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STRONG EMBEDDING OF CATEGORY OF ALL GRUPOIDS INTO CATEGORY
OF SEMIGROUPS
V&ra TRNKOVA, Praha
In [3) a strong embedding of concrete categories x)
is introduced as follows: A strong embedding of (X, O >
into (X', O’ > is a full embedding & : X — K’

such that for some set functor F : ¥ — &  there is

D’oétF’cD.

Thus, the images of the objects of KX  with the same un-
derlying set have also the same underlying set and analogous-
ly for morphisms of X  and their underlying mappings. The
functor F will be called the underlying functor of the
strong embedding & .

In [3] the following result is proved: Every category
x) A concrete category is, aa usual, a couple < 7(, 0 >, whe=-
re X is a category, [0 is @& faithfull functor of X in-
+o the category & of all sets and all their mappings. If
(4 1is an object or a morphism of KX then O(ee) 1is
called its underlying set or its underlying mapping, respec-
tively.
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of all universal algebras of a given type (and all their
homomorphisms) can be strongly embedded into every catego-
ry of all universal algebras with at least two unary or at
least one at last binary operation.

In [2] the full embedding of the category &R of all
.graphs and all their graph-=homomorphisms into the category
Sgp of all semigroups is constructed. This full embedding
is not a strong embedding, R  cannot be strongly embedded
into any categary of algebras,[3].

The aim of the present note is a construction of a
strong embedding of the category A(2) of all universal al-
gebras with one binary operation into the category Sgp X).

I am indebted to A. Pultr and J. Sichler for valuable
discussions, suggestion of the problem and turning my atten—

tion to the paper [1],

Theorem: The category A(2) of all universal algebras
with the binary operation can be strongly embedded into the
category Sgp of all gemigroups.

Proof of the Theorem:

I. Let D Dbe a semigroup considered in [1], i.e. the semi-
group with two generators a,b and one relation a4 % tata.
This semigroup is rigid, i.e. it has no endomorphism other
than the identity automorphism,[l].

Moreover D 1is right cancellative i.e. if ¥« = 2w« then
x) A strong embedding of Afl,1) into Sgp was independent-

ly constructed by J. Sichler.



v =w (this is not explicitly given in [1l] but it follows
from facts about D proved there, nanely: every element
u €D can be uniquely written in the form 4 =
=% a*t.. . a®™ wheret2 0, m2 1, H, 2 0
and 4, 2 1 foar 144 <m . If this normal form of u
is given then the formulas for the norral forms of u b

are listed in (11]. From these it follows easily: if v,

w € D, vd&r = wd , then v =w. Thus if v, w
then & + wir and we can repeat this step, i.e. .
then oAt £ wtt . Ifu=ba® ™. o™  is
given and 7 # wr, then w 4% 4 w&® and, considering

the normal form of &t and wb® , and the fact that

kg * 0, we obtain vu + wu .

II. Let M={a, al; ba,aba, bat,ab’= bata 3, N=D-M .
Let F be the set functor F (X)=(X>xM) v N (where
by v is denoted a disjoint union), F(f)= (£ id, ) V
v idy , where by <d, , id, are denoted the iden=
the mapping

tity mappings. Denote by I : F(X) — D
for which I ({X, « >) = 4« whenever <X , <« > €
¢ X x M , @)= whenever 7€ N.

III. We shall define an embedding & : A(2) —r Sgrr  with

F as an underlying functor. Let ( X, * > be an object
of A(2) (i.e. * 1is a binary operation on a set X ).
We define P (< X, *>) =< F(X), ® > , where @
is the following binary operation on F(X) :

a) If n,m e F(X), M (). J(n) e N then
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ARDbH = T (n)e T (H);

D) V@ (X, 4P = KX, V4> whenever x € X,
el 23, vu eM; <X, 4> ® v =X, ur) whenever
xeX, ve{d, 23, uveM;

e) (x, > ® <Y, > ={XY,4V ) whenever X ,
yeX, u,ve M, wuvrefata, baba ? .

Evidently T @ CF(X), ® ) — D is a homomorph-

ism.

IV. It is easy to see that @ is associative and if a
mapping f : < X,* > —> <Y, > 4is a homomorphism, then
F(EY: KF(X), @ >— (F(Y,® % 1is also a homomorphism.
Thus & : A(2) — Sgn  1s really & embedding with F
as an underlying functor. We must prove that it is a full
embedding.

Vo Let g3 <F(X),®> — <KF(Y),® > be a homomorph=-

ism. Ve shall prove that g = F(¢) where f :<{ X, >~

?
<Y, +> is a homomorphism:

1) First we prove: if X, 4 € X , then I g (Kx,Lada )=
=7, 9Ky, balra >) . For, (X, Latad® b =babab =
= <y, bala>® & and therefore T, g (KX, Laba’) -

e T, @) = T, (g KX, aba >)® g (&) = Ty, @ (babal) =

= T, g Ky, baba>) T g (&) -

Now use cancellation in D,
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2) Choose x € X . Let @, w: D — F(X) be map=
pings identical on N and

@)= ylw)=<x, « ¥  whenever « e{a,ba,ad; tab-?;
q(aira)- v(a?ra.) = (.xn)(,QO-a,);
YWraba)=<x- x,baba >, ¥(baba)= <x,fubn > .

Using 1) we obtain 1, 93¢ =, gy .

3) Consequently, 94 :D—>D is a homomorphism
and since D is rigid, :ﬂ'y 9 ¢ is the identity. Thus
g 1s identical on N and g (Kx,@3)= <X, a > for
some X € Y .

4) Define +: X — Y such that £(x) = X . Then

F L X,a8d) = g KX, >@8)= (£(x),@>@ & = <F(x),ab-> 5
analogously g (KX, &ad) = <f(x),&a>, g, bal>)=
(£, al). Moreover g (KX ,laln >)= g (KX ,ad?>) =
= g X, a)>® £2) =H(x),a>@L"=<Rx} adn ) and

r@G KX ada =g )X g Kx,abad=gKx,baba =
= (£(x), baba = r@<fx)abad,
consequently @ (KX, aba>)=<{f(x),ala> . Thus g = Fcf).

5) Since < (X)-fly)abed = (£(x),ad>d<f(y), bad =
=gKx,a )@ g Ky ,8a>)=gKx-%, alnd) = (4(«-@),‘:6@ >

for every X, g e X , then £: <X, o>=<KY, ) 1s

a homomorphisme.
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