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L (1,4) can be strongly embedded into category of
semigroups

Jir{ SICHLER, Praha

2. Hedrlin and J. Lambek have constructed in[1l) a
full embedding of category of graphs and their compatible‘
mappings into the category of semigroups. Above result to-
gether with results contained in (2] imply, in particular,
that every category of algebras can be fully embedded in-
to the category of semigroups.

Strong embedding is defined in paper [ 3] of A, Pultr,
where is also proved that every category of algebras can
be strongly embedded into (1,1) = the category of
all algebras with two unary operations, as well as into
the category I(2) of all groupoids.

The aim of the present note is to construct a strong
embedding of CZ(1,1) into the category of semigroups
S(2).

Note, that V. Trnkové has constructed independently
a strong embedding of category L (2) into ¢(2).
Her result, as well as the present construction, together
with [ 3], yield the following

corollary Any category of algebras can be strongly
embedded into < (2).
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The first step of our conatruction is given by

Theorem 1. Let X & & (1, 1) be the pri=-
mitive class of all the algebras (X ; ¢,y ) satisfying

(@ey?eg®)x) = (gPoy o @) ()
for every x and y in X . Then there exists a strong
‘embedding @ : A (1,1) — X .,

Proof Let A= (X35, 3) be an object.
in A(1,1) . Put Z = (Xx3)vuia,, vy
where (XxS)A-{cux,b;(}=ﬂ . Put (A)=
=(Z5¢9,v), 9, V¥ being unary operations on 2
defined as fiollows:

q(‘&): q(a«x)gqr(l&)zq(oc,2>)=q,x for x in x,
V(a‘x)"b}( ?

w((x,0>)=<X,4), Yy KX,1>) = <x,2>
P, 22 =4, 0% ¥, 1) = {B(X), 25,
YUx, 0N =K (x), 2> for X in X .

Let A = (X5 &', 37) be another object in

A (1,4) . Thus, ® (A = CCX = 3)uia, b, 39,9
Let #: A — A’ be a morphism of £ (1,1) ., Define
@) : DAY = P (AY) by FEIKX,iP)=(#(X),i>
for 1i=0,1,2 and x in X,

P8y = ay, s
OEIE) = &, -

Clearly, & 1is one-to=-one functor, § : £ (1,1)
—» X . It remains to prove that its image is a full
subcategory of H .
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Take g : $C(A) — P (A7) - & morphism
in X . Write a" 1instead of a,, , etc.

As a e d(A) , a"€ dcA”) are the
only fixed points of ¢, Cj' respectively, we have
g(a) = a’. Thus, q,(‘lr) :9(1;/(@))-1,/’(0,’):!/-'.

Assuming 9,((0(,0)7-*@' , Ve have
&’ =y (a)=gly’{x,05)=gKx,05) - g contradic-
tion; similarly, g (<(X,0)) = &' .

If g(KX,05 = <y,1> , then g({x, 2 >) =
- 9’sz Kx,0%) = {ag, 0>, consequently, g-(@)=
=g (P, 2ON = (a’(y), 2> . But g(a) = a’. By
& similar argument we get ¢ ({X,0>)= <, 0> . Fi-
nally, g (KX, 1) =g @« X, 0=y Ky, 00)=y,1%,9(x,25):¢y,2),
We can define £ : X — X’ by {f(X),i>=g9gKx,i>),
i=0,1,2 .

We have (£ ((x)),2>=g Kt (X),2M=gGKx,0>)=
=g (¢£(x),0>)2¢@ (£(x)),2 >.Consequently, Flx(x ) = &L (£ (X)) .
An analogous computation applied on < (3(x)),2 >
gives f(B(X)N = AB/(+(x)N . We conclude
g=0#), fe AH,1).

Let D be a semigroup with two generators a,b and
with the defining relation a &2 = &e@a . There is
proved in [4] that D is rigid. Another rigid semigroup
was found by Z. Hedrlfin} it is the semigroup H generea-
ted by e¢,d and satisfying the relation c?de =ed?e? ,
Both these semigroups will be used in the proof of

Theorem 2 The primitive class K can be strongly
embedded into ¥ (2) .
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Proof. A=(X,; @, y) being an object in

K, nut LAY = ((X=xD) vy Hx,') ) where
Hy is isomorphic with H ,H,n (Xx D)= & .
If &, (c,,d )€ Hy, <= Mo, c,""‘ ot

(here and in the sequel we omit the indices), let us defi-
 ne a mapping &, = & (g,y): X = X by
Ky (x) = (g™ o 'z....q'":zy"‘)(x). Note that o =3
in H implies gx = fzx ; Dbecause of (X3 @,y)e X,
In particular, &, o B3, = o?{’SX » Where oc/3 is
the product of o, [3 in H.

The operation is defined as follows:
(X, w D (g, v >=< X, wv ) for x and y in
X, w and v in D,

(X Do = <X, w > }

- for x in X,

o e Xy w ) = {K(X),w>

in H and w in D,

&£+ R =xfB for « and 3 in H .

A bit of computation, using the remark above, yields
that § (A)  is in ¥(2) .

For A’= (X5 g’, %’ ) denote §(A") = (X' D
VH,, ,*) . Let #: A — A’ be a morphism in X .
Put

() Kx,wM=<f(x), w ) for x in X and
w in D, ‘

PEY() = & for o in H .

One can easily see that ¢ 1is a one-to-one functor,
 : X — ().
Now, let F: & (A) — $ (AY) be a morphism in
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g2y
At first, suppose that F(KX,w>) = &L € Hy-

and’ take a /3 in H, . We have o = Fx,w>)=
= FX,w) F(R)= oc+ F(B) . Consequently, F(B) €
€ H., .Since H is rigid, we have F(3) = @3 for
every (B in H, . In particular, a = F(<x,w>) =
= F({X,w P+ k)=t oL, but a rigid semigroup cannot
have an idexzpotent element. We conclude that F(X = D) €&
= X’'>x D .

Lenote F{x,a N=CZ,t 2 F(Kx, 8> =<y, w D> -
In i FKx, a&r )= FKX,a> (X, &) =<z,t> -

Cagswr=<x,tw?, analogously F K x, &aba> =

s (y,wtwt?, Fx,ad?>) = <z, tw?) .

te Wraba = af? in D, then y=1z , If 7 =
= av; € D, then FKX 153 = FKx,ad (x,yM

dy,tr <y’ wu, > =<y, tu,1 > , similarly for
v, =2 . but this means that F({xixD) =
c4y3>D. Both {%§ < D and {43 =< D are
isomorphic with rigid semigroup D , thus F(<x, w >)=
= < %’W) for any w in D . Now, we may define a
mapping f: X — X’ by

CH(x),wd= FI(<X,w >) .
Suppose F(et) = <4y, > for some ac€eH, K6 ye X',
Taking <X, w > € X > D , we get <(f(x),wwd=
=), wd{y,w> = F(<X 2w >): Flx) =
= F((N,W)) = <‘P(°(),W> )
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while, D has no idempotent. Thus, F(H,) € H,, and,
by the rigidity of H, F(«k)=oC . Far x in X we
have <@‘(#(x N, w > = ¢Cy, * {fx),wd>= Fley) FKX SWD)=

=P, wd) = <FQ(x)), w D, sintlarly for ¥ using
ALr, Ve conclude that fe X, F= & (#).

I am indebted to A. Pultr for suggestion of the pro-
blem and for his helpful comments.
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