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ON FULL EMBEDDINGS OF CONCRETE CATEGORIES WITH RESPECT TO
FORGETFUL' FUNCTORS X’

A. PULTR,Praha

dntroduction.

Every semigroup with unity S4

is isomorphic to the se-
migroup of all the mappings of a set X into itself preser-
ving a suitable binary relation R . On the other hand, I

we have a semigroup S’ of mappings of X Ainto itself, the-
re is rarely a binary relation R on X such that the R=-
preserving mappings are exactly the elements of st . Thus,
the problem of a representation of semigroups of mappings

by binary relations without full omitting the concrete forms
of the semigroups gives rise naturally to the following ques-

tion:

Let ST be a gemigroup of mappings of X into itself,
Does there exist a ¥> X and a binary relation R on
(17 Y sgsuch that the semigroup o all the mappings of Y in-
*to itself preserving R consists exactly of (uniquely
determined) extensions of the elements of S’ 7
(Similarly, instead of binary relations, we may consider al-

gebraic structures of a given type etc.)

x) Supported by the Alexander von Humboldt-Stiftung



More generally, investigating full embeddings of con=-
crete categories (by a concrete category (& ,0 ) we mean
a category R together with a firmly given forgetful func-
tor O ), we see that the condition of preserving the car-
rying sets of objects and the carrying mappings of morph-
ism® (i.e. that the full embedding is a realisation, seel[6])
ﬁay be, even for simplest cases, rarely satisfied. In the
present paper we investigate two kinds of embeddings (pseu=
dorealisation and strong embedding, see Definition 1l.1) un—
der which the carrying sets are only augmented by additional
elements and the carrying mappings are extensions of the o=
riginal ones. By the strong embelding, we require moreover,
roughly speaking, that this expansion depends on the carry-
ing sets only, not on the objects themselves.

In the first paragraph, the definitions are given and
some fundamental properties are proved, It is shown, that
we may often obtain a pseudorealisation by means of a con=-
struction from a full embedding. In particular, we obtain &
positive answer to the question (1) (sée 1.12.3)) for bina-
ry relations and other structures.

Paragraph 2 contains a construction which is, later on,
used to prove that the category of graphs 7% may be strong-
ly imbedded into the category of undirected graphs 7@5 (the
full embedding of 72 into A, constructed in [2] is not
a strong embedding). Lemma 2.5 is formulated substantially
stronger than necessary for the present paper; this formula-
tion will allow some other applications which shall appear

elsewhere.
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In paragraph 3, first of all, the strong embeddabi-
lity of 7 (A) (see Notation) into #, is proved. As
a consequence (by means of lemma 3.3, which is, in fact, a
reformulation of Theorem 5 from [3]) we obtain strong em-
beddings of several other categories into %5 o In pavti-
cular, we formulate a necessary and sufficient condition
for a strong embeddability of small concrete categories in-
to 9 . Finally, in the last paragraph 4, we show that the
existence of a strong embedding into categories of quasial~
gebras is equivalent with the existence of a strong embed-
ding into A (while, see 3.5, the existence of a strong
embedding of a concrete category into a category of algebras
ia%ubstantially stronger property)e.

Notation: An ordinal, in particular a natural number,
is always considered as the set of all smaller ordinals. We
use the Godel-Bernays set theory. For some statements, we
require, moreover, that in the theory the following assump~
tion holds:

There exists a cardinal o such that every ¢ ~-addi-
(M)  tive two-valued measure is < -additive for any car=-

dinal 4 .

(I.e., roughly speaking, there are not too maeny measurable
cardinals.)

A functor, mapping the category /3 of all sets and
all mappings into itself is called a get functor.A defini-
tion of the TB-fupctor may be found in [7]. A transforma=
tion @« ! F—G where F,G are functors from a catego~
ry into ¥ is said to be a gopoiransformation if all the
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mappings (“a, are one-~to-one.

A graph is a couple (X,R) , where X is a set and
R is a binary relation on X . An undirected graph is a
graph (X,R) such that R is symmetrical. If (X,R) and
(Y,S) are graphs and f a mapping of X into ¥ , we
say that f is compatible (more exactly, RS-compatible)
if it preserves the relations, i.e., if (f(x), f(y)) €S
whenever (X, ) € R . More generally, if r is an A=
relation on X (i.e. a set of mappings of A into X )
and 8 1is an A-relationon Y, f: X VY 1ie said to
be ré~compatible if f .+ o € A whenever o« € £, A
graph (X,R) is said to be pigid, if there is no non-iden-
tical RR-compatible mapping.

A type. A = (a:/z )p <o is a sequence of ordi-
nals indexed by ordinals, = A is the usual ordinal sum
of the seqQuence. A relational system r of the type 4 on
X 1is a sequence (mﬂ )ﬁ <z where Ty is an %y -rela=
tion on X . If r, s are relational systems of the type
A , a mapping f 1is said to be rg-compatible,if it is
1;; s/3 -compatible for every ﬂ < 2. The category of all
sets with relational systems and their compatible mappings
is denoted by 73 (A). The symbol CL (A) ( G&(A) resp.)
designates the category of all algebras (quasialgebras,resp.)
of a type A and all their homomorphisms. (For a more de-
tailed description of R (A), U(A), § (4) see
e.g.[1]).

S(F) , where F -is a set functor, is a category, the
objects of which are couples (X,r) with 4 c F(X) and
morphisms from (X,r) into (Y,s) the mappings f: X —» VY
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for which F(f)(x 1 c » if F is covariant,
F(#)tn)c n if F is contravariant. (See also e.g.
[61).

The categories 2, ®, ,R (D), &) , k(A), S(F)
are always treated as concrelte categories, endowed by the
obvious forgetful functor (this is, as a rule, denoted by
o o).

A faithful set functor F is said to be selective, if
for every type A there are a type A’ and a one-to-one
functor @ mapping R (A) onto a full subcategory of °

RCA’) so that e P=Fe O. (See [3]).
If X,Y are sets, we write X v ¥ = X < {0} v
u Y =< {1} (the disjoint union of X and Y ). If the-
re is no danger of confusion, we write, for the elements of
Xv Y, simply x instead of (x,0) , y inastead of (y,l).
(X, ¥> 1is the set of all mappings of X into Y.

§ 1. Generalitics
l.1. Definition: Let (R, 0) , (R’, O") be concrete cate-
gories. A full embedding & : R — R’ is said to be a
pseudorealization if for every object a of %R there is
a set 2(a) such that

Ob(a) = Dav Z@), Z@)nda =4 ,
and if for every morphism ¢ /@ —> & and every x € Oa
D' (prix)= O (X) -

A full embedding @ : ® —> R’ 1is said to be a girong
embeddipg if there is a faithful set functor F such that
the diagram
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d
R — R’

lc lu’
r —F 5 »

commutes,
1.2. Remarkg: 1) The realization (see [6]) is a particular
' case of both pseudoréalizaﬁ'ﬁ.qh' (Z(a) = Z  for any a)
and strong embedding. (F =~I)’ .

2) A composiﬂon of pseudorealizations (strung embed-
dings) is obviously a pseudore'aiization (a strong embedding).
1.3, Defimition: We say that a concrete category (%, O)

has the property of transfer (shortly, (T)) if for every ob-

ject a of R and far every one-to-one mapping f of Oa

onto an arbitrary set X there is an isomorphism ¢ in R

such that D¢ = F .
#e say that a concrete category (R , ) has the

property of unicity (shortly, (U)) , if every isomorphism

g of R such thet [Jg = <d is an identity.
l.4. Remarks: 1) Gbviously, S(F) , ® (4), oAy, c£ca)
have both (T) and (U) .

2) 1t (®R,0) hnas (1) and (R’, O°) is a concre-
te cubcategory of ( ®, ) containing with any object all
the isomorphic objects, then (®R), D’)  has (T) .

3I¢ (R,0) has (U) and if there exists a
strong embedding ¢ : ( R’,0°) — (&, 0) then
(R, O’) has (U) . Really, denote by F the associated
set functor. Let ¢ be an isomorphism in R ,Jg = id .

Then & (¢¢) 1s an isomorphism and O () = FOg = 1id ,
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so that ¢ () 1s an identity. Thus, ¢ 1s an identity.
1.5. Logma: Let (R, 0), (R’ O°) be concrete catego-
ries. Let (&,0) have (U) and (&7, @") have (T) .
Let $: R — R’ be a faithful functor such that for e-
very ¢ : & (a) - (&) there is @ y:a ~» & with
Q=@ (¢) . Let there exist a monotransforration
o o — oo’ d .

Then there exists a pseudorealization ¥ : (R, [J)—>
— (R, 0°). If always «¥(Oa) #+ O (@), the as-
sumption of (U) may be left out. '

Progf: Put Z(a)= (O'P(@)- w®(a) = {(a,Oa )}
ad define 99“-; 0 d(a) — Da v Z(a) by ua(‘a“'(x N=
= X,9,(y)=(y a Da ) otherwise. Evidently, 3,
is one-to~one.

Since (R’,@’) has (T) , there are isomorphisms
% @) — ¥ia) with O = 26, (and, hence,
OY(@@=0a v Z@)).

Put, for every morphism @ : @ — & in R ,
‘ -1
Y(g) =g - () o, -
Thus, We defined a functor ¥: R — R”. For g:a—>b
and X € [Ja. we have O'¥ (¢)(x) = %&-D'Q(q)'ee;'(“)c
= o, O3 (q)-@ﬁ:%(@"ﬂcy(x) .
If w:¥@) — ¥ (&) 4s a morphism, we obtain
- -
ac;-qf-ao“: b(@)— $(4) and hence oy Yo, = D)
for some ¢:a—y 4. Thus, it remains tO prove that ¥ is

one~to~one.
¥  is evidently faithful, If ¥(2) = ¥(f) we lmve
Oa Vv Z@) =0%a)y=04 o Z (&) If both 2z(a) and
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2(b) are non-void, we have, for some x, (x,2,0a) €
c0OL v ZY) and, for some Yy , (q,,lr,ClIr)e

c Da uZ(ad, If a%b , we obtain (x,a,0a)eOd,
(ey.,,&; O&)eOa in a contradiction with the set theory.

Anyway, if ¥ (@) =¥(&), there are (see above) o :
‘@ & and B:l—>a with ¥(e) = ¥ ()= idyg, -
Thus, ¥ (0 B) = ¥ (Rx) = Ady,, and, since ¥
is faithful, RBo = 4id, , *fB = 4d, . Consequently,
by the isomorphism o , we see easily that in the case
of Z(@) =@ we also have Z(&) =4 and hence (O =
= 0. ItxeOa, OK(X) =¥ (x)(X) = X . Thus,
Do = ";d’w and hence, finally (by (U)), a = b .

1,6. Reparks: 1) If there exists a pseudorealization

d’ of (R, O’) in itself with non-void Z(a) for e-
very object a , we may leave out the assumption of (U)
in 1,5. It suffices to use &’ & instead of & .

The existence of such ¢’ for £ (A), ¢ (A) and

72 follows by the constructions in [1], fa @2, by the

composition of the trivial embedding of %, into 7%
and the construction in [2] (or, the constructi on which
will be described in §§ 2,3).

Thus, applying 1.5 and its immediate corollaries for
the mentioned categories in the role of (R7, O’ ), we need
not assume (U) for (®,0).

2) By lemma 1.5, to prove the existence of a pseudo-
realization, it suffices to find a faithful functor with
the required property. Similarly, for the strong embedding

we have
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 Theorep: Let (R, O0) have (U) , ( R) O’) have

(T) « Let there be a faithful functor $: R - R’ such
that for every two objects a,b of R and for every morph-
ism ¢ : Pla)~» H(&) there is a y :a —¥L& with
g= $(y) . Let D = Fe O for some faithful
set functor F . Then there exists a strong embedding of
(R, 0) into (R, 0 .

Proof: First, define a set functar G by G(X) = F(Xx
% {X3 for sets X, G (X, X) =(F(£XX),Y) for
mappings f: X — ¥ . Obviously, G is faihtul, Define
AX:F(X)—#GCX) by de, (x) = (x,X). By (T),
for every object @& of R there is an isomorphism

w, : dl@) - ¥(a) such that e, = O'o, .

For & morphism ¢:a— & put¥g)= o - Q(Cf)‘“;1 .
Thus, we obtain a faithful functor ¥ : R — R’ .

Similarly as in the proof of 1.5 we see that for every
¥ : ¥la) — W(H) thereisa y:a— & with g =
= W (y). Since we have always D’(oc&- o (). ac;") =
= J&Db'F(Dq)-b‘;; = 6(0g) | it remains
to show that ¥ is one-to-one.

Let % (a) = W(4). Thus,F(Oa)={Oaj=Fad)={0bF
and hence OJa = O4&, For id : ¥(a) — W(h) there
are «:a b and B: b a withid = ¥(x) = ¥(B)-
Consequently, ¥ (x ) = W(Box) = id
is faithful, pBec = <& , afB = idy

a ! )

an isomorphism. Ve have G (o) = 0¥ (at) = id .

, and, since ¥

so that o 1is

Since G is faithful, [Joc = 4i&, . Thus, by (U) ,

x = idw and hence a=b .
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l.7. Theorem: Let there exist a strong embedding of
(®,0) into (R’,0). Let ( ®,0) have (U) and
(R, O0°) have (T) . Then there exists a pseudorealiza=

tion of (®R,O) into (R’ O).

Progf: Let $: ® — R’ be a strong embedding, F
the faithful set functor with F+ O =0 @ . Since F
is faithful, there is a monotransformstion » : I — F
(define §¥:1—>X by §)(0)= X, take ana cFN
with §2@) # §2(@), ana put %00 = F(EY) (@) ).
Now, it suffices to put © = »y0O and use lemma 1l.5.

1.8. Iheorem: Let there be objects Z and K in
(% ,0) such that

1) DZ=4{z? and for every object a of ® and
every X € [l @  there is a morphism ao:'; Z — a with
Doty (%) = X.

2) DK contains distinct elements u, v and for e~
very objeet a of & and distinct x, 4y € Oa there is
a /3,;«? :a—»K with u/,;;} (X)= 4, u/.l,;; y) = v.

Let (®,0) have (U) and let there exist a full
embedding of ® into B®’. Then there exists a pseudoreali-
zation of (&, [0) into any (R’ O’) with (1) .

Proof: First, since [1 is faithful, we see easily
that there is, for every X € a ,exactly one required

a @
°°x . Thus, since DCq’o:X)(z) = O¢g (x) for any
g:a -y, we obtain
a v 3
f rooy = wﬂq(a()
Now, let ¢ : R — R’ be a full embedding. For an ob=
ject a of R define (u’“:Dw — O'da) by
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@ (x) = 08 (g (x,),
where X € O'Q(Z) is such that 0 (af ) (x,) +
# 0'¢ (X Y(X,) . This defines a monotransformation
@ :0 —=0° & . Really, we have, for ¢p:a — &,

O% (@) w*(x) = 0@ (g I(x,)= D'(l&(ocg’?m)(.x,).-:

= wPog(x); i x,ye Da, X #y, OB ()
= 0'd () (x,) & DDy (X)) = O (BL, I y)

and hence @ () # w®(y) -

1.9. Corollary: Under the assumption (M) on set theary, if
( R,0) is realizable in some S(F) with a TB-functor F ,
then there are pseudorealizations ofi (R, Q) in R and
in eny & (0O) with £ A 2 2 , In particular, there
exist pseudorealizations of R in any CE(A)  with
sSAZ2.

Proof: According to [7] (particularly theorems 4.2 and
4.4),01] and Theorem 1.8, it suffices to find objects Z and
s in S(F) , Take Z = (1,0), K =(2, F(2)).

1,10, Definition: Let (R, Q) be a concrete catego-
ry. We describe a concrete category (( R, )%, a*):

The objects of (R,0)7 are all the couples (a,0) ,
where a is an object of R, (0,1) and (1,1) . Norphisus
between (a,0) and (b,0) are all the couples (&, ?)  whe=-
re @:a —> 4 in R’ ,morphisms between (0,1) and (a,0)
are ((X,a),1) , where x € Oa , morphisms between
(a,0) and (1,1) are ((««,a@),2), where «w c Oa

and, finally, morphisms between (0,1) and (1,1) are (0,2)
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and (1,2) .
The morphisms are composed by the following rules:
(x,0)-(3,0) = (x3,0),
for «w:ad, (0,0 ((x,a), M= aclx) &),1) ,
for 3:bva, (uw,a),2) (3,00= cceapytwd, e, 2),
Catyad, 2 Cxya), 1y= 020 For X &4y
(1,2) for X € 4« -
The forgetful functor OF is defined by:

a* @, 0) = oa, Ot@, 0= 0, O*0,N=1, 0% (1,1) = 2,

+ _
0", a), 1) (0) = x, O7(,20(0 =7,

Ot (Cu,a),N(x) = O for x ¢ 4
l for X € M4 -
1.11. Theorem: If (®R,0) has (U) and (R, 07) has
(T) , and if there exists a full ecbecding of (R, O0)*
into R’ , then there exists a pseudorealization of
(R,0) into (R,07) .
Proof: follows immediately from Definition 1.10 and
1.8, .
1.12, Remarks: 1) By 1.1l and 1.6.1 we may express the fol-
lowing contribution to the unsolved problem of the existen=-
ce of a non-boundable catezory (see [4],[5]; other term:
non-algebraic):
Every concretisable category is boundable if and only
if every concrete category is pseudorealizable in ¢ .
2) If R 1is s small category, (R ,0)t 1s a

small category. Thus, since every small category may be



fully embedded into M (%, & (A) withX A > 2
ete., see [1],[2]), every small concrete category (®,0)
is pseudorealizable in ® (R, , £ (4) with S A >
> 2 eteldd.

3) In particular, if S 1is a semigroup of mapping of
a set X into itself (containing the identity mapping),
there is a YO X and a binary relation (binary symmetri-
cal relation, binary operation, a couple of unary operations
etc.), such that the semigroup of all the mappings of Y in-
to itself preserving the relation (all the endomorphisms,
resp.) consists exactly of (uniquely determined) extensions

o

of the elements of 3 .

§ 2., A copstruction

This paragraph contains a construction and a lemma con-
cerning this, which will be used in the following paragraph
for embeddings into R, .
2.1, Conventions: Let (X,R) be an undirected graph. The
distance @ (X, 4) of two distinct points X,y € X is

the least n such that there are X , X, .., X, with
%, Rx; for 1 =4,0.,m, X=X, Y= Xp

(if such an n exists).
A triangle in (X,R) 1is every{X,, X, , Xz ¥ c X

such that X, Roc?- for all distinet i, J. A graph (X,R)

is said to be t~connected if for any two distinet x,yeX

there are triangles t,, t, ..., t such that « €

€et, yet, and t; At « 0 for i=1,

2y eeeyn=1, A subset Yc X is said to be a t-connected

subset of (X,R), if (Y. R A Y x ¥ ) is t-connected.
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The following is evident:
2.2, Lemmg: Let £: (X,RY — (¥, §) be a compatib-
le mapping, 2 a t-comnected subset in (X,R) . Then £(Z)
is t-connected,
2,3. Congtruction: A system ((A,T), (@, ) .. ., &3);.5),
where (A,T) is a t=connected undirected graph without
ioope, o an ordinal, J a set and a , b-;‘ elements of
A such that

for v £ 0 ¢(a,”a.«b) >4 , in general, for
(@) L#ee, oA, a,) > 2,

for 1 # 3 (&, 1)‘7-),32 always ga(@,,l:;)? 2,
is said to be a H=systemo
For every couple ot , /3 of cardinals with B £ o
choms e once for ever a mapping T3 of ¢ onto @2, If
there is no danger of confusion, we shall write simply p ,

Let A = ((A,T), (a) &)

OROPT ¥ ieJ ) be a H-gys-

tem, X a set, r; (for i€ J) o, -relations on X . Let
a2 rup fx; 11 €J7 .

The undirected graph X (4,(X, (%,

idies )= (X ot v <%, XSVAR)

is defined as follows: °
(1) For a,re A, aRL & a Tl

(2) For a = A, g o — X,
Ry = gRawIi(a=Lb))&kIyen, S=y.)

(3) For a €A, (x,L)eXxax, aRx,L )= (x, L Re 2 q-a,

(4) For ¢, ¥ : o« — X there is never ¢ Ry

(5) For ¢ : o« — X, (X,L)e X = oc,
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PRIX,L)E=> (X, LIRP = @ (L) = X
(6) For (%, L), (y,%)e X < @ ,

(x, L)R(@,oe)@ X = a4 and exactly one of r, 2¢

is zero.
2.4, Lemma: Put K, = {x3>x o0 v{glg(0)=x3 . Then

1) Every t-connected subset of X (4, (X, (x, Yes )

J

is either a subset of A or a subset of some K',< .
2) Every K, is 3~coloured.
Proof: 1) Since K.x N K'}’: g for X %y and

K.x n A=f, it suffices to show that every triangle is con-

tained either in A or in some Kx « Let a triangle t not
be contained in A . Then, by Construction (see condition
(@), 1tnAl<2. 1 ItnAl=1, the single point
of t N A is either some a_ , or some b, .No of these
points,however, is joined with two joined points outside of
A .

Thus, according to (4) in 2.3, t = {(x, L),(4,2 ), Q%
By (5) and (6) we obtain x =y, L or a equal to zero
and ¢ (0) = X,

2) Put ¥ (X,0 =0, F(X,t) =1 for ( # 0,
(@) =2 for ¢:oa — X .
2.5. Lemma: Let A = (A, T), (@, ) cu ,X);es), Q& =
= (A, T'):‘“Z’m»“’,f’-:ea"be H-gystems such that &= Jc J’,

that there is exactly one compatible 4 (A, T) =+ (A, T’) and
that there holds

k@) = a for L< o, R(G) = b for
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1€ J.

Let r. for ieJd (r) for i€ J ) be o -rela-

1 2 %

tions on X (on X') , let « » mak (2, pup {o; | eTg).
Then for every compatible

%:x(a,cx,("‘)":‘J)) e d 3‘((0/, (X’, (ﬂ; )4:‘_74 ))
there is an f: X—> X’ which is x;r -compatible for eve=
ry 1€ J, such that, for a€ A, g(a) = h(a) for

(X,L)eX glx,L)= (£(x), L) and for ¢:a—> X
g,(q)a--f'v (<2

Proof: Since a ## 0, J % 4 , there are points
»s b; with ©(a,,&;) >2 in A’, Since (A, T7)

is t-connected, there is a triangle t containing a, and,

&

of course, not containing by . Thus, there is no compatible
mapping of (A,T) into a 3=coloured graph - in that case
there were possible to map (A,T) into t in a contradic-
tion with the properties of h .

Thus, by lemmas 2.2 and 2.4, ¢ (A)= A’ ana, by (1)
in Construction, g (a) = h(a) for every a € A . In par-
ticular, we obtain ¢ (Q )= a: . Take (x,0) ,
(Xx,L)€ Xxo,L#0, If g(x,0) ¢ X'x {03, we
have necessarily g (X, 0)e A and, by (@), also
G(x,t)e A" , so that

a)R’'g(x, 0)R" g (X, LIR al
in a contradiction with (@ ). Thus, g.(X=<{0})c X'x{0}
and analogously g (X = {c¢}) X' < q{c3 -
Define f: X —X’ by (f(x),0)=g(x,0).We ob-
tain immediately 9(.)(, L) = (£(X), L ) by the condi-
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tions g(x,t) e X'= {1} andg (X, LIR(HF(x)0).
Now, let ¢p: o — X . For every L,pR(gp (L), L) and
hence @ ()R’ (£ (L), ¢ ) , so that, first, g(g):
. o0 = X’ (there are no other elements y with both
ngR (4, 0),’9,R(’v’,4) ) and, further, by (5), ¢ () =
=49, 1f g€ k; , vwe have &-pR&,; and hence
f.g.nR’&; . Thus, there is a ¥ € &, with {f.q¢-
ofi =Y -q2. Since p 1is a mapping onto, we obtain
%q:yemaﬂmm,f is Qﬁ-wmﬂwh.

§ 3. Stronz embeddinge into %,  and related ca-
tegories
3.1. Legma: Let oo be an prdinal, J a set. Then there
exists a H-system @4 = ((A,_T), (@, )‘_«“ (!7,‘)1:‘3 ) such
that (a,T) is rigid.

Proof: In this proof, we shall use the methods and
results of [2]. Thus, we preserve the terminology and, in
some extent, also the notation of that paper.

Define (A,T) as follows:

T = {0,1,2,3,4,5,6,7,3 ,4°,5",5",6",8,8°,8"% ,

T is the binary symmetrical relation generated by
the couples

(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,1),

(1,0),00,3%,(3°,47),(4%,57),(5°,6),(4,5"),(5",6"),

(6",0)

(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7),

(8°,1),(87,0),(8; 37),(8%,47),(8",57),(8°,6),(87,7),

(g",0),(8",1),(8",2),(8",3).(8",4),(8",5"),(8",6"),
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(Thus, (A,T) is obtained from (2,T) described in (2]
by adding points 8,8',8" and joining each of them with
the points of one of the 7-cycles.)

First, we see that the only elements xe X such
that there is a carrier of an odd cycle in {4 | (x, y) €
¢ T} are 8,8°, 8", Considering this, we may prove that
‘(,Z”T" 5‘, 5%) is strongly rigid in a way quite analogous
to the proof of the strong rigidity of (Z, T, 5’, §”) in
[2].

Put (A,T) =(A,T,5,57) * (D,R) , where (D,R)
is the rigid graph constructed in [9]. By theorem 1 in (2],
(A,7) 1s rigid. We have @ (5,57 ) = 4 in (X,T) .
Now, it follows easily from the construction in [9] thmt
(A,T) contains sufficiently many sufficiently distant ele-
ments, if (D,R) is taken large enough.

3.2, Theorem: For any type A there exists a strong em-
bedding of R (4) into XK, .
Eroof: If A= (o, )/3<a.. , puto=mac(2,
/ou{b{aop l/3<3"})and take (see 3.1) some H-system 2= ((A,T7,
(@, cu » (&), <, ) withrigid (4,T). For an object
(X, (”ﬁ)ﬁ‘?’ y of R (A) define § (X, (”’/3)/“9'):
=X A, (X, Chpdyop )0 Put F= Vo (Kov Q) (see
Construction 2,3 and [6]). We see easily that for any morph-

iem ¢ (X, (Itﬂ ) — (Y, (/‘aﬂ)) there is & unique
P (@) : DX, g N~ BY, (5y)) withD-$(g) = F-O(P)
and that the functor ¢  thus described is one-to-one.

By 2.5, & is a full embedding.




3.3. Lomma: Let F be a covariant selective functor. Then
there is a strong embedding of S(F) into some R (A4).
Broof: Take a A’ = (a, >ﬁ <y such that there
is a full embedding & : ¥ — R (4") such that
0.-%= F ., Put A=‘(cop)ﬂ<a.+, )
If (X,r) is an object of S(F) , put ¥ (X, %) =

= (FX), (k) . ) where (FOXO, (Mg lyey ) =P(X), 2y =

wher =1.
eeoor

=K.
It Y, = (FY), (g g ) andf: XY

is rs-compatible, F(f) is evidently s 8, ~compatible
for every 3 < o+ 1 . Thus, ¥ may be extended to
a functor by the prescription O¥ (¢)= F(ag ). ¥

is evidently one-to-one. If @ : F(X) — F (V) is
(%, )rﬂ (/aﬂ )7*" -compatible, it is (/oﬂ)r (/b,”r -

compatible and hence g = F (f) for some f: X —> Y.
Since g (#,.) € A, , f is rs-compatible.
3.4. Theorem: Under the assumption (M) on the set theory,
the following two statements are equivalent:

(1) There is a strong embedding of (&, 0 ) into
some S(F) with a TB-functor F ,

(2) There is a strong embedding of (R, ) into

R, -

Proof: Trivially, (2) ==> (1), Let (1) hold. By [7]
(theorems 4.2 and 4.3) there is a strong embedding of
(®,0) 1into an S(G) with covariant selective G .
(2) follows by 3.2 and 3.3.

3.5. Remark: Thus, e.g., every (£ (A ) is strongly em-
beddable into %%, . We saw in 1.9 that 9%, is pseudo-
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realisable in C£(A) with £ A > 2 ., On the ot-
her hand, we have
Propogition: Let there exist a strong embedding of
(R,0) intoan CLCA) ., Then a morphism & of
R  1s an isomorphism if and only if (¢ is a one-
to-one mapping onto.
_Proof: Let ¢ :a —¥ 4 be a morphism such that
Dc_:f is a one-to-one mapiing of Oa onto O4 .
Lét d be a strong embedding of (R, 0) 1into C£(4),
let F be the set functor with F- 3O = O.& . Thus,
od () = F(ag) is one-to-one onto and hence
o () is an isomorphisme. (o)) is a full embedding
and hence there is a b —a with @ (y) = (@(go))J.
Thus, @ (gy) = +d , d(Yy) = ¢d . Since P is
one-to-one, ¢ Y = td and yg = td
Thus, %, 1is strongly embeddable inpo £ (A), see
e.g. the identity imbedding of (X,8) into (X, X =~ X) .
In [8] is proved that any L (A) is strongly embeddab-
le into every £ (A’) with = A’ 2 2 . Recently,
V. Trnkové proved that e.g. the category of Hausdorff com-
pact spaces is strongiy embeddable into the categories of
algebras.
3.6. Lepma: Let (R, O) be a small concrete category
with (U) . Then there exists a type A and a realiza-~
tionof (R, 0) in R D),
Proof : L‘et a be a one-to-one mapping of an ordinal
» onto the set of objects of R . Put ocﬁe—wd, Oa (3,

A= (ocﬂ) For every (3 < 7 choose a one-to-

p<
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~-one mapping m, of % ontoe Oa (B3).

Let b be an object of & ., Define a relational

system mbs (M:)ﬂ<3, of the type A on O4& ae

follows:

fe nle £: «, = Dak3g:alB)> & withf-Dq-rml«, .

(]
Let g: @ (tL)—+a(3) be a morphism. Let ¢ € m:"” .
Thus, f = Oy-.m, for some y: a(B) —» alt) , so

that Dcwa:D(q‘lr)-rmﬂ and hence Og-f € r2e .

n
Thus, Og is n®® /c“") =-compatiblee.

Let ¢ ¢ Da(L)— Oa(e) be x> p**-"
N . acle)

compatible. We have m = Oed, , - m_€ r, and

hence g-m € )p:"“) . Thus, there is a g ac)—yaltd

with g¢-m, = Og  m , sothat g =0¢ -
It remains to show that (O.6,4%) # (Oc, ) when-
ever &r # ¢ . Let (Oa(L),n™*)= (Qaee), ™). Ve

3 ale) acse)
"'dwa.) em e k& and hence m, € ~, .

have m, = O
Thus, there is a g : a (L) —> @ (%) withm =([Og-7;
consequently, [Ig = <d . Similarly we obtaina vy :aQ(ee)+
~ a (L) with O =4d. Thus, Oycp =DOgy =+<2. Since
O  is faithful, ¢ is an isomorphism. Hence, by (v),

alL) = ace) .

3.7. Theorem: A small concrete category (% ,0O) is
strongly embeddable into %%, if and only if it has (U) .,

Proof: (U) 1is necessary by l.4.3. It is sufficient
by 3.6, 3.2 and 1.2,
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§ 4. Strong embeddings into categories of quasj-
algebras
4.1 Lemmg: R  1is realisable in ¢ (2) and strongly
embeddable into X (2,0) .

Proof: To prove the first statement, it suffices to
~define & (X, R)I = (X, @ ) , where @ (X, y) 1is de-
fined if and only if (X, ) € R snd equals x . Now, we
obtain easily a strong embedding of 2 into {'(2,0) com-
bining this construction with the construction of the strong
embedding of % into #®, Dby 3.2. Any point of A may
be taken for the required nullary operation.

4.2. Lemma: G[(2) is strongly embeddable into G/ (1,1)
and into d (41,1, 0) .

Proof: Put F(X)= Xx X x<x3v 1, FUE) (X,y,4) =
=(+'(.>(),-¢(44,),4),F'(4)(0)= 0. For an objJect (X, ) of G'(2)
put

¥X,w)=(F(X),e¥) (...=(F(X), g, ¥, 0) resp.),
where @ (X, ,%1)=(X,%, £ +1) for + = 0,1, @(X,y,2)=
=(y,x, 0), ¢(0)= 0; y(X, 4, D)=(Xy, O, Y (x,y,=(x,x, 2), y(X,4,2)

defined as equal (a)/(.x,'g.) , W (X, ), 1) if and
only if @ (X, 4 ) 1s defined; 7 (0)  1is not defined.
Further, define ¥ (f) for morphisms by O¥ (¢) = £(Of).
Evidently, ¥ is a one-to-one functor mapping & (2) into
1, 1) (GH,'I,O) respe).

Let g: (F(X),¢0, %) —> (F(X'),%, ¥*) be a homo-
morphism. Since O 1ig the only fixed point of & » we ha-
ve 9,(0) = (. Similarly, considering ¥, 9,(X>< X=<4{0%)c
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c X’ X"> {0% . Define 4, £: X - X' vy g(X, X, 0=
= (#(x), £7(x), 0 ). Put g(x,%, 0) = (X, %, 0) .
We have (X, X", 0)= Q¥ g(X,1,0)= g(x,X,0)= (f(x), fx),0)
and hence X’'= f(x) = #/(x) and similarly, b¥
vvot, y'= 9y . ,
Thus, for 1 = 0,1,2, g-(X, ¢, %)= g @ (x,4,0) = §*#(X),

Flay),0) = (£(x), #Cy), ©) and hence ¢ = F(f). If
w(X,4 ) 1is defined, we have (f@ (X, 4 ), f (X, Y, 1) =
=gy (X, 14, 2)= Y (#(xX), #(14), 2) and hence @’ (£(x), H'w)
is defined and equal f @ (X, %) .

4.3. Lomma: Let A = (06 ), 5, Ay= (A, ), _ and let
there exist a one-to-one mapping ¢ : 3 —» o” such that
0, & Ay for every & < f3 . Let at least one of
the following two conditions be satisfied:
(1) there is an & < B3 with 26, = O,
(@) A, # 0 for gre I~ (B).
Then G (A,) is realizable in G (4, ).
Proof is quite analogous to the proof of similar Lemma
1 in [1] concerning & (A,) and ¥ (A,_) .
4.4, Theopem: %7 is strongly embeddable into any & (A)
with = A 2 2 .
Proof: If X A > 2 , at least oneof ¢ (1,1) ,
(2), 1,1,0), (2,0)is realizable in a'ca) by 4.3.
Thus, the statement follows by 4.1 and 4.2,
4.5. Corollary: The statements (1) and (2) in Theorem 3.4
are equivalent with the following ones:
(3) There is a strong embedding of (&,0) into
some Gf(A) with = A > 2, '

ann



1]

(2]

{3]

(4

(5]

(3]

(7

L8]

(4) There are strong embeddings of (R, 6 0O) into any
& (A) with TA> 2.

References

Z. HEDRLfN, A. PULTR: On full embeddings of categories

of algebras,Illinocis J.of Math.10,3(1966),392~
406,

Z. HEDRLfN, A. PULTR: Symmetric Relations(Undirected

Graphs)with Given Semigroups,Monatshefte f.
Math.69,4(1965),318-322,

Z. HEDRLfN, A, PULTR: On categorial embeddings of topolo-

gical structures into algebralc,Comment.Math.
Univ.Carolinae 7,3(1968),377-400.

JeR, ISBELL: Adequate subcategories,Illinois J.of Math.

4(1960) ,541-552,

J.R. ISBELL: Subobjects,adequacy,completeness and cate~

A, PULTR:

A.

A.

PULTR:

PULTR:

gories of algebras,Rozprawy matematyczne XXXVI,
Warszawa 1964.

On selecting of morphisms among all mappings
between underlying sets of objects in concrete
categories and realisations of these,Comment.
Msth.Univ.Carolinae 8,1(1967),53-83.

Limits of functors and realisations of catego-
ries,Comment.Math.Univ.Carolinae 8,4(1967),
663-682,

Eine Bemerkung uber volle Einbettungen von Ka=-
‘tegorien von Algebren,submitted to Math.Annalen.

- 304 -



{91 P. VOPENKA, A. PULTR, Z. HEDRLfN: A rigid relation
exists on any set,Comment.Math.Univ,Caro-

linae 6(1965),149-155,

(Received May 2, 1968)

-305-



		webmaster@dml.cz
	2012-04-27T17:50:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




