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Commentationes Mathematicae Universitatis Carolinae

9, 4 (1968)
PRINCIPAL DUAL IDEALS IN LATTICES OF PRIMITIVE CLASSES
Jaroslav JEZEK, Praha

Consider a type A of universal algebras and the
lattice éﬂd of all primitive classes of algebras of
type 4 . J. Rebane [2] has shown that if A  con-
tains at least one at least unary operation, then each
proper. principal dual ideal J of oZA is infinite.
It will be shown in the present paper that if A  con-
tains either at least two unary operations or at least
one at least binary operation, then each J is uncoun=-
table. (It will follow that if, in addition, A4 1is fi-
nite, then each J has exactly 2x° elements; the
continuum hypothesis is not used here.) Let us remerk that
ir A consists of one unary and a finite number of
mllery operations, then (ss it is shown in[11) &£,
and hence each J is countable; if A consists of
one unary and an infinite number of nullary operations,
then it is easy to prove that éﬁA ‘ contains both
countaiale and uncountable proper principal dual ideals.

Some terminology will be given in § 1. However, the
reader is supposed to know the definitions and fundamen-
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tel properties of absolutely free algebtras and primitive

classes. See SXominski [3].

§ 1. Lattices of primitive classes

By a type we mean an arbitrary family 4 = (m;); .

of non-negative integers. Let us make a convention: if
@ type is denoted by 4 , then its definition set is
denoted by I and the integer corresponding to < € 1
by m, -

Algebra of type A is a set A together with
a family (f;),; where f; 1s an m, -ary

operation in A . We call f. the <-th fundamental
operation of this algebra. If m, = O, then f; 1is
simply an element of A .

Let us fix an infinitely countable set X ; its e~
lements are called variablea. For each type A let us
fix an absolutely free algebra W, of type A free-
ly generated by X . If 4 € I , then the < -th
fundamental operation of W, is denoted by f; .

Let us define a set S(w) for each w' € W, :

if we X, then S(w)={wj; if ie I,

’w’—ﬁ;'(‘wf,,-.., W, ;) , then Sw)=fwiu Sw)u..

ey S'(w"‘-;) . The elements of S (w) are called
subwords of W « It is easy to prove that if wy

is a subword of w, then (w; ) 1is a subword of

2 1
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g (wy )  for any endomorphism @  of W, -

Let us define a non-negative integer x (w-)
for each ureWA; if we X or w=f;, for
some 1 € I, m; =0, thenn@r)=0; it i €

el, M+ 0, w= £, W,y Wy ), then nlw) = 1+n@wy) +.

co+lug, ) | It 18 easy to prove n(wr) £ 4 (g (w))
for any endomorphism & of W, -

By a A -equation we mean an ordered pair
{w;, W, > of elements of WA . By @ A -theory we

mean any set of A -equations, i.e. any binary relation
in W) . A A -cqustion e 1s identified with the
A -theory {fe] . A A -equation (w6 w, > is

called trivial if w; = %, -

By a fully invariant congruence relation (shortly:
FI-congruence relation) of W, we mesn & congruence
relation E  such that < w5, w; > e E implies

<‘:7(""1):9’(wg') >e E for any endomorphism @ of
WA .

Lemme 1. Let m  be a non-negative integer. The
set of all A -equations <{w;, wW; > such that ei-

ther W) = u; or 2(w,)2m & rw)=2m is

a FI-congruence relation of W, -
The proof is evident.
For any A ~-theory E ,the least FI-congruence
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relation of V\/A containing E  is denoted by
Cn CE) .

We shall write E1 - E.z instead of E, <
e Cn (E,,) .

The set of all FI-congruence relations of W, is
a complete lattice with respect to the set-theoretic in-
clusion. The dual of this lattice is denoted by &, .
This is the set of all FI-congruence relations of WA
with the relation < , defined by E, E, ir
and only if E2 =3 E1 .

=
A

A A -equation {w;, w; > is called valid in
an algetra A of type A if ¥ (w,) = g(w, ) for
all homomorphisms ¢  of \'{3 "inte A . Ir E
is @ A -theory, then Mol (E) denotes the primi-
tive class of all algetras of type A in which all e-
quations from E are valid. It <L is a class of
algebras of type A , then 59’ (€L) denotes the
set of all A =equations that are valid in each A ¢ ¥ .

The following three properties are well-known:
i) 1Ir E, and E, are two different elements
of £, , then the primitive classes Modl (E, ) and

Mod CE, ) are different, too.
ii) Any primitive class of algetras of type A
can be expressed as Mocl (E)  for some E € &, -
11) ¢ E,, E, e &£, , thenE = E,
if and only if Mod (E ) € Mool (E,) .
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This shows that the name *lattice of primitive clas-
ses" for L, is available. ‘

Let us denote by Ly the greatest element of
£, -

Ir E € £, , then the set of all H € &£, such
that E =, H is called theprincipal dual ideal
(of .‘éA ) generated by E . It is called proper

ir E#—-—LA.

§ 2. The uncouptability of proper principal dusl
ideals of &, for larse types A
Let us call a type A 1large if either

(1) m, £ 1 forall i € I ; there exist two

different elements <, , 7, of I such that m; =
2 1

-n; = 1 or

(2) there exists an 2 € I  such that n; = 2 .
In my paper (1] it is shown that for each finite

type A ’ the lattice afA is uncountable if and on-

ly if A 1is large. Here we shall prove this

Theorem. Let A  be a large type. Then each pro-
per principal dual ideal of ofA is uncountable. More-
over, it containa a subset which (considered as partial=-
1y ordered by <, ) is isomorphic to the lattice of
all subsets of an infinite set.

First a definition. A A ~theory E  1is called
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separated if it is infinite and Cn (E,) = Cn (E,)

implies E, = E, for @11 E , E,

c E .
It is easy to prove that if E  is separated,

then the mapping & defined by w(E,)= Cn(E ~E))

is an order—-isomorphism of the lattice of all subsets of
E onto a subset of the principal dual ideal of <€,
generated by Cn (E).

We have further evidently: if H € 364 » H# L, ,

then there exists in H at least one non-trivial e-
quation € ,and it is H +— e .

Hence, to prove the Theorem, it is enough to prove
that for each non-trivial A -equation € there exists
a separated A -theory E  such that € — E . This
will be proved in the following two lemmas.

Lemma 2. If a type A  satisfies (1), then for
each non~trivial A -equation e there exists a se-
parated A -theory E such that e — E .

Proof. The elements © € I  such that m; = 1
are called unary symbols. If A4 =/, ’52_"- e is a
finite (not necessarily non—empty) sequence of unary
symbols and w- € W, , then w’  is defined in
this w;ay: it A is empty, then w”® = w ;3 further,

Agese Ppp » Byeer M
1 mPmea =,€ ¢ 1 n)

w . The special una-

APmsq

ry symbols 1',1 and 1',2 (see (1)) are denoted by |
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and + s respectively. We shall denote by ?1-" the

sequence consisting of m symbols + ..

Let N  be the set of all positive integers.
Put e = {u, >, so that « 5 2. For each

m m

i+ 141
meN pt e, =Cu«u ,v» > . ForeachMES
s N 1let Ep be the set of all €,  with me

eM. put E = Ey . We have evidently e +— E .

Put H = Cn(e) . Let us define a relation RM
in W, foreach M & N  1in this way: <uj, ;> ¢

€ Ry if and only if either w, = W, or there ex-

ists an equation <4, , 4, > € H , a number m e M

and a finite (not necessarily non-empty) sequence A of

.
unary symbols such that w; = u,,‘”"’" and W, =
P
= M, . Let us prove that RM is a FI-congruen-

ce relation of W, . It is evidently enough to prove
transitivity., Let {w;, w, > € RM and {w; , W)€

e Ry . 1 Wy = Wy or W = W ,then<w; ,wW;’¢€

[ RM evidently. In the opposite case there ex-
ist equations < ,«,> € H, <% ,v,>e H ,

numbers m, m € M and sequences A, A such
1T *is % 1w
thatw;.u., ’w;‘uz -‘U;. » w;-'v; .
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It follows from the expression of w/, that either

m — -
I+ is an emd of \¥|% or 1¥1% is &n

m .
end of |4+ | A . We shall consider the first case;
the second could be handled similarly. There exists @

m —
sequence t  such that (+ | » is equal to

m t t t ,
tTI+1A . Clearly (fzra_,'zr‘ >e H and v, = 44, ;

we get (M,”ﬂl':') € H . Aas 'uf,,=4lf,,':t"s and

tiTs

w, = vy , we get {w; , w;>€R_ . The asser-

tion on Ry, 48 thus proved. We have evidently

RM 2 EM and hence RM 2 Cn (E ) -

To prove the Lemma, it is evidently enough to
prove that i m « N - M then e ¢ Cn(EM).

?

Suppose on the contrary that &, € cm, (EM ) 5 we

get e, € R, . There exists an equation («,, % >€

€ H, @number m € M  and a seqence A
4 m m m
such that L L . 444-4-!:'» and ,y,’+l= ,V’-o-l/a‘

Ve shall go on under the assumption A (i, ) £ £ (7;);

=

N

in the contrary case the proof would be analogous., Evi-

demtly x () & n(v), too. Aeluty,V; > €

e Cn<u,v») ana wy = U we get n(u )
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> s (e ) evidently applying Lemma 1. From this and
o, .
from «!¥l = ¥ 14 4t follows emsily that 4

is empty, m = m and AU = Ay -
Bat m = m is in a contradiction with the assump=-
tion m ¢ M.

Lenpg 3. If a type A satisfies (2), then for
each non-trivial A -equation € there exists »

separated A -theory E such that e — E .

Progf. Let us fixan 1 € I  with " 22

wd put m; = k. It w,, w, € Wy , then

pat  w . W, =f’1;1(ur,,w;,-.., w, ) . 1

Wyyee., Wy, € Wy, then the product 2 ... w;  1is
. defined in this way: if 2 = 4 | it is equal to 1/ ;

it m >1, then w; ... W, = (W .. Wy_,)- W, .
Ir 'uq = ... =W, = w, we write w”™  instesd
of wh ... W, .

Put € = {(w,2” ), so that « » 2. Let N
be the set of all integers m - = 2 . Let us fix a
variable X . Foreach m e N put e =

m
e (- X", v- X™>.For ecach M & N  1let Ey be

the set of all €, with me M. Put E = Ey -
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We have evidently e — F .

Let a set M N be given. A finite sequen=—

ce e“’, Jem) of A -equations is called proof

(with respect to M ) if for each 4 = 1,..., &
one of the following cases takes place:

1) e is trivial;

11) there exists an m € M and an endomorph-

ism & of W, such that either ew—_- <@ (w-x™,

P -xT)Y or e@ - (g (v X™), pla-xT) >,

1i1) there exists an < € I and a sequence
{uy, —uz,’ >, oo, W, » of A -equations such that all
+ T
o G-1)
these equations occur among & yeeer € and

@ = <f Up yeres Wy, ), (g, ) D

k4

iv) there exist two equations < w; w4 } and

(w;,w;> among e, ..., %" such that %=

= < Mff’ 9 'u/,a ) .
Let Ry be the set of all those A -equations
that occur as the last member of a proof (with respect

to M ). It is easy to see that Rm is a FI-
congruence relation of WA , 80 that evidently
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RM = Cn(EM).

To prove the Lemma, it is evidently enough to pro-

ve that if me N-M , then e, ¢ Cn(CE, ) . Sup-

pose on the contrary that e, € Ry, , 8o that en
is the last member of & proof (with respect to M )°

e“”,,.., e® . we may suppose lw) £ rn (v);

in the contrary case the proof would be analogous. We
can not receive e“" applying only the rules i) and

iv); hence, there exists @8 4 < 4o and & w~ € Wy

4 7
such that w # 4 - X”°  and e¥s (- X" w >

and such that €%’ can be got applying ii) or iii).

(In the case 4« () = 4 (v) we would seek e%’ in

the form { w’, - x™ > .) Suppose that e’ can be
got by 1ii). There exist elements %, w;,..., 24 € Wy
such that w' = f; (w,, w,,-.., Wp )  and

S, wy > € Ry, <xX™, , >€ Ry s ---

vy XXT, wg > e Ry oo

Let us call an element t & W, special if it has
@ subword *F‘;d Ct,, ery e ) where  tg is not a

variable. Evidentlv. we get a FI-congruence relation if
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we take the set of all those 4 -equations ( t, t>

such that either t = £ or ¢ and £  are

both special. As EM and hence Ry, = Cn (Ey)

is contained in this FI-congruence relation and as

m -1 n-1

.x"”=ﬂ;1 (X7, X, eee )y X ), X =

-2
= ‘F,‘:" (X“ ,X,.-.,X), cre D

xz £ ﬁ";' (J(’x’-f., .X) »

we get X = Wp=...= W, . A8 K(&)EK(V),

i -XT)> () for all m e M and

(e, W, > € RM , we get w = g easily by Lemma 1.

We get w = a-Xx"" , @& contradiction. Hence, e @’

is as in ii). We have either «-Xx"'= g (u - x™") =

= () (PXN™ op

sm-x" = gV XY = @) (XN

2

in both these cases x™= (@ (X N™ . Ais m ,

m = 2 , we have ﬂ-'d(x""",.x,,..,.x) =

= & (g (xN™7, g x),..., g(xD
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and hence X = g (x) . From X™ = X7 we get

evidently m = nm € M , a contradiction.
The Theorem is thus proved.
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