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Commentationes Mathematicae Universitatis Carolinae
8,3 (1968)

BANACH SPACES WITH THE DIFFERENTIABLE NORMS
Véclav ZIZLER, Praha

§ 1. Notationg. The word space X denotes the Banach spa~
ce X, X, —» X, resp. .xniy X strong, resp. weak
convergence in the space X , X* is dual of X .

Further we use the following notations:

Se={xeX; xlmt3, KrdxeX; Ixl &,

Sg= St e Xt 140=t3, Ky ~{fe X*; 141l & &3 .

w* ~topology in X* is the topology of pointwise con-
vergence in X , The isomorphism of X,Y is taken as the
linear isomorphism of X,¥Y . P denotes the set of all
readl numbers. ( X=X ) denotes the space of all contimu-
ous linear mappings of X into Y .

§ 2. Fupdmental definitions.

Definition 1. We say that ch"cX is a
point of the weak or Giteaux smoothness if the norm of X
is Ghteamux differentiable at X e S, , i.e. if the limit

Ix+th i - Ixi
t 0 t

(1) DU (x, A)

exists for every b € X .
We say that X 1s the weak or Giteaux smooth (@) if every
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point of 51 is the point of the weak smoothness of S, .
Remark l. The GAteaux differential of every norm is linear
in h (see for example [65)) and continuous in h (see for
example [38]). The condition of GAteaux differentiability
of Hxl at x is equivalent to the fact that there exists
only one support hyperplane at x € S, ((781).
Definition 2. A space X 1is called uniformly GAteaux smooth
or uniforrly weak smooth (UG) if the norm of X is uniform=
ly Giteaux differemtiable for X € S; , i.e. the limit (1)
is uniform with respect to x & Sy -

Definition 3. A point x € S, is called a point of the
strong or Fréchet smoothness of S, if the limit (1) is uni-
formin h e S,.

A space X 1is said to be Fréchet or strong smooth (F) if
every point of S, is a point of the strong smoothness of
S, .

Definition 4. A space X 1is said to be unifomly strong
smooth or uniformly Fréchet smooth (UF) if the limit (1) is
uniform in x , h € S,

Definition 5. A space X is called uniformly rotund (UR)

if the following irplication is true:

(Xns Y € Spp N-ZB3H0 )y 1) = %, -2, — 0.
Remark 2. S. Kakutani ([52]) has proved that the condition
(UR) is equivalent to the following one:

(S > Ym € Kgp | SHFHY | 3 ) ey & = Yy > O .
Definition 6. A space X is called locally uniformly ro-
tund (LUR) if the following implication is true:
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(Xpy X, € 5.,,“&{—5"—» 1= X, -X,— 0 .

Definition 7. A space X 1is said to be weakly uniformly
rotund (WUR) if the following implication is valid:

<+ wur
(X, Ym € Sq, | -’)—‘3—11"-"" —5 1) = Xy = —> 0.
Definition 8. A space X* is said to be weakly* uniform=
ly rotund (WFUR) if the following implication is true:

*

(fn,Gn € S; s nizuzﬁzn_, D= fo-9a 50,
Definition 9. A point X € S, is called an extremal
point of §, if X is not an interior point of any segment
in §; . The set of all extremal points of S, is denoted
by et S, .

Definition 10. A point x € S, is called an exposed
point of S, if there exists £ € S*  such that 1=
= () > £ (y) for each 4 € S;, y + X -
Definition 11. A space X :Is called rotund or strictly
convex (R) if every point of s1 is extremal point of S1 o
Rerark 3. The following well-known theorem is due to M.G.
Krejn ([1]):

X is (R) iff every f € X* attains its supremunm at
most at one point of S, .

From this theorem it follows immediately that each point
of § 1s exposed if X is (R).

Definjtion 12. We say that X has a property (p) when X
is isomorphic to a space ¥ with the property (P) ((P) is
(R),(G) and so onkXis said to have a property (B B) if X
has the properties (P;) ana (P,) jointly.
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Remark 4. It is well=known that the condition (R) is

equivalent to the following one:
(Nx+agl =X T+ llgpll, Xk 0, 4o 0 )px =Ty, t> 0.

§ 3. W, ultg.
S. Banach has proved that the norm of C <0, 7
is Fréchet differentiable at X, ¢ C (0, 1> iff x,

attains its supremum at only one point of <0, 7> ((31).
S. Mazur (L78]) has proved that similar condition is true
for the space of bounded functions and that L, , 12 > 1
is (F). He has proved that the set of all weak smooth
pointa of S, in separable space contains a set which is
é{ and dense in §; . V.L. Smuljan ((873,(891,L90]) has ob~
served that necessary and sufficient condition for the fact
that the norm of X¥* is Fréchet (resp.Gateaux) differen-
tiable in f € S.,* is that the following implication is
valid:

(Xn € Sp, (X)) 1) = (X, 3} is strongly
(resp.weakly) Cauchy-sequence.He has shown ([89]) that X
is (R) (resp.(G)) when X* is (G)(resp.(R)). Moreover he has
established the following thearems ((871,[901):

X* is (UP) iff for every € > 0 there exists o > 0
such that I x-glle € 1££X)>1-d ,4(y) >1-7,
for some € S) ana X,y € S,

X* 1s (UG) iff for every €¢ >0  and g€ X*  there
exists .d;,9 > 0 that g (x-4)l £ ¢ whenever
$(x)> 4-{’,4(y)>1-_d_;,9, for some 4 € 57*
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md X, ye S,.

It means in fact in the terminology of L17 - 18] that X*
is (UF) (resp.(U8)) iff X 4is (UR) (resp. (WUR)).
Analogically: X 1s (UF) iff X* is UR; further: X is
(ug) ire X* 1s (W*UR).

The spaces (UR) have been intpoduced by J. Clarkson in
L16], the spaces (WUR),(W*UR) by D.Cudia in (17 - 181,
Vole. Klee and M.M. Day have proved many fundamental theo=
rems in these topics ([54 - 591,21 - 261).

The questions concerning the SebySev-subsets of Banach spa=-
ces are studied for example in the papers of V.L, Klee (see
for example [59]), L.P. Viasov ([94 - 97]), N.V, Jefimov
and S.B, Stekin ([44a - c]). J. Clarkson ([16]) has es-
tablished that every separable Banach space is (r) . MM,
Day has proved ([251) that every separable Banach space is
(rg). V.L. Klee ((58]1) has shown that every separable Ba=
nach space X is isomorphic to a spece Y which norm is
(GR) and its dual is (R). »
Other types of rotundity have been also .studied by R.C.Ja~
mes ((431), D.P, Giesy ([331), A. Beck ([4]). M.I.Kadec
([501) has established for example that every separable
space is isomorphic to a space (LUR) and that all separab-
le spaces are honeomorphic in nonlinear sense ([481). V.L.
Klee ([571) has shown that the following theorem is valid:
Supbose X* i3 separable. Then there exists an equivglent
norm in X that its dual norm in X* is (R) and the rela-

tions
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foe X*, £ 250, Kt N —> 11 implies
N -F1 — 0.

Jo Lindenstrauss ([72]) has proved that every reflexive
Banach space is isomorphic to a space (R) and then it is
also isomorphic to a space (G). He has also established
([72]) for example that the set of all points of GAteaux—
smoothness of S; is dense in S, in every reflexive Banach
space and that the same result is valid concerning the
points of Fréchet differentiability in the reflexive se~
parable space.

E. Asplund has shown a general method of the construction
of some special norms which gives for example:

Every reflexive space is (r g);

every reflexive separable space is (f lur).

E., Bishop and R.R. Phelps ([5]1 ) have proved that the set
of all f & X* which attain their norms is norm-dense
in Xx*,

J. Lindenstrause ([.76]) has shown that for example the set
of all linear continuous operations of X into Y which
attain their norm is norm~dense in the space of all linear
cont inuous operators of X into Y , where X i1s a refle-
xive space, I is an arbitrary space.

J. Kurzweil ((661) has studied the differentiability of
higher order of the norm of L, , 7+ > 1 and the proper-
ties of analytic operators in real spaces ([671).

K. Sundaresan ([861) has studied a twice-differentiable
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The properties of the modulus of rotundity are studied in
£691,(36= 37],[34] for example.
Using the geometrical properties of the space C(K) J.¥ada
([981) has established some topological characterizations
of the space K .
Some other types of rotundity have been introduced by K.
Fan and J. Glicksberg ([291,[301).

Lists of the papers in these topics are contained,for
example, in (18],[26] ,[27] and in this paper. But the lat-
ter one is not complete. It does not contain even many

fundamental and important articles.

§ 4. Summpary. This paper concerns the questions of the dua-
lity mappings, the isomorphisms of separable spaces, one
fixed point theorem and a modification of one corollary of
one well=known excellent thsorem of J. Rainwater.

I wish to thank J.Kolomy for calling my attention to these
problems.

§ 5. The duality mappingg

Theorem 1. X is (WUR) iff the following implication is true:
(Y Y € Kgy N ZBFEE )y 1) iy %, -1y, X5 0.

Broof (1s analogical to that of S. Kakutani far (UR)((521)):

Let X be (WUR). It is evident that it is sufficient to

pove the following implication: For every g € Sv,"l and

for every € > (0 there exists d;" > 0  that

g (=47 13 € -onac (X1, lag 1) = g ZZHy hﬁ-{,)-mu(lul,ﬂy-ﬂ).
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Using the symmetry of x, y we suppose that x/l & Il .
It is sufficient to assume that I/l = 13 layl becau-
se the general case can be proved from this one by changing

x into 1,—%‘(—"-, ¥ into ]%ﬁ ‘
LetIg(x-g) 3 &, £€(0,1), 1=Nxd Uy, 7€ (0, &) .

First of all let Nagll & 1, Nagl 2 1-7 , Define
R = 1%7,’ . Then

Thus

g(xX-2)= g(x-4)+g(y-x).

g (x-2)2 e-lgly-2)I.
Using the inequalities we obtain:
Igc.x-x)l 2 E-7 .
Thus
NEEN &1 -y,

Then we have |

15 & N 4Z 1+ 1R e - g+ F -
suppose that Ny Il & 1= 7 5 toenl X5¥ 06 1-%F .
Now generally:

"#u 5/’”4”(4-4:-9:,’.* % » 1- %) ‘
It is easy to see that the right hand of this inequality
can be made less than one only by changing of % .
Definition 13. The mapping ¢ ¢ E —¥ E* 13 called
w¥ ~demicontinuous on S, ¢ E  if

X, ,X€ S8, Xn —» X implies q(og.Ji'é—»*cy(x).
Definition 14. Let X be (G)-space. The duality mapping on
5 € X is the mapping J defined by following: For

xeS, Yix)= £ e S* | where £(x)= 1,



Remark 5. For the simplification of notations we define the
duality wapping J only on S, .

Theorem 2 (V.L. Smljan (€89, 911). Let X be a (G)-space.
Then the duality mapping .J is w* -demicontinuous mapping
of § into S: e J is continuous if X is a (F)=-space.
Definition 15. The mapping & ¢ X —% X* is said to be u=
niformly w¥ =demicontinuous if for ecvery €& > 0 and

x € X there exists df,z > 0  such that |(g(x) -
-gly))(z)| & € whenever UIx-4ll & d; o - ‘
Proposition 1. Let X be a (UG)-space. Then the duality
mapping J is uniformly w*-dev:icontinuous from S,, into
s¥ .

Proof. Let ¢ > 0, x e X be arbitrary elements. Let
= 0;,x > O  be the number from the definition of the
(UG)-space X o Let W, Yy e S, lx- s o ., Let
Uxwf, Iy =g. Then f(x)=1,9(x)=g(y) +
+g(x+y) > 1-d. Thus I(f-g)(x)| & € by the
well-known 3rmljan characterization of the (UG)=property of
Xo.

One may prove the following proposition analogously:
Proposition 2 (see also [52a)). Let X be a (UF)-space.Then
J 1is uniformly continuous mapping of S, into S: .
Eroposition 3 . Let X be a (G)-space. Assume that the dif-
ferential DI+ N (X, 4 ) of the norm of X is uniformly
wX¥ =demicont inuous mapping. Then X is the (UG)=-space.
Progf. Suppose that the norm of X is not uniformly Gateaux
differentiable. Let us write for X, , X € §,, ¢, € P
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Ntm+ty B ll=UXpll &« Dl | (X, by )t @ (X, T, 4)
Nx +t,hll = Ixll =Dl Ii{x,t,A)+w(x,t, h).

Then there exist a € >0 and It,le (0, ,%, )y X, €
€ S such that

‘ é)(\xq;ztm,}l«)l ‘_2_- £ i

t,, °
We have
OCn T h) W Ty ) Hotm + Pl =N Il
’ t - t” ’ = I t”
”
lx+tndll = Xl +

tn

+ DU-NCX, A)=D I (X, h)l.

By the mean-value theorem there exist 2, , 2, € (0,7

such that
| w(x;,tnlb)_ w(«t,tnh’;- [ Dl N (Xp# Ty E e, B) =
»n m

Dl (X, A) 4D Nl (¢, h) -

-DN-N(x+T L, h, )]

The right side of this equality converges to zero as 72 —
—¥ 00 ., By our hypothesis we have a contradiction because
O (X,tyh)
—_——

~
is a (G)-space.

One may prove the following assertion similarly (see
also Th.4.3 [93]):

~—> 0 whenever m —% o0 Dbecause X
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Propogition 4. Let X be a (F)-space. Suppose the differen-
tial of the norm of X is uniformly continuous in sense of
the space (X —» P ). Then X is a (UF)-space.
Proposgition 5. Let X be a reflexive (UG)-space. Suppose
the differential DIl . I(X,4 ) 1is uniformly continuous in
x and weakly continuous in h Jointly . Then
X is a (UF)-space.

Brogof. Assume X is not a (UF)-space. Then there exist £>
>0 and {x,3 c S, {h,3c S, such that

| Lartahaly 5 ¢

k4

where &) is defined as in Proposition 3,
Let A, M, k. Ve have
1+t Ay = X U= Dl 11 (X B Ay, Y+ @ (Kims T Fr )

0 X+ tpd ll = St = DU (X, B, b))+ WXy, T b))

Then
t t. '~
tﬁ
+ Dl (.x,./h)-b ] (.X,;,h,,)l.
Then there exist 7%, , 7". e (0, 1) such that
|wam'¢ m Pom )

_g_(_a_(_»_.#___,g (DN (Xnt T, Yy 00 )
“DNel (Xa+ 2ty Ay )

FD U N (X, =Dl N AL,

O\v

It is easy to see that the right side of this equality con-
~ 425 =




W Ty B

T —> 0

verges to zero as m —» oo , But

whenever m —» Qo because X is a (UG)-space. This
contradiction concludes the proof.
Propogition 6. Let X be a (UG)-space or a (F)-space.Sup=-
pose that

DUV (xp+t, b1y, ) =D Holl (X, ) —> 0
whenever A, , X, € S,, tn —* o .
Then X is a (UF)-space.
Proof. Let us prove the part of our Proposition for the ca~
se of (F). Using the notations of the preceding propositions

we have

| DGty tabin) Ax,t,Jhn’l.ljb Be 1l (on+ T B Ay 5 Hi, ) =
~DNe N (Xn, 4,0 +D NN (s H0) —

“DU- N X+ Tt Pom )]

Now we proceed analogously as in Proposition 5.

Using the criterium of reflexivity by R.C. James ( [40],
[41)) and gmuljan's theorem D, Cudia has proved:
Theorem 3 (D. Cudia [17]). Let X be a weakly sequentially
complete space, X* a (G)-space. Then X is a reflexive
space.
Theorem 4 (D. Cudia [17]). A space X is reflexive if X™*
is a (F)-space.
Remgrk 6. It is known that the duality mapping J is weak-
1y continuous in spaces ,e,‘, £+ > 1 and that O s
not weakly continuous in spaces L., , 2 > 1 (for the

references see for example [31]).
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Remark 7. Using the well-known fact that rotundity of the
space X implies its uniform rotundity in the case of fi=-
nite dimension we can prove at once that for the finite-

dimensional case (UG) implies (UF). From theore: of N.A.

Ivanov it follows that (G ) ==& (F) (this theorem as-
gerts: the Lipschitz - mapping F has the Fréchet deriva-
tive F'(xo) at X, whenever it possesses the linear Ga-

teaux differemtial at x, ).

§ 6. Isom is n flexiyity of the smooth e

Using the modification of one method of M.I.Kadec
(501) we have the following
Theorem 5. Let X* be separable space. Then X is (w u r)-
space.
Eroof. Let {4 }:,, be a countable dense subset of
81" . Let us define the functional I(x) on X by

I(x) = chi;ii' o 00

Let lxl denote the norm of X . Then it is easy to see

that the functional

ix = Viket+ I

is the equivalent norm to Il x|l .
We shall show that this norm M 3 I is (WUR). Let
Moy = Mg, M =4, W Znt¥m y o 4.

We have
12(n + 2 ) + 18 (X - Vo 24 (12X + 1% (y,,)) .

It 1s easy to see that
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u,x,”-p%“’é 2.0, 2+ Hngm ) .
From these Tacts it follows (by addition) that
I X+ iy, M2+ 12 (X =g, ) & 2+ Clll X W2+ Mg, W2 -
The right side of this inequality is equal to 4, M, +

+ag, 1 —r & . Then I1'(Xm-p)~»0 . Thus we
have
foe (Xn~%, )—> whenever m —> 00

for avery A& € N.

The sequence {X, ~— 7, § 1is bounded in X and
fo (Xm ~Yn)—> 0 a8 m —yoo eandked,2,.. .
Hence by the vell-known theorem S, = /g, ¥, 0 . This
completes the proaof,
Corollary 1. Let X* be separable. Then X ¥ is (ug).
Corolliary 2. Let X be a reflexive separable space. Then
X is (wur ) and X is (ug).
Remark 9 (Construction of a space (WUR) which is not (ur):
In the paper [21] M.M. Day has constructed a separable re-
flexive (R)-space lé, which is not (ur). If we introduce
in this space the norm as in the proof of Proposition 10
we obtain the example of the gpace (WUR) which is not (ur).
By duality we obtain the example of the space (U6) which is
not (uf).
Remark 10, From these facts it follows that not every
(WUR)-space is reflexive.
Theorep 6. Let X be a separable space. Then X* is
(whar) .

Proof. Let {Xgq § Dbe a countable dense subset of §,
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and define the functional I on X* by

@) I#) = VE A4 frxg) .
£552

Further we proceed analogously as in Proposition 10,
Legmg 1 (see [51]), Let X be a separable space. Let the
new norm M 4 in X* be defined by (2) from the
proof of Proposition 1l. Then N £ Il is w¥* -lower-
semicontinuous on X* ., .
Proof. It follows immediately from well-known Fatou-lemma
and from Theorem of resonance ([99J,chapt.3 ).
Theorem 7 (see also V.L., Klee [55], M.M, Day [25], I. Sin-

ger [85]). Let X be a space. Assume that the new norm

I4 Ml in X* is equivalent to the obvious supremum -
norm of X* , Suppose W¥ W  is w*=lower-semicontinuous.
Then M4l is a dual norm of some norm Ml x i in X

which isequivalent to N« il -

Proof. Dencte the unit closed ball in the norm M+ M by
M. Then M is w*-clmsed and thus (°M) = M where
©°M denotes the polar set of M in X and (°M)° deno-
tes the polar set of °M in X*. Define Mx Ml in X

by the set °M as its unit closed ball. Then Wl x M sa=
tisfies all conditions in our theorem.

Theorem 8. Let X be a separable space. Then X 1is (ug).
Proof. It follows immediately from Theorems. 6,¥ and Lemma 1.
Proposition 7. Let X be a weakly sequentially complete
space, X* be lsomorphic to a (G)-gpace Y . Suppose that
the unit ball of Y is w*-closed. Then X is reflexive.
Broof. It follows immediately from the considerations of
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Theorems 3.7.
Proposition 8. Suppose X¥ be isomorphic to a (F)-space
Y . Assume the unit ball of Y i1s w¥*=-closed. Then X is
reflexive.
‘ Proof. It follows from Theorems 4,7.
Now we shall prove the modification of the results aof
MeMo Day for the strong case,
Theorem 9. Let X be a (F)-space, Y be a (FR)-space. Let
there exist a linear one-to-one continuous mapping L :of
X into Y . Then X is a (fr)-space.
Proof. Let Nx # denote the norm of X , M 4 fl  deno-
te the norm of Y . Define a new norm of X by
Jdxh =l + 0L W .
This norm is evidently strictly convex and Fréchet diffe-
rentiable (see [28]),
Corollary 3. Let X be a (f)-space and suppose there ex-
ists a linear one=to-one continuous mapping of X into a
(fr)-space Y . Then X 1is a (fr)-space.
The following lemma is well-known.
Lemmg 2. Let X be a separable space. Then there exists a
linear one-to-one continuous mepping of X into L, < 0,1>.
Using the fact that L, < 0, 7> 1s (UR UF) we have
Theorem 10. Let X¥* be separable. Then X is a (fr)-space.
Proof. G. Res\:repo ({84)) has proved that a separable space
ig (f) iff X* is separable. Then X is (f)r This fact,
Lemma 3 and Theorem 9 imply this assertion.
Remark 8. The part "if" of Restrepo s theorem from the proc
of Theorem '10 has been also established by M.I.Kadec([511).
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§ 7. A _theorem concerning the fixed point of nonexpansive
Dapping

Definition 16_. Let C be a subset of X . & mapping T :

: 0 —» C is suid to be nonexpansive on C if Nl Tx ~Tylés

Z£lx-yll whenever X, Y € C.

Definition 17. Let C be a bounded subset of the space

X, o(CC) denote its diameter. The point x € C is

said to be a diametral point of C if Nx~ng i = o°CC).

saetral » ey

Definition 18. (([12]). A convex subset € & X is said
to have normal structure if every bounded convex subset
¢, eC which contains more than one point contains a
point which is not diametral of C, .

It ie well-known ([13],(35] ) that every nonex=-
pansive mapping of a convex boundad closed subset C of a
(UR)-gpace into C has a fixed point, i.e. there exists a
point X € C  such that Tx = X .

W.A. Kirk ([53)) has proved the following:

Theorem 11 (7.A., Kirk)., Let X be a reflexive space, C
be a bounded closed convex subset of X which has normal
structure. Then every nonexpansive mapping T of C into
itself has a fixed point.

Theorem 12 (D.G@. Pigueiredo [31) (= for exsmple)let X be a
(UR)-space. Then every bounded closed convex subset of X
has normal structure.

Theorem 13. Let X be a (WUR)-space. Then every bounded
closed convex subset of X has normal structure.

Proof (Analogical to that for the case (UR)), It is suffi-
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cient to prove that every bounded convex subset C of X
which contains more than one point has a point which is
not diametral.
1
Let x, e C, Ix=-yl2 3 d(C) . Let us ta-
ke &4 = 3‘—-5& . This point is not diasmetral. Suppose

u is diametral. Then there exists a sequence {4, 7 c¢ (

such that law - 4, I — o~ (C ) . We have

I = v I £ oCC) and Ny -2 Il& g cc) .
. Let K denote the closed ball with the center O
and the radius Jd (C) . Then we have

x-v e K, y-1, e K, I X0t ¥ ja -z, | CC).

Since then X -, - (g -5 )= x -y 25 0 , it 1is
x = y . This contradiction concludes the proof.

The following assertion follows at once from Kirk's
Theorem and Theorem 13.
Theorem 14. Let X be a reflexive (WUR)-space, C a boun-
ded closed convex subset of X , T a nonexpansive mapping
of C into itself. Then T has a fixed point in C ,
Theorems 5,14 imply
Theorem 12, Let X be a separable, reflexive space. Then
X 1is isomorphic to a space Y with the following proper-
tys * _
Every nonexpansive mapping T of & closed convex bounded

subset C into itself has a fixed point.
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§ 8. Appendix.

le It is easy to see that the following theorem is true:
Theorem 16, X* 18 (wW* (U R) iff the following impli-

cation is valiad: ' .

(@€ KA, 15238 5 1) > £~ @ 25 0
Proof. It is analogical to that of Theorem l.

2, The following assertion is analogical to Theorem 13.
Theorem 17. Let X*be @ (wW#* LR ) =-space. Then every
bounled closed convex subset of X* has normal structure.

Ppoof. It is a modification of the proof of Theorem 1l3.

3. J. Bainwater ({82)) has proved the following very impor-

tant theorem:

Theorem 18 (J. Rainwater). Let X be a Banach space, i{x,, }

a bounded sequence in X , x € X o Then X _"K,. X i

£(x ) — f(x) for each fe¢ ecte s* .

It follows immediately from this assertion that the fol=-
lowing generalization of Theorem 5 is valid.

Theorem 19. Suppose there exists a countable subset M c X*

such that ™M o <ct 31* . Then X is (wur)-

space.

Proof. Let M = {44 32°., . Define the functional
I(x) on X by

I(x) = \/i 515 ﬁ:(&() .
LT

Let ll x || denote the nortm of X . Define the new equi~-
valent norm to A x| by

Il = Vix? + 12%¢x) .
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Suppose i X, Il = Nl il = 1,
s o

As in proof of Theorem 5 we obtain that £, (X, ~ 1, ) —>

;1_»,”0 far every k . {.xqL -7, ? 1s a bounded
sequence in X . Thus g (X, - 4%, ) — 0 fa each
g € et 51* . Using the Theorem of J. Rainwater we have
that X, - 24, Ay 0. Theorem is proved.

4. Theorem 10 is the consequence of the general method of
E. Asplund ({1a))

Communicated at the seminar on Nonlinear Functional Analy-

sis at Mathematical Institute of Charles University June
22, 1968.
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