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C online nt at i ones Ma t he ma tic a e Universitatis Carolinae 

9, 2 (1968) 

ON FULL EMBEDDINGS OF CONCRETE CATEGORIES WITH RESPECT TO 

FORGETFUL'FUNCTORS x ) 

A. PULTR,Praha 

Every semigroup with unity S is isomorphic to the se­

migroup of all the mappings of a set X into itself preser­

ving a suitable binary relation R . On the other hand, JP 

we have a semigroup S of mappings of X into itself, the­

re is rarely a binary relation R on X such that the R-

preserving mappings are exactly the elements of S* • Thus, 

the problem of a representation of semigroups of mappings 

by binary relations without full omitting the concrete forms 

of the semigroups gives rise naturally to the following ques­

tion: 

Let S'* be a semigroup of mappings of X into itself. 

Does there exist a X 3 X and a binary relation R on 

(1/ X such that the semigroup cf all the mappings of X in-

9to itself preserving R consists exactly of (uniquely 

determined) extensions of the elements of S* ? 

(Similarly, instead of binary relations, we may consider al­

gebraic structures of a given type etc.) 

x) Supported by the Alexander von Humboldt-Stiftung 



More generally, investigating full embeddings of con­

crete categories (by a concrete category ( fc , O ) we mean 

a category fa together with a firmly given forgetful func­

tor D ), we see that the condition of preserving the car­

rying sets of objects and the carrying mappings of morph-

ismar (i.e. that the full embedding is a realisation, see£6J) 

may be, even for simplest cases, rarely satisfied. In the 

present paper we investigate two kinds of embeddings (pseu-

dorealisation and strong embedding, see Definition l.l) un­

der which the carrying sets are only augmented by additional 

elements and the carrying mappings are extensions of the o-

riginal ones* By the strong embedding, we require moreover, 

roughly speaking, that this expansion depends on the carry­

ing sets only, not on the objects themselves. 

In the first paragraph, the definitions are given and 

some fundamental properties are proved. It is shown, that 

we may often obtain a pseudorealisation by means of a con­

struction from a full embedding. In particular, we obtain m 

positive answer to the question (l) (see 1.12.3)) for bina­

ry relations and other structures. 

Paragraph 2 contains a construction which is, later on, 

used to prove that the category of graphs ffV may be strong­

ly imbedded into the category of undirected graphs ^ (the 

full embedding of 7Z> into #2^ constructed in t2J is not 

a strong embedding). Lemma 2.5 is formulated substantially 

stronger than necessary for the present paper; this formula­

tion will allow some other applications which shall appear 

elsewhere. 
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In paragraph 3, first of all, the strong embeddabi-

lity of ffiiA) (see Notation) into %A> is proved. As 

a consequence (by means of lemma 3-3, which is, in fact, a 

reformulation of Theorem 5 from [3]) we obtain strong em-

beddings of several other categories into Tt^ • In parti­

cular, we formulate a necessary and sufficient condition 

for a strong embeddability of small concrete categories in­

to % • Finally, in the last paragraph 4, we show that the 

existence of a strong embedding into categories of quasial-

gebras is equivalent with the existence of a strong embed­

ding into % (while, see 3.5, the existence of a strong 

embedding of a concrete category into a category of algebras 

isvsubstantially stronger property). 

Notation: An ordinal, in particular a natural number, 

is always considered as the set of all smaller ordinals. We 

use the Godel-Bernays set theory. For some statements, we 

require, moreover, that in the theory the following assump­

tion holds: 

There exists a cardinal cT such that every ./"'-addi-

(M) tive two-valued measure is '/'-additive for any car­

dinal <f . 

(I.e., roughly speaking, there are not too many measurable 

cardinals*) 

A functor, mapping the category T of> al* sets and 

all mappings into itself is called a set functor.A defini­

tion of* the TByfunctor amy be found in 111. A transforma­

tion £A : F —* § where F,G are functors from a catego­

ry into X is said to be a monotransformation if all the 
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0/ 

mappings (& are one-to-one• 
A graph i s a couple (X,R) , where X i s a set and 

R i s a binary re la t ion on X . An undirected graph i s a 

graph (X,R) such that R i s symmetrical. If (X,R) and 

(Y,S) are graphs and f a mapping of X into X , we 

say that f i s compatible (more exactly, RS-compatible) 

if i t preserves the r e l a t ions , i . e . , if (4(x), 4(n^))cS 

whenever (•*., ay) € R . More generally, if r i s an A-

re la t ion on X ( i . e . a set of mappings of A into X ) 

and s i s an A-relation on X , 4 : X ~+ Y i s said to 

be rs>compatible i f 4 * oo e A> whenever oc e K, . A 

graph (X,R) i s said to be £igi&, if there i s no non-iden­

t i c a l RR-compatible mapping. 
A type . A = (cc ) < i s a sequence of ordi­

nals indexed by ordinals , 5L A i s the usual ordinal sum 

of the sequence* A re la t ional system r of the type A on 

X i s a sequence (K» )^ < T ; where r . i s an oc* - r e l a ­

t ion on X • If r , s are re la t iona l systems of the type 

A , a mapping f i s said to be rs-comoatible.if i t i s 

r 8 -compatible for every /$ < f . The category of a l l 

se ts with re la t iona l systems and the i r compatible mappings 

i s denoted by $1>(A). The symbol C/C ( A) ( 6f(A ) reap.) 

designates the category of a l l algebras (quasialgebras,resp.) 

of a type A an<* a*l the i r homomorphisms. (For a more de­

t a i l ed description of H (A)7 Ot(A)} Gf (A) see 

e.g.»[lj)# 

S(F) f where F is a set functor, i s a category, the 

objects of which are couples (X,r) with /c c F(X) and 

morphisms from (X,r) into (Y,s) the mappings 4 : X —> Y 
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for which F (4 ) (H, ) c 4a if F is covariant, 

F(-f)(A>) c ft if P is contravariant. (See also e.g. 

L6J). 

The categories ?l, to* }nc&), <£C&) ,(XCA), SCF) 

are always treated as concrete categories, endowed by the 

obvious forgetful functor (this is, as a rule, denoted by 

D )• 
A fai thful set functor F i s said to be se lec t ive , if 

for every type A there are a type -6' and a one-to-one 

functor $ mapping &IC&) onto a fu l l subcategory of * 

VLC &') so that D * $.r F* O . (See 131 ) . 

If X,Y are s e t s , we write X v Y -= X x i 0} u 

u Y x { 4 } (the dis joint union of X and Y ) . If the­

re is no (fenger of confusion, we wri te , for the elements of 

X v Y , simply x instead of (x,0) , y instead of ( y , l ) . 

< X , Y > i s the set of a l l mappings of X into Y • 

§ ! • £gnera.Utieg 

! • ! • Definition: Let ( J t ; O ) ? Ct<f, U' ) be concrete ca te ­

gor ies . A fu l l embedding $ : fo —> "fa,' i s said t o be m 

pseudorea.!ization if for every object a of ^ there is 

a set 2(a) such that 

D'$(a) - D a u Z t o ) , Z(<x)n D a = 0 > 

and if for every morphism y>: 0> ~> 4r and every /x e O ^ 

D ' ^ C y K * ) * DCfC*) < 

A fu l l embedding $ : fo -~V "fa' i s said t o be a strong 

embedding if there i s a fa i thful set functor P such that 

the diagram 
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k > fo' 

1° F 1°' 
r —t—* r 

commute s. 

I*2* Heaarks: 1) The rea l iza t ion (see f6J> is a par t i cu la r 

case of both pseudorealisation ( Z ( & ) = 0 for any a ) 

and strong embedding (I* =* I) • 

2) A composition of pseudoreallzations (strong embed-

dings) i s obviously a pseudorealization (a strong embedding), 

1*3. Definition: We say that a concrete category ( Jfc , D ) 

has the property of transfer (short ly , (T)) if for every ob­

jec t a of R and for every one-to-one mapping f of Dct 

onto an a rb i t ra ry set X there i s an isomorphism ^ in St 

such that Uy>. s -f * 

We say that a concrete category ( 1k> 7 D) has the 

property of uniei ty (shor t ly . (U)) f if every isomorphism 

Cf of % such that Dcf- -id i s an iden t i ty . 

1.4. Remarks: l ) Obviously, S(F) , 21(A), 6fG4), CXCA) 

have both (T) and (U)' . 

2) If ( fo, D ) has (T) and ( %% CV ) i s a concre­

te subcategory of ( %l> f D ) containing with any object a l l 

the isomorphic objects, then ( &', D ' ) has (T) . 

3) If ( fo;0 ) has (If) and i f there exis ts a 

strong embedding $ ; C fo', D ' ) ~> (ft,, Q ) then 

( &/, O ' ) has (U) . Really, denote by F the associated 

set functor. Let y be an isomorphism in & , P y - -Id * 

Then $ ( y ) i s an isomorphism and D $ (c/) -» FO 97 -=- id > 

- 286 -



so that £> Cg>) i s an identity. Thus, cp i s an identity. 

•*••->* LffTO%-t Let Cfo? a)} Ctl'7 O') be conorete catego­

r i e s . Let ( & , D ) have (U) and (&/,&') have (T) . 

Let $ : & —* $Z' be a faithful functor such that for e-

very g ; $ (a,) -~> $> (fr) there i s a y / a> -* A with 

Cf a $ ("Y ^ • ^et there exist a monotransformation 

(A, ; Q —• D '» $ • 

Then there exists a pseudorealization }£ : C $Z7 D )~» 

—»V3*/, O'). If always ^ ^ D ^ ) # d ' $ CO*), the as ­

sumption of (U) may be l e f t out. 

Proof: Put ZfoJ- Ca'QCar)- (U^(Ua) x {Ca>,Ua, )j 

and define 0^ .vp/ <p(0/) —> DO/ u ZCcv) by *ea Cf^Cx ))« 

s= X , ^ k / ^ ) -= (*u> &7 Oct? ) otherwise. Evidently, 3 ^ 

i s one-to-one• 

Since ( f e ' , a ' ) has (T) , there are isomorphisms 

<*£, •$Co, ) -r-^yiCa,) with Doc » ^ ^ (and, hence, 

a'¥ Ca)* a*, v ZCa,) ). 

Put, for every morphiam <y ; a> —> & in Jfe , 

T(<f) = rttfr* $(<#)> <*1 • 

Thus, we defined a functor "Hf; fo —f fa' . For cf : a -+»<r 

and X e Do, we have D'3f Ccf)(x) *- *>^ • U'§(cf) • *£VoO«. 

If ifr ; l i f^) -> ijf (4r) i s a moronism, we obtain 
4 «-"f 

cCl>'/^'<\: ^(Q^-^ *C-fr) and hence oc .̂ f"°^ « $ fcp) 

for »0---e ^ . 4 - y - ^ . Thus, i t remains to prove that 3f i s 
one-to-one* 

f i s evidently faithful . If HfCfr) * ¥&),*• have 

Do/ ^ 2 Ca,) ^a 'Src^-a^u ZC&*X I* b°tn Z(«) and 
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2(b) are non-void, we have, for some x, C^,^j Oa,) € 

€ D i r u Z CJtr) and, for some y , (<y,, tr, O Jlr ) C 

€ D a u Z Co,), If m js b , we obtain (x,cu, D a , ) e D tr, 

(AX, Jlr Oir)€ OCL in a contradiction with the set theory. 

Anyway, if Y (a*) - #(&), there are (see above) cc ; 

: o, -> fr and (bitr-yco with 1(<x,) = t C/l)m idy^ • 

Thus, If (<*,&) a Sf C/Scc) « 'usf'*^) and, since 3f 

i s f a i t h fu l , floo « ^ , ec/3 = / ta^ . Consequently, 

by the isomorphism oC , we see eas i ly that in the case 

of ZC&) & 0 we also have ZCir) - 0 and hence D<^ -

* D i r \ I f * € Dcv ; DoCfx) s D ' y ^ ) ^ ) s .X . Thus, 

OoC * icL^ and hence, f ina l ly (by (U)), a » b . 

*•*>• Remarks: 1) If there exists a pseudorealization 

$ ' of ( PJ} Q ' ) in i t s e l f with non-void Z(a) for e-

very object a , we may leave out the assumption of (U) 

in 1*5. I t suffices to use $ ' $ instead of § . 

The existence of such <£' for C/CCA), CJf (A) and 

'Jl follows by the constructions in [1J, for &1& by the 

composition of the t r i v i a l embedding of «X̂  into $& 

and the construction in £2J (or , the construction which 

wi l l be described in §§ 2 ,3 ) . 

Thus, applying 1.5 and i t s immediate corol lar ies for 

the mentioned categories in the role of (.&/> O' ) we need 

not assume (U) for (<&, O ) . 

2) By lemma 1.5, to prove the existence of a pseudo-

rea l i za t ion , i t suffices to find a fa i thful functor with 

the required property. Similarly, for the strong embedding 

we have 
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Theorem: Let ( & , O ) have (U) , ( H'} C3') have 

(T) . Let there be a faithful functor $ ; ft -» 3fc' such 

that for every two objects a,b of R and for every morph-

ism Cf : $ (cu) - * $ ( -^ ) there is a y : a, -v-0- with 

<y z $ Cy ) , Let D'«$ ?z F' a for some faithful 

set functor F • Then there exists a strong embedding of 

( fo, D) into Cf t ' ,0 ' ) . 

Proof: First , define a set functcr G by 6CX) - FOOx 

x(XJ for sets X f GC4) (X7X) * (F(4)(x)7Y ) for 

mappings -f ; X —> y . Obviously, G i s faihtul* Define 

^ x : FfX) - * GCX) by <*>x (tf) * (x7 X) . By (T), 

for every object a of & there ia an isomorphism 

%, : $ fa^ -> If Co.) auch that ^Dau * O oc^ . 

For a morphism 9 ; a -y ^ put ¥(cf)* oL • §(<-f>0OCH 

Thus, we obtain a faithful functor !Jf : ft -> St' . 

Similarly as in the proof of 1»5 we see that for every 

tf : *WCa) —t y Or) there ia a y ; a ~>r it with y « 

.=• VCy). Since we have always O'foc. • $Cc^)-tf£ ) » 

' ^ D * * F ( D 9 ) # ^ o l * GCDcf) ? i t remains 

to show that Y is one-to-one* 

Let ^ Ccu) -r I^C^) . ThuafF(aa,)x.{aa,]SrF(a^)'X<C)^i 

and hence D a r Qir , For id ; I T ^ ) ~> !Tf&) there 

are oC : a, ~r .^ and fit Jlr-+ Q, with ^ * Tt(cc) *? VT(fi) • 

Consequently, H (<* fi) ** *¥(/&<* ) * iU£ ? and, since W 

i s faithful , /Soo -* -ua^ , oc/3 * vd^ , so that ao i s 

an isomorphism* Vie have S (Hoc) * D ' ^ r ^ ) * ^ . 

Since Q i s faithful , DoG -r i ^ . Thus, by (U) , 

oc ss idA and hence a » b • 



!•*?• Theĉ rem: Let there exist a strong embedding of 

( &,, O ) into C &/,D'> , Let (feA O ) have (U) and 

(#t f ; f j ' ) have (T) . Then there exists a pseudorealiza-

tion of C^, D) into ( fo', DO . 

ProQg: Let $ ; & — > & ' be a strong embedding, F 

the faithful set functor with F * U =• D' • $ . Since P 

i s fa i th ful , there i s a monotransformation i> '. I —.• F* 

(define £* : 1 - > X by f* CO) « «X take an a, £ FM) 

with £*<«<) * £*<*"> ? and put VxCx) * FCf*) (*>) ) . 

Now, i t suffices to put (a = >>0 and use lemma 1.5« 

--•8» Theorem: Let there be objects Z and K in 

( % , O ) such that 

1) D Z = { # ? and for every object a of % and 

every x € Q a> there i s a morphism oc ; .Z—> a> with 

Dcc£(«&) - *X . 

2) DK contains distinct elements ut v and for e-

^er^ object a of & and d ist inct m% ru€ Ocu there i s 

• (% ; a ~* K w i t h D ^ ' * > - " > D/3^. fy> - ^ ' 

Let C &, D ) have (U) and l e t there exist a fu l l 

embedding of tb into fe'. Then there exists a pseudoreali-

zation of £ fe, D) into any t &'7 D ' ) with (T) . 

Proof: First , since O i s fa i th ful , we see easily 

that there i s , for every *X e D cu exactly one required 

oC/* , Thus, since D Ccf oC* > (C& ) « OcfCx) for any 

eg: a, -yir^we obtain 

« / ' « ? - ^Dc,^ • 
Now, le t £ : fo - * S-i ' be a fu l l embedding. For an ob­

ject a of % define ^ J D o —i O'§>(&>) by 
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pf(x) •* U'$C<X,%)(x0) , 

where * # e 0'<$(Z) is such that D'$ foc£ ) (*,) *h 

£ Q '$ -*<*,£ 1 ( X0 ) • This defines a mono transforms t ion 

pi, : O —v a ' - $ . Really, we have, for c^ * ̂  —* ^~> 

a'$c<f)(u,«-cx) * a'QCcfct* )Cx0)*a'$(ot^JO)Cx,)~ 

» ^Dcff^c)? a * , I M o a ^ ^ ^ , aric/g^cpt'cxv-

** Q ' 4 < C C £ U * O * a'Q<<*Z)cxc)mG'$cit£^ufftyi> 

and hence ( ^ a ^ ) # (<^l,'-*^> -

1*9. Corollary: Under the assumption (M) on set theory, if 

C &-, D) is realizable in some S(F) with a TB-functor F , 

then there are pseudorealizations ofi (&., Q ) in &L and 

in any OC(O) with 2 / \ ^ 2 , In particular, there 

exist pseudorealizations of % in any Ot (A) with 

%. & 2 2 . 

Prog£: According to 17J (particularly theorems 4.2 and 

4.4),fl3 and Theorem 1.8, i t suffices to find objects Z and 

* i n S(F) . Take Z * C4,0) , K * C2, FC2)) . 

1.10. Definition; Let (ft,, O ) be a concrete catego­

ry. We describe a concrete category (C ^-.d)***., a"**) ; 

The objects of CS:t?Q)t are al l the couples (a,0) , 

where a is an object of fc , (0,1) and (1,1) • Morphisms 

between (a,0) and (b,0) are all the couples C cff 0) whe­

re eg : a, - * Jlr in & ,morphisms between (0,1) and (a,0) 

are ( U . * ) ^ ) ? where ,x € D Q, morphisms between 

(a,0) and (1,1) are (L *u,^ a, ) 9 2 } ? where 4JU C D CV 

and, finally, morphisms between (0,1) and (1,1) are (0,2) 

291 



and (1,2) . 

The morphisms are composed by thp following ru les : 

(oo, 0) * ( (h, 0) -r (oc/3 - 0) , 

for «s:<x-+Jlr, C<x,,0>< ((#,<&),1)* iiaoo^)^),!) 7 

for fb : Jb"+as, C(AJU,O,1,1) • C/3 ;0;=: c c c a / f t r ^ ) ^ . ) , ^ ) , 

/ (0,2) for *x £ ^ ; 
(C^,a,) ,<2MGx,a,>, 4>-r < 

(1,2) for .x e u> * 

The forgetful functor D + i s defined by: 

u+(cu,o)«aco,ai'ccf,0)*acf,a+co,v~'i,ai'a,i)= l , 

D ' c C y ^ M H O ) - * , a ^ r t , 2 > c ^ > - i , 

z 0 for * £ /U. , 
D+CCa, a M K * ) - < 

' * x 1 f or * €' JU- • 

1»11* Theorem: If ( Si, D > has (U) and C fo', D ' ) has 

(T) f and if there exists a fu l l enbedding of C # t , O ) + 

in to fa , then there exis ts a pseudorealization of 

( fa, a > into (fa, a') • 

Proof: follows immediately from Definition 1.10 and 

1.8e 

--•12« Remarks: l ) By 1.11 and 1.6.1 we may express the f o l ­

lowing contribution to the unsolved problem of the exis ten­

ce of a non-boundable category (see [4J,C5J; other term: 

non-algebraic): 

Every concretisable category i s boundable i f and only 

i f every concrete category is pseudorealizable in 1ft • 

2) If fo i s a snai l category, (% , o ) + is a 

small category. Thus, since every small category may be 



fully embedded into ^ <^, Cfc (/} ) with Z A > 2 

etc., see [1.1, [2]), every small concrete category ( Jfc Q ) 

is pseudorealizable in % CH^ , C# CA ) with X" A > 

^ 2. etc.). 

3) In particular, if S is a semigroup of mapping of 

a set X into itself (containing the identity mapping), 

there is a X o X and a binary relation (binary symmetri­

cal relation, binary operation, a couple of unary operations 

etc.), such that the semigroup of all the mappings of X in­

to itself preserving the relation (all the endomorphisms, 

resp.) consists exactly of (uniquely determined) extensions 

of the elements of 3 # 

* 2* A construction 

This paragraph contains a construction and a lemma con­

cerning this, which will be used in the following paragraph 

for ernbeddings into "22̂  * 

2*-U Conventions: Let (X,R) be an undirected graph. The 

distance (p (X^ <y,) of two distinct points .X,^ e A is 

the least n such that there are X , x,, ..., *Xm with 

**-* R*i for -t~4,-,., /«,, ^ a o ( , , ^ - *n 

(if such an n exists). 

A triangle in (X,R) is every i^x^7 *2 7 * 3 I <z X 

such that x^ R»x̂  for all distinct i , j . A graph (X,R) 

is 3aid to be t-connected if for any two distinct x,yeX 

there are triangles t1, tX9 . . . f t such that «X € 

€ \ , V€ %> a n d ** ^ *i+i + 0 for i =- l f 

2, . . . , n - 1 • A subset X c X is said to be a t-connected 

subset of (X,R), if ( y, R r>, Y .x V ) is t-connected. 
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The following is evident: 

2 .2 . Lemma: Let f i (X, R) - > (Y, S ) be a compatib­

le mapping, Z a t-connected subset in (X,R) • Then f(Z) 

i s t-connected. 

2 . 3 . Construction: A system ((A , T ) , (^\<oC , (^-ihei h 

where (A,T) i s a t-connected undirected graph without 

loops | or, an ordinal , J a set and a , b . elements of 

A such that 

for t, -# 0 /o (a,p, O/̂  ) > 4- , in general , for 

( p ) u ^ *€, <p(a? a^ ) > 2. , 

for i # £ f C-ftj, fy ) p 2 always <*>«*<<,& ) > 2 } 

i s said to be a H-system© 

For every couple ot ? /3 of cardinals with /3 *< oc 

choose once for ever a mapping ^^a °? °^ onto /3 # i f 

there i s no danger of confusion, we sha l l write simply p . 

Let a -* « A , T ) , r a l ) 0 < < 0 , ^ ^ j > *e * H-sys-
tem, X a s e t , r^ (for i £ J ) ac^ - r e la t ions on X m ie% 

CC & AUtf% {OCJI 1 i € J J . 

The undirected graph JC(CL,CX, (*4 \ £ j > - <** * v <oc>*>^A,k) 

i s defined as follows: 
(1) For a,,Jlre A, &&*- &* a,Ttr 

(2) For a, - A , 9? ; oc - * X , 

(3) For a 6 A , ( ^ t ) 6 X x a , a R ^ , t ) ^ ^ ^ ^ a . - a t 

(4) For 9% ^ ; oC ~-> X there i s never cfRy 

(5) For 9? ; oC —> X, (Xyi* ) e X x oc , 
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CfR(X9L )<-=*> (x, u)Rcf> *~> 9 (L) -T * 

(6) For ( x t L > , ( / j f , . ^ ) e X x ^ , 

( x , c ) R ( ^ ? ^ ) « a . > X «- ^ and exactly one of c, 9t 

i s zero. 

2.4. Lemma: Put K^ » i X j *x <*> u {c# I 9 (0 ) • x } . Then 

1) Every t-conneeted subset of 3CC&, (X7C/C^ y ) 

i s e i ther a subset of A or a, subset of some K^ • 

2) Every Ky is 3-coloured* 

Proof: 1) Since K^ n K = 0 for X ^/y. and 

K n A~0 f i t suffices to show that every t r iang le i s con-

tained e i ther in A or in some Kx • Let a t r i a n g l e t not 

be contained in A . Then, by Construction (see condition 

($Z> ) ) , I t n A I < Z . If I t n A I » < , the single point 

of t n A ie e i ther some a, • or some b • .No of these 

points,however, i s joined v i t h two joined points outside of 

A . 

Thus, according to (4) in 2 .3 , t - { (X, u J/ty, 96 ), Of} -

By (5) and (6) we obtain x » y, L or ad equal to zero 

and cj> (0) s iX . 

2) Put # Cx ; 0) s- 0, C[ (X, (, ) ~ ^ for t -A <? , 

^ Ccf) * 2 for y : ot -* X . 

2 .5 . Lemma: Let fl *• ( C A , T ) ; f a ^ ) t - c ^ , ^ \ - 6 j > , # ' ~ 

* CCA' r ) , ( < ) ^ ^ >•*-*>** H-systeins such that ^ * a c J ' , 

that there i s exactly one compatible Av:(AyT) ~-t(A'7T') and 

that there holds 

M,(cuL) * o/ f o r L < O O , A C A ) =г ^ ' for 
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i € J * 

Let r . for i c J ( r.# for i c j ' ) be oc. - r e l a -

t ions on X (on X') , l e t <* *> /WKW? (2, /«x̂ f.v {oc^ I % e 3"$). 

Then for every compatible 

9. .* rt < a, tvc,f*. )...«,»--> xca/.fx', r<- ̂ , ') 
there i s an "f * X—y X' which is r. rT -compatible for eve­

ry i c J i such t h a t , for a € A , ty(a,) ** Jh^(a) for 

( , x , t ) € X q>(x,is)~ (f(x),L) and for 9> t cc —* X 

%. C<$) * 4 • cf> * 

Proof: Since ov *f* 0, D ¥* 0 , there are points 

%» \ w i t h f> (<*>c , &±) > 2. in A'. Since (A', T ' ) 

i s t-eonnected, there i s a tr iangle t containing ao and, 

of course, not containing b^ . Thus, there i s no compatible 

mapping of (A,T) into a 3-coloured graph - in that case 

there were possible to map (A,T) into t in a contradic­

t i o n with the properties of h . 

Thus, by lemmas 2.2 and 2 .4 , Q~ CA ) -=• A' and, by ( l ) 

in Construction, fy-Ccv) ** <h(a) for every a e A . In par­

t i c u l a r , we obtain Q~ (<XL )**&,'. Take ( .*, 0) , 

Cx7 t.) e X x oc, L # 0. It g.(x,0) $ X' x {0$ , we 

have necessarily fy CX, 0 ) e A' and, by if ) , also 

£, CX , t ) € A' , so that 

< «'<£<:*, 0)K'&(*,*>>*'a£ 
in a contradiction with ( p ) . Thus, q^(X x {OJ ) c, X'x«f(?i 

and analogously ^ , ( X n { t } ) c X ' x { t J • 

Define f % X ~*X' by (f C* ), 0) ~ c^U ? !J), We ob­

t a i n immediately ty(X, L) ~ CfCx)7l> ) by the condi-
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t ions ^ f X - t - ) € X ' x f t J and <£(*, --) R'C*6x), 0)* 

Now, l e t ^ / c t - t A , For every 6 ,cf R(<? (u )7 L ) and 

hence ty (cf)R' ($Cf (t> ) , t> ) , so t ha t , f i r s t , <$,(<$): 

; oc —* X' (there i re no other elements y with both 

ryR (*U>, 0)^R(v74) ) and, further , by (5) , fy(cg) ~ 

£- -f * <y , If Cf € ^ , we have ty'jvRAKi smd hence 

f «c? • fi>R'-#-../ - Thus, there is a ifr e K+ with -f*g" 

• ^1 m *y • ft , Since p i s a mapping onto, we obtain 

f*Cf=?y€ H*i ,Thus, f i s r » r ' -compatible* 

§ 3- Strong emfte^gtafls, tfttp ^ an$ rejlfirtefl g y 

teflorjej 

3*1« Lemma: Let oc be an ordinal, J a set* Then there 

exists a H-system d » (CA,T), (Q,u\ , (^i^^j ) Sl*ch 

that (A,T) is rigid* 

Proof: In this proof, we shall use the methods and 

results of 123* Thus, we preserve the terminology and, in 

some extent, also the notation of that paper* 

Define (I,T) as follows: 

A * iOflf2f3f4,5,6,7,3',4',5',5
M,6M,8,8',8wj f 

f is the binary symmetrical relation generated by 

the couples 

(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,1), 

(l,0),(0,3'),(3',4'),(4',5'),(5',6),(4,5M),(5wf6»)f 

(6M,0) 

(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7), 

(8',1),(8',0),(8,' 3'),(8',4'), (8',5'), (8',6), (8',7) , 

(8M,0),(8",l)f(8
M
f2)|(8

w
i3).(8",4),(8

M,5M),(8M,6M). 
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(Thus, (AfT) i s obtained from (ZfT) described in tZJ 

by adding points 8,8 ' ,8M and joining each of them with 

the points of one of the 7-cycles.) 

F i r s t , we see that the only elements x e T such 

that there i s a car r ier of an odd cycle in {<y* 1 C*x, ^ > € 

c T j are 8 ,8 ' f 8W . Considering t h i s , we may prove that 

(A , T , 5\ 5* ) i s strongly r ig id in a way quite analogous 

to the proof of the strong r ig id i ty of ( Z , T , 5% 5") in 

C2J. 

Put M , T ) » ( J , T,$', £«) *• (P, R ) , where (DfR) 

i s the r ig id graph constructed in [9J* By theorem 1 in (2J, 

(A,T) is r ig id . We have g> (5', f" ) ~ *t i n (A,f) • 

Now, i t follows easi ly from the construction in £9J that 

(A,T) contains suff ic ient ly many suff ic ient ly d is tant e l e ­

ments, if (D,R) is taken large enough. 

3#2. Theorem: For any type A there exis ts a strong em­

bedding of H(&) in to H^ . 

Pr£o£: If A-r (*ft ) ^ < r , put ot=<m<vc( 1, 

bufi{<XR\Q<lfihn& take (see 3.1) some H-system (2* ( M , T v , 

(a„ h<«, > CKK < r } with rigid <A,T)# For an object 

(X, < % V r } °* n (A) define *cx>u*'fi«r)ar 

s$C(a,(X, C%)
li< r >> • Put F « V J ^ K ^ v flrf) (see 

Construction 2.3 and t 6 J ) . We see eas i ly that for any morph-

ism Cf : (X, (K )) —} ( y , (A )) there i s a unique 

$ (Cf): §(X,(tt0))-~> $(y, ( ^ ) ) with Q>§(<?) m F - 0(9) 

and that the functor $ thus described i s one-to-one. 

By 2 . 5 , £> is a f u l l embedding. 



3o3. i a s i a : Let P be a covariant select ive functor. Then 

there i s a strong embedding of S(P) into some fl C A) . 

Proof: Take a A* -* (<*$ ^ < r such that there 

i s a fu l l embedding <J> : X —> *&> C 4 0 such that 

D • $ e F , Put 4 » ^<V,* < r + f , where ao * 1. 

If (X,r) is an object of S(F) , put t (X, *,) * 

- f F r X ) , a ^ ^ r ^ ) where CFTX ), < V * « r > - # ™ , * r ' 

* /* , 

If ^ ( y , ^ ) ^ CFCy), < V / i < r * - * ) a n d f : X - ^ y 

i s rs-compatible, P(f) i s evidently r - s» -compatible 

for every /3 <* V + 1 • Thus, ^ may be extended to 

a functor by the prescript ion O-lf ((#)*» F (O Cf ) • Iff 

is evidently one-to-one. If (fr : F(X) —> F (y) is 

^ V H (*fiyr+i -compatible, i t i s (^>r (%>r~ 

compatible and hence ty * F" (f ) for some -f : X ~*Y * 

Since Cfr (^T ) c ^ r , f is rs-compatible. 

3*4. Theorem: Under the assumption (M) on the set theory, 

the following two statements are equivalent: 

(1) There is a strong embedding of ( %, D > into 

some S(F) with a TB-functor P f 

(2) There i s a strong embedding of ( & , D > into 

s> 

Proof: Trivially, (2) — » (l). Let (1) hold. By £7J 

(theorems 4.2 and 4.3) there is a strong embedding of 

( *&., D ) into an S(Q) with covariant selective G • 

(2) follows by 3.2 and 3.3. 

3.5. Remark: Thus, e.g., every (A ( A ) is strongly em-

beddable into TR/^ . We saw in 1.9 that #2^ is pseudo-
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realisable in Ot CA > with E A > .2 . On the ot­

her hand, we have 

Proposition: Let there exist a strong embedding of 

( & , • > into an Ot CA) . Then a morphism Cf of 

% i s an isomorphism i f and only if D 9 i s a one-

to-one mapping onto. 

Proof: Let Cf t Q, -+ Jr be a morphism such that 

OCP i s a one-to-one mapping of Da> onto U-tr • 

L#t $ be a strong embedding of ( *Sv7 o ) into OtCA ) , 

l e t P be the set functor with F- O » D» $ , Thus, 

D $ (tf) *" F f o < y > is one-to-one onto and hence 

<|> Cy) i s an isomorphism. $ i s a fu l l embedding 

and hence there i s a y: St —* a with $ (V) - ($(<f))" . 

Thus, $ CopiK> * ^ ? Qtyy) ~ id • Since $ i s 

one-to-one, cf y -=• i ^ and 7jr<y «• < ^ * 

Thusf ^ ^ i s strongly embeddable in 330. 6fc CA ̂  see 

e .g . the ident i ty imbedding of (X,0) into (X7 X x X) * 

In [8 j i s proved that any OtCA) i s strongly embeddab­

l e into every Ot (A' ) with 2L A' £ 2 . Recently, 

V. Trnkov6 proved that e.g. the category of Hausdorff com­

pact spaces i s strongly embeddable into the categories of 

algebras. 

3*6. Lemma: Let ( & , D ) be a small concrete category 

with (U) • Then there exists a type A and a r ea l i za ­

t ion of ( £ , , • ) in 'eft ( A ) . 

Proof: Let 0/ be a one-to-one napping of an ordinal 

y onto the set of objects of & . Put ot. «• GAXGL Oa>C/3); 

A = ^^ /s^ / i *s ->- • F o r ©very (I <z Y choose a one-to-



-one mapping m- of oc onto Da, (fi) . 

Let b be an object of fa, . Define a relational 

system H, » Cft,^ ) < of the type A on Ob* aa 

follows: 

f e ^<-=» f * % —* a ^ A 3.y« a f£ ) -> ^ with*-» a y - ^ . 

Let Cf : a, (c ) —y 0,(96) be a morphism. Let -f e ^ ^ * 

Thus, 4 = D y " ? ^ for some y ; a,((b) —J*a>(L))BO 
4% €b€w&) 

that D cf * -f -=• D fcf V ) • nn^ and hence Ocf • r e /c^ 

Thus, DCf i s * a f fr) /t *C9e) -compatible. 

Let ^ : D a a ) --> Oa,C9e> be /tUt'> /t*C9e)- * 

compatible. We have/W « Oti i , % • /W 6 HCLCo> and 
t. acw t- t 

hence a. • /m, e H,^iH' . Thus, there i s m cj t CL(L) —> a,Cc) 

with <£. • rrrVu » D y • /w^ , so that (j.> Q ^ * 

It remains to show that (U*£r,H*) -£ CDd0 H,c ) when­

ever Jtr + c . Let ( D a a ) , ^ . Cao^),/&acl ie).>,We 
.-, . ^ a i ' t ) aC»e> 

have /wv » Ow- . x • <m, e H and hence m>t e H> 

Thus, there i s a cf i a* CL ) —,* o^cae.) w i t h m «• Og>-w > 

consequently, Qcy sr -£d£ . Similarly we obtain A yr;Q,(9e)-+ 

-+cu(c) with Uy&<Ld. Thus, Qyrcf ^D<fi^sz-ujC. Since 

Q i s faithful , Cf is an isomorphism. Hence, by (U), 

c i a ) - a^cTae) * 

3 . 7 . Theorem^ A small concrete category C&u 7 D ) i s 

s trongly embeddable into TrZ^ i f and only i f i t has (U) . 

Proof: (U) i s necessary by 1 . 4 . 3 . I t i s suf f i c i ent 

by 3 . 6 , 3 .2 and 1 .2 . 

301 



§ 4. Strong embeddinaa into categories of quasi-

a^e^ra,s 

4.1.- Lemma:. Ifo i s rea l i sab le in Cf (2.) and strongly 

embeddable into GC C2,0) . 

Proof; To prove the f i r s t statement, i t suffices to 

define $ CX, R) * CX, ^ ) , where a> r»x? <̂ . ) is de­

fined i f and only if C#, ^ ) e R and equals x • Now, we 

obtain eas i ly a strong embedding of ?Z into 6TC2y0) com­

bining t h i s construction with the construction of the strong 

embedding of 7R/ in to #2^ by 3.2. Any point of A may 

be taken for the required nullary operation. 

4 .2. Lemma: CfC2) is strongly embeddable in to CfC171) 

and into GT H , 4, 0) . 

Proof: Put FCX)« X x X x 3 v 1, FC-O (X,<#7 + ) » 

^Cx) , - fC^) , -v ),FC4!)C0)Sr 0 . For an object fX,ccJ ) of 6TC2) 

put 

y<XfaO-(FOO,y,r> C.,,«CFCX),9% y , 0 ) resp.) f 

where cf (H7ty>,i)* (X,ty7 i + 1) for * * 0719 CfCX?^7 2.) = 

defined as equal (co(x,<y.) , d) (<X, «j> )? 1 ) if and 

only if &> I x , <yj i s defined; yC0) i s not defined. 

Further , define IPC*) for morphisms by a^U) *fCQi). 

Evidently, V i s a one-to-one functor mapping Gf C2) into 

C4, 4 ) C C * C 7 ; 1 , 0 ) r e a p . ) . 

Let 9.; CF(X)?cf,y) - > CF(X'),cf', y') be a homo-

morphism. Since 0 i s the only fixed point of ^ f we ha­

ve fy(0) * 0 , Similarly, considering y , ^fX>< X x { ( ? i k 
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c X'xX'x* iO\ . Define -f, 4 '; X -* X' by Q,CXfX70>m 

.=• C4 Cx )- f Cx) , ^ >. Put 9-Cx,r^, 0) - (Toe', ^ ' , (7 ) , 

We have ^ ^ ^ J r y ^ C o C j ^ O ^ ^ . o c . W s C4 Cx) ,*'&<>, 0) 

and hence #'- 4Cx) s? 4' C#) and similarly, by 

Thus, for i * 0 ,1 ,2 , g-C^ <^,*7«%cf*Cx,<y,0) *9*GCx), 

-fCty),0) * C4Cx), +(<&)? *) and hence fruF(4). I f 

U)loc7y.) i s defined, we have C4a>Cc«,ty), 4 <vCoc,^)y 4)~ 

ff<yfrCx7y,l)=yrC4Co<h4Cq>>7£) and hence co'C4Cx), f(fy)) 

i s defined and equal 4 CO Co(, ty ) * 

4.3 . Lemma: Let Ai" Cee^)^^^ , Ax « C&r ) r ^ ^ and let 

there exist a one-to-one mapping cp * (& —* cF such that 

dC^ *£ &cfCcc> f°r every oc «z ft> . Let at least one of 

the following two conditions be sat isf ied: 

(1) there i s an oc <c fi with && ** 0 , 

(2) A r # 0 for ^- e <f - cf C(h) . 

Then 6T C A ) i s realizable in GT C A£ ) . 

Proof is quite analogous to the proof of similar Lemma 

1 in [1J concerning C* CA1 ) and Ot C A%) . 

4»4o Theorem: #?> is strongly embeddable into any Ok CA) 

with 5. A > 2 . 

Proof: If S A > 2 7 at least one of Gf Cf, 1 ) , 

C2) , (1,4,0), C2,0)is realizable in 6TCA) by 4 .3 , 

Thus, the statement follows by 4*1 and 4*2• 

4«% Corollary: The statements ( l ) and (2) in Theorem 3 .4 

are equivalent with the following ones: 

(3) There i s a strong embedding of (<Sk,t O ) into 

some Gf IA) with Z A > 2 , 



(4) There are strong embeddings of f & , a ) into any 

(X (A) with T A > 1 . 
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