identity (see Theorem
1) with some author’s previous results it is possible to
deduce @& number of interesting O-estimations. In this pa~
per there are made use of certain ideas, which can be ori-
ginally found in Landau [2].

In the following let r be a natural number, r2 2 ,
Q let be a positive definite quadratic form in r variab-
lea whose determinant is denoted by D , 6{ be the form
conjugated wth Q . Let further o,, ot,,..., o6 and
b,' ’ bz""' b, Dbe systems of real numbers and Mo, M ,eee
eseyM,, a system of positive real numbers. For x = 0 let
us define the function A(x) as follows

x

AX)= Al(X; O.,oca;,lg yMg) = Ze”“;‘zﬂ“é “3
Wwhere the summat ion runs over all systems u,,u),ees, U,
of real numbers, which satisfy the relations Q (u;) =
=y gy 4, ) £ X and sy = By (mod M), = 4,2,0.0, 02

1) As part I of the presented work (which is independent)
is considered the paper [5].
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If we put as usuesl
% 2 Z”EOC’_

V(X) =
@IM" r‘(a"*‘ 1)

(d” =1 if all numbers o, M, , o, M,
integers, o = O otherwise) then for the function

yeery 06y My are

P(x) = &(x) - V(x)

hold as known (see [2]pp.ll and 71) the estim tes

54~ %rq

-1
(1) Pex)= 06t ™) ama Pax)e L (x 7 ),

(we shall exclude from our considerations the case where
A(x) = 0 identically).

Let further 0 < A, < A, < ... be the se-
quence of all values of the form & (my M +1;) >0
with integer M, , M, yecey W, A, = 0, and for inte-
ger n= 0 let

= A(A), - Qppq= AlAns)-ACA, ) .

Thus
Alx) =%Z” a, -

For @ complex, Re;o >0 let us put

)X =-t )1t
Ay (X)= =i ofA

P(

and analogously let us define the functions VP (x) and
Po (x) . If we put A(x)=A(x), Vx)=V(x), P (x) =Pcx)
then for nonnegative [ obviously
%*P 2m,§, 585
B, (x)= fPu)dt Y (x) = —:ﬁ~ Ftyepr D) o

etc.
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Let the letter ¢ denote (generally various) posi-

tive constants, which depend at most on Q, o, b,

M; (J=1,2,000y 7 ) . The relation A<<B means that
|]A]l %4 ¢ B, The symbols 0, o and SL are meamt in

the usual sense. For 8 complex, Re 8 > 0 put

-4
QG = 3 a e-a"‘s .
m =90

m

As known, the function @ (s) 1is a holomorphic func-
tion in the half plane Re s > 0O,

In the introduced way the functions A(x), V(x),
P(x) , Ao (x) , ©(s) ete. and the numbers d°, A, ,
a, (n=0,1,2,...) correspond to the form Q and to

£
(in this order). The functions A(x) , ¥V(x) , B(x) ,

the systems of numbers ot; , b; , M (3 =1,25000, 7)

Tiso (x), é (s) etc. and the numbers o , 5(” ’

3,
(n = 0,1,2,...) we shall design for the form Q and sys=

tems of numbers bi, = oy, l/lla'_ (J = 1,2500e47 ) (in

this order) anaslogously. If we choose for 8 complex,

3

Re 8> 0 the branch s in such a way that it will

be positive for positive values of 5 » then as known (see
[1] p.108) for the 8 considered holds

n"‘/z 2!"&%4 g ‘0'; Jrz
(2) @(s) = (T .
S V]—);TI—M? ska @ S )

Let us note, that obviously @, = o, & = o and

LA
a xR E < Gy D M,
rct/2+1

\7(&) =
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The dual relation referred to in the introduction is
given in the following theorem.

Theorem 1. For @ complex, Rep > %/) x>0
holds

(P(x)-alp = Pptox)- 2o

Flpet)
(3) £ o
%" ' o
- Pk Be)-& ) Mgy 2 EX)
?‘ m -{i M’_ /‘(P(f) a’o) ?,{,4-2;1 df )

where J»(x) 1s the Bessel function of the lst kind and
in the integrand we put arg x = axg § =0 .

Ppoof. If © 1is complex, Re@ > O , & > O then
obviously

a+ipe

4 >(
Ap ()= 7 f,,, £ - 0;ids ,

where the integration is to be taken over the line Rep =
= 5 o If we now use the relation (2) we find that for

Re @ > %/)  we can according to the trivial estimate

~ ",
L2 la, | << (x+14>7%

A, 8 X
interchange the summation and integration. For A > 0 ,
B2 0O however

AVA +©

8 for B=0

4 aries As-— r'("/2+j°+‘1)
2m -f E +1 ds =
"/A,-tg'
(‘g) Juj24 @2 VAB) for B> 0.
For © complex, Re p > %/7 we thus obtain a general
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form of Landau’s relation, as deduced in [5]

% oo F s 05

Ap (x) = IT_X g+
® VD, M; r’("/:r.+gb+4)

n

Pty Tnra 40C2m VA0 X)

+ By, e O XA

21
Now let us consider that for an arbitrary function

(4)

g with a continuous derivation on the interval (5.,,, T>

(r > 3\1 ) holds

S a@gd,)=(AT)-&
i,E3,6T o -

-4 (ACE)-a g (§1d§ .

)g-(T) -

If we choose

~%, -4
g) =g ‘J,‘/“P (2 VX )

and consider that A (§)-&, =0 for fe<0,3),

~ ~ A
Af)-a,<<f§ & we get, using the limit for T-+co
and substituting in (4) immediately

%%‘Mrt ,,
P(x) = o= (A§)~8,)-
PN T e r, /

=1

(5)

J%h epeq 2 VEX)

£ 5 a§

If o« isreal, o« > -1, then for P complex,
Rep > 2 - Tt/ following well known relation for
the Hankel transform holds (see [61p.435)

() [Blgmpg @B - g
[ 4

. s gt
Sy O Tt -
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Chrp-20-1 iy +Pil-x Mo+ 1)
T X (%2 +p~cc+1)

Using this relation for o = %/2 we obtain

sy 2%ri i x;8; w0
X e ot 7 Iy, 1 QIIEX) o X
7 D T M '[ch)_agj—'m A =Forn %

#=1

and thus from (5) immediately follows (3). Using (6) far

e =0, we can rewrite (5) in the form

. AP(-X) =
(6%)
"hy+ 5L 27 2,0, o
X - e a’fA(g) T "/‘?-éQJTV—.X)dg .
ﬂp Vﬁ;_ﬁ' M,’ (4 E 9

Using Theorem 1 we can now deduce a basic relation
for the O-estimates:
Theorem 2. Let &= 1,2 25 2)8111

n F(x) = 0(x<) 3)
then
H~3-2
(8) P(x)= O(.x"/"“'r-‘-": ) for o >%4-14 ,

2) Let us note that, for 2<£ r £ 4 and for o&é%-;{%—,’ ’
r = 5,6,..., we cannot obtain on the base of this method

’ -
any better result than Landeu s estimation O(x™2~"hs1y

3) According to (1) 18 ov 2 /4 -1/4 as A(x)#F O and

thus according to (6°) also Alx)Z O . Obviously (see (1))
We can assume that ot £ /2 - %/n + 1

e )
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(9) P(x) = O(m%*%lg‘x) for oo = Y- .

If (7) holds wi h symbol o 4), also (8) holds with the
symbol o .

Proof. We shall use the usual Landau’s procedure (see
[2]1,pp.25-29). Let x> ¢ and P(x) << x“g (X) , where
we consider the following cases:

a) g(x) =1 (if (7) holds and v > %4 -4 ),

b) gdx) =1 (if (7) holds with o = % - ¥+ ),

¢) @(X) is a positive function, ¢ (x) = o (1)
(if (7) holds with symbol ¢ = let us note, that we can
assume thet the function <y (x) is defined for x > ¢
and is continuous and decreasing).

Let @ = [20c +72]1+1 and let z =2z(x) be a
positive function defined for x>¢ , z < V x (for
x>c)and z(x) = o(Vx) .Ths, p > %2 , x-

- Y _3/4___(4’/2<_,’ and (forx>¢) O<p z<x,

lim t(x) =+ 00 , where t =1t(x) = V>/z% | We put
X—¥+ 00

£ 95 P :
Azf(.x)=§§o(—4) (3 )f(x+gx) .

It is easy to ascertain that for y > O holds

s S %
B, x J%*?M (2 iyx ) << "'xq;wT (min (x 2%y ) <

(see [2],pe25)e From (3) we now obtain

o0 el @ 2
@ % ~ X T mon (X, X2 F)
8B (x-a,27<< [1P(§)-4, | ¢TI df <<
o

4) According to (1) then o > "% - 14
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R

+* oo < <
3

<< j1 df +f...d,g+/... af + f d

14 t t

nt

1 A 241 ¢ )
<< xTz¢f§%%d§+x”z$"{f“% Yag ¥
1

re &t ) > 4 3/4-’7f/d
Fx ety [ 5% g o X (f‘)w’%;[ £ d
t

~ 3 )_
(far O0< § < A, we used the estimate P(§

~ % ~ 5.¢)-
-a,o<<§/2 for § 2 A, the estimate Pcg

?

~&, << £ (f) ). Thus, we can write

[ T34 L7/
I [ "] E2(ﬁ. 4+ /4 a (t)

Where
, e) A(t)

A (L) =

a) A(t)=1 ,b) Alt)=Lgt
is a positive continuous and decreasing function,
= 0 (1) far t — + 0O

For a suitable § € <(x, X +pZ> holds

L2
B, xEL 2P g rprGrp-1)e (BN §ia 2P Fr) (F 4P 1)

%
--»(%+4)x%+0(x%"'z‘m)= x¢(-’2':+p)(%+p_1)...(%‘-+1)(x+pz) +
r 0 (x E 1204
and thus
BV, (x) = 2P Vix) + 0(xHT=zf")

(11) -
By Vo (X) = z"V(.x+;0z)4-0(.x% 2t .

The function ¢! A(x) 4is nonnegative and nonde~
creasing (7 = SMaES |
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For Xo € <X, X+@zx thus holds

MA(X) £ mAlxg) & N A(X+p %)
and as well
29 A(x) £ A, Ag (x) =
T AT Ayt

/[f[ / qA(.x )ax Jda;“ deéqz"’A(.xq-pz),

«

If we now use (10) and (11) we obtain from the relation (12)

(13) DA £7 V(x)+ 06X~ 20+ 0x™* B #2752 (Y722 )

and

x+th %2
(14) ”ZA(x+;oz>§nV(x+gaz)+OC.>< e+ 005 B A (1R,

Put z =X Y(x), where o(x)= 9\'3 A W )

(x)

According to remark 3) is for x > ¢ cer—
tainly 0 < x £ VX, 2(xX)=0(VX) (4x+3 -1 >0,
n-3-2a < 4/

-3 kx 2). For simplicity, let us write y = y(x) =
=x* © 5. From (13) and (14) we obtain

©. +x-z-—é¢
MAXY £ V) + 0(x > TF2T 40 (x))

- ta-}-&«-
nA(Y 27 V(fy.)+0(x% TRITE 4 (x)) 2

A-3-3
2 nViy) + O('yf‘ o %34 (X))

If we consider that for x > ¢ 1s y a continuous func-

tionof x , y — *+ 00 for X — + o0 we obtain
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immediately all the assertions of Theorem.

On the base of the Landau’s identity (4) the estima-
tion (8) of Theorem 2 may be slightly improved in some spe-
cial cases.

Theorem 3s Let o= 1,2 24 ,m<< A, << m
(n=1,2,,..) and

(15) Plx) = 0(x*)
Then

x~3-2x
(16) P(x)= O(xE~1+¥7sax ) |

Ir (15) holds with symbol o ,(16) also holds with symbol

[+

Proof. If P(x) = 0(x*) , Where oc?.%—'l or
P(x) = 0 (X®), where o > % ~ 1  then, according
to (1), the assertion is trivially satisfied. Let B(x) =

~

%p -1 ~ ~
= o (x ) and '+ O, First (A, ,>>m, 2, =

L ~ ~ ~
22 (A A, ) + A, ) , there exists such a constant ¢
that the inequality A4,,,- A4, > ¢ is valid for
infinitely many natural n ; i.e. for infinitely many n

holds A'(ﬁ'.n+c) = K(in) ’

~et

~ o~ ~ A ~ o~ ~ ~ -1
(PA,+e)-PA I = VA +C)-VO I >>A, >> m,% .

‘ ~ ~ ~ f-"
This is a contradiction with IP (d,+c) ~ ?(a@)l-a(m )

(for m —» 00 ) fee. =0, A(x)=B(x), 1£ (15)
holds, then 2&,_= Aca )~ K(ﬁ,,tqh 0(n*) (for mn—
— 00 ) and similarly with the symbol o i.e. we have
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&, << mTgp(m) ,where Y(x)=1 or ¢ (x)

is a positive continuous and decreasing function, g(x) =
= 0(1) .Then (P =~C2xc +41+1>% , Z=2
is a positive function, x(X) = o(VX), t = \/% ) ac-
cording to (4)

{ e @ _1 £
A, B (x) << X" 1S m TG m) min (x,m 27 * <<
=1

KN

L.
[

=l

£
X
@m'/

<)

’:‘"% @ x-%- >
“ % ya
<¢ xR gtmr o) Z .

+

E@_1 £-1 20-F+4)
+q(t’)xi§,m‘ TTIT) o x TPt P act) )

where Alx) =1 (for ¢ (x)=1)or A(x) 15 a
positive continuous and decreasing function, A (x) = o(1)
(in the second case). If we put

#-3-2& 1 -1

o =X—3;—m- Gx 5 T SA (x Xr6-IE )

we obtain easily, that 2z satisfies the conditions men-
tioned above and

& g4 232 2 z-1
14 n-i-“_&”"‘*’”“(x 8ac Hanu)

¥t B k-3
x xax Tty < x

Analogously as in proof of Theorem 2 we obtain now imme-
diately the assertions of Theorem 4.

Remark. Theorem 3 gives better results than Theorem 2
(than Landeu’s estimation (1)) only for oc > % - %
(x < 5’?: -1 o Brx)=0(xZ") ). For r=2 ma

r =3 the Theorem 3 does not give new results.
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Remark. If the assumption J =1 does not hold, the
transition from the function A g (x) to the function
A(x) 1is not so simple. Let us denote A°(x)= A (x; @:,Ig,

P
0, /M) A(x)= A(X;5 G, 0, &y, My ) and let
Ve (@), Po (x) etc. have the same meaning. Let oc >

_ 1
>7‘~ y and

(a7) Feo(x) = o(x*) , Blx) =0(x=) .

From the proof of Theorem 2 we obtain (all the time we pre-
serve the notation from the sorresponding theorem and its

proof) P° (x) = O(xP), where B=%-1+ ﬁ—}g—:—%‘% ; from

(10) (derived without assuming ¢~ = 1 ) and (11) we obtain

(18) B Ag(x) = 2P V(X) + 0(xPzf) .

However

@ X4ZT X 42 Np.q+T
18, A (X)-2PAG) = | %-.-4: (AGK)-AGx Vel 1k, - Idx |

-1

le = 2 1=
X<QmiM 8508 X +P2Z

= 2P (A° (X +p2) - A°(X)) <<zPlx %+ x Py <czfx?
and thus using (18)
P(x) = 0(x#) .
We procede gnalogously if (17) takes place with the symbols
J , for acz%---zl- and or for Theorem 3.

In the papers [3] and [4] were - a8 well as some ot-
hers - derived the following results:
Let r > 4 and let the form Q have integer coefficients,
let b, , by, yeee, b, Dbe integers, M,, M ,..., M, natural
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numbers. Then holds:
a) P(x) = O(x%-7) ,

b) If at least one of the numbers oC,, oC,, - ,C,
is irrational, then
(%
P(x) = o (xZT°7) .

¢) For almost all systems ot,, oLy, .- 9, (in the
sense of Lebesgue measure in r-dimensional Euclid ean spa~
ce E, ) there is

P(x) = 0(x #**)

for every ¢€© > O,

d) If 7 1is the supremum of all numbers (3 > O,
for which the inequalities

o, My k-njl e &, Z=1,2,., 1

have an infinite number of solution in integers k > 0 ,

1 2%%1 1
71'11.”1‘2_7"" ’ﬂ'ﬁp) 'F=C%“i),r,_+4 "’2(9.+1,)

for o =+ 00 let £ = "/2 -1 ) then for every € >
> 0 holds the estimate

(19) P(x) = o(x¥*€ ) .,
e) Let P>5, o, = &K, = .. = &, and let

7" be the supremum of all numbers (3 > 0 , for which

the inequality
oo, & - | £ do B

has an infinite number of solutions in integers k > 0 ,

‘F=(%'j§)% (for = + 00 131:4-%-1).

Then for every % > O holds (19) and the value of £ in

in this estimate cannot be generally decreased: e.g. for
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b1 = b2 = L.e = brc = 0 we have for every € > 0 also
Pix) = 0 (xf-¢ ).,

If we consider that for t > 0 is

oy
(20) ACx; Gyoz, 05,M; )= A5 4B, 5 t 45, EM; )

it is possible (we interchange Q , o; , &; , M; and
q, by, = &, 7/M; ) from the assertions a) - d) de-
rive the same estimates for the function P(x) assuming
that =1, M, M,..., M, natural; r >4 (for d)

r>5) and for forms Q with integer coefficients 5)

) to prove the fol=-

and thus using Theorem 2 or Theorem 3 6
lowing results:

Theorem 4. Let r >4, 0 =1 and let the coeffi-
cients of the form Q be integers and M, ,M,,..., M, na-
tural numbers. Let at least one of numbers b ,b,,..., b,
be irrational. Then

£ . R
Px) = o (x2 %1 ) ,

- e o s e o . 2o

5) According to (20) it is possible to generalize these as~
sumptions.

6) Under the assumptions of Theorem 4 it is clear that
i,n>> m . According to (20) and to assertion a) is B(x) =
= Alx; Q, 0, - xy, ﬂ,'é ) =c¢c x‘i * O(x"é'1 ) and thus
B(X,) -B@A, )=BR)34mBA-E)< A2, Horefron we imme-
diately obtain B (X, ) =cA% 03% ") << m A7 1.
§ﬂ<< m ., We can conclusively use Theorem 3 and asser-
tion c¢). Theorem 5 follows from assertion b) and Theorem

2; the consequences of assertions d) and e) are not expli-

citely presented.
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Theorem 5. Let »>5, J =1 and let the coeffi~-
cients of the form Q be integers, ug,u;,..., M, natu-
ral numbers., Then for almost all systems b1 ’bz 1esey by
(in the sense of Lebesgue measure in the r-dimensional Eu-

clidean space E, ) is

P(x) = O(x e )

for every €& > O .
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