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Commentationes Mathematicae Universitatis Carolinae
9,2 (1968)
ON DEMICONTINUITY AND HEMICONTINUITY OF NONLINEAR INTEGRAL
OPERATORS

Ji¥{ DURDIL, Praha

l. Introduction. The notions demicontinuity and hemi~-
continuity of nonlinear operators have been introduced and
largely studied by F.E. Browder in connection with the theo=
ry of monotone operators in series of his papers. Recently
W.V, Petryshyn (cf.[7)) has discovered a two-way connection
between the range and demicontinuity of nonlinear operators
and T. Kato [5) has shown that every hemicontinuous monoto-
ne operator defined on an open subset of Banach space X
to its dual X* is always demicontinuous.

The purpose of this note is to give some conditions for
demicontinuity and hemicontinuity of two main types of non-
linear operators in the spaces of integrable functions. The
first type (Urysohn’s operators) is studied in the section
2, while the second one, the operators of Nemyckij, is inves=-
tigated in the section 3. These operators are discussed here
without the assumption of monotonicity.

First of all we introduce some notations and recall so-
me known facts.

The symbol E, (r =1,2,...) denotes the Euclidean
r~gpace. A function f: [x, 4] — f(X,3%4) , where x
is fixed and y is variable, is denoted by £(x, .).
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Let G be a bounded measurable subset of E, , & be a
function of two variables defined on G x E, . Let g(-«)
be a measurable function on G for every (fixed) « € E, ,
g(t, -) be a continuous function on E, for almost every
(fixed) t € G . Then g is called the N-function on G = E,
(see [8]).

Let G be a bounded closed subset o E, , K be a func-
tion of three variables defined on G = G > E; « Let
K(+,t,4) be a measurable function on G for almostevery
teG andevery w € E,, K(s,,°) be an N-function on
G < E; for almost every A € G . Then K 1s called the
U -function on G = G x~ E;  (see [2]).

Lemps ) (see (61,5 2), Let g be an N-function on G =< E,
where G is a bounded measurable subset of E, ,let n,g » 1.
Suppose there exist an integer n ,numbers 7_;2 0 (i=1,....,m),

A >0 and functions T e L, (G) (i=1,..., m)

e

such that 0 £ g7 < n (i=1..,m) am

lg(tharl e 5 T, (01wl PR §

4z i

B

for almost every t € G_ and every « € E, . Then the o-
perator of Nemycklj generated by the function g is a conti=-
nuous bounded mapping from the space L, (G) into L%(G) .
Lenmpa 2 (see [1],th.39(9.2)). Let K be a U -function
on G = G E; , where G is a bounded closed subset of
E, ,let P be t‘he operator of Urysohn generated by the fune=
tion K , let 1, q = 1 . Suppose there exist an integer n,
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a, €< 0,1v) (4 =1..,m) and functions
on G =G such that

numbers
M, € Lo (6), M (i=teeym)
o, 2E L) (it m)
[/IM, (5t H dt] e L, iz1,..0,
(<]

and a; "
LK (b, B, 40)) £,5 My (o, )10l 4 M (8) e

=1
for almost every A, t € G and every « € E; . Then F

is a continuous bounded mepping from L, (G) into L%CG) .

2., Operators of Urysohn. Throughout this section we as-

sume that G is a bounded closed subset of E, , K is a UL‘-
functionon G =< G » E, and that F is the operator
of Urysohn generated by this function K . Furthermore, we
assume that p, q are arbitrary real numbers without any rela-

tion among them, n > 1, @ 2 1, We denote Q= ?%_’T

for g > 1; in the case q =1, Wwe mean by q  the symbol
oo .

Iheorem 1. Let D c L, (G ) . sSuppose there exist
an integer n, , numbers A7 € <0, 12) (i =1,...,7,) and
functions MY e L(G), MS on G=G (i=4,..,m)
for every @ €D such that either

n-2f
(SiMIce, P Fat) 7 e L) (4 =17

(1)
or

['4 .
(2) JMs, a8 € La (6) (i=tuymy)
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and
<
Ay
1K (5, t, )9 ()1 eg MY (a8 1a0l + MIB) Lanl™

for almost every 4, t € G and every 4« € E,, Then the
following assertions are valid:

(a) If D = Lg, CG) , then F is a demicontinuous
operation from L, (G) into L, G) .

(b) Let the linear hull of D be denmse in L, (&), let
X, € L, (&), Assume there exist a constant C and a
reighbourhood U of the point x in the space L, (G)
such that

(3) SV K (s, t, xcendt¥ds = C
[ G

whenever X € U, Then F maps U into LQCG) and
is demicontinuous at the point x, -

Proof Let & be an arbitrary element of D ; we shall

prove that
(4) CFX,, 9> — KFX,, &2
whenever X, —% X, in L, (G)., If D= L‘z’ (&) (the

case (a) of Theorem), then (4) gives demicontinuity of F
at x, and the proof is finished. Assuming (b),according
to well-known thearem [4;chapt.VIII,§ 2] amd (3),(4),it fol-
lows that the relation (4) holds for every ¢ € L_%, (G) and
hence the demicontinuity of F at x, will be proved, too.

I. Suppose the condition (1) is fulfilled; we shall
prove (4). Set

R, x () =6fK(/a,t,.x(t))q(/b)aLt (b€ G)
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for x €L (G), 9€D . According to Lemma 2, R, isa
continuous mapping from LT, (G) into L (G) , lees
IR x, - R XUl —0 forx,,x¢€L,(G) "*,;'"‘o'n._f:’ 0.
Furthermore,
- Ry, =&f16/'i<(/a,t,ac,ct))q(¢)dt -

- JK(nt, X, (ENg ()t |ds 2

[

Hﬁgxw

21fL [K (At Xn ENDEPH)-SK(B,L,X,(ENdEp(H)Id] =
6 & <4

=1 Fx, (D)@ (m)ds - [Fx, (A (sds] =
6 [
=1<Fx,, 9>~ <Fx,og>l
and hence
CFXp P>~ <FX, @2

for every ¢ € D whenever X, — X, in L (G).
II. Consider the condition ), 1et X € L n(G), geD.

The integral f_/lM (o, t) | x (t)l l dtds exists
and so

fflM (A, )X (£)] ‘Idtd.fs P2

Ry Do al
‘ gfc/mj;’o.,,f,;do)"'“"dt )Tfﬁx(t)l"di ™ < o
[ ]

far 1 = 1,..., n, by Theorems of Fubini and HElder;simi-

larly
/M xcIdtds & (i ds)- (flxtrI"at ) < a0,
& 6 G

Henoe,
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AG./;flK (K, t, x(t)Np(A)lcdtds £

g ay
€5 {{lM‘{(@,t)lx(t)l ’ldtdo-:;fsfl M o)) Idtds < oo

which implies
(5) | [SK(n,t,x(tNg)dtds | < co .
¢ G

Put
Hy (t,40) safK(/b,t, wyg(s)dn,

N [Mimrds, Nictrs /MIs,trds (i= i, My )
o 6 ° 4 A

Then according to Holder’'s inequality
b 4 F34 n
I Hy (t,u)l & 5 NIty wtl “+ NS Tl
for almost every t € G and every 4 € E, and according
to (2)

NeE,, NNe L, (& (i=1...,m,),
ﬂ-az

simultaneously. Lemma 1 implies that the operator of Nemycki]
R,’, generated by the function Hy, 1is a continuous mapping
from L, (G) dinto L (G) . Hence IR,x ~ R,x, Il — 0

whenever X, - %, lL,,"" 0, %Xn,X, € Ly (G) and so
SR X, Y (t)dt — JS(R x, )ct)dt .
¢ ¢ G 4

In view of (5), using Theorem of Fubini,we obtain

S(Ryx)(t)dt = SO Ko, t, x(tNgir)dn)dt =
(] e o



= J([K b, t,x (N (#) AV = [ [ Ko, t,x ()bt )p(m)dls =
& & s o

= SFx)BYG(AIAL = {Fx, g
L4

far x 6 L, (G). Hence
CFX,, &> — {FX,,9 >
for every ¢ € D whenmever ' X, — X, in L, &)
The formla (4) is proved and the whole proof is concluded.
The assumptions of Theorem 1 can be made more easily ve=
rifiable by a definite choice of the set D . In this way,
we can obtain a series of further theorems. Theoren 2 is one )
of such theorems; it is presented in the local form.
Theorem 2. Let x, be an element of L., (G) ., Suppose
there exist a constant C and a neighbourhood U of the
point x, in L, (G) such that

(6) S1/K (s, tyxctndt 1¥ds « €
G o

for all X € U . Let there exist an integer n , numbers
A, €<0,n) (i=4,...,m) and functions M, € L 6,

M; on G = G (i =4,...,m) such that either

L -3 ,
(SIM; (-, )PP dt) "7 € Lee) (L =Ayeery)
G

or (= Tyeee,m)

&fM,-, (6,-)d6 € La (G)
and that

a.
| KOst &2 My (h ) 14l s+ M codlal™

for almost every A, t € & and every « € E ., Then F
is an operation from U into LZ (G) demicontinuous at
the point x .
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Proof. Let 1G : o« € A § be a measurable disjoint
subdivision of the set G , cg, be the cHaracteristic func-
tion of G, (ax € A) ., Denote by M the linear hull of
the set { ¢ : o« € Af,i.e. M 1is the set of all simple=-
functions on G . If we put M={xeLl, (G): Ix(t)l &« &
for t € G§ ( k is natural number), then M 4s dense in
‘Mg, for every k under the topology of equiconvergence Lcf.

3 ,th.39] and hence, M is dense in every M, even under
the topology which is generated on Mg by topology of the
space Lgf (G) . Hence M is dense in “L:? M, 5 the set

4
h&{ Mg is dense in Lz, (G) and so M is dense in

LL’ (G).
For every o € A ,

| K(a,t, )y ()& K (5,t, )]

for almost every 4, t € G and all 4« € E_. Setting D =
={ g xeAl andm=m, MIaM,, M= M, (i=4,...,m),
4

;=X (v=4,0.,m) for all &€ D , the assertion of our

theorem follows at once from (b) of Theorem 1.

Repark l. Urysohn’s operator F satisfying the condi-
tions of Theorem 2 meps L, (G) into L, (G) and it is
continuous at the point x_, .Hence this Theorem does not
any new resulte whemn q =1,

Remapk 2. The assertion in Remark 1 1is consequence of
the special choice of the set D (the part (b) of Theorem
1). Under another choice of D , any similar assertion has
not to be valid and so we can obtain more general theorem

than Theorem 2; for example, if G = (a, &>, a, & € E ,
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then we can set D =11, »,4%45%... 7 (far 4 € <a, 4> ).
Repark 3. Let H be an open subset of L, (G). Let
there exist a constark C such that the formula (6) holds
for all X € H and let%ther assumptions of Theorem 2 be
fulfilled. Then F 1is a demicontinuous operation from H
into Lg‘ (G). .
Theorem 3. Let X, € LFCG). Assume F maps a neigh=-
bourhood U of the point x, in Lf, (G) onto a set
Me Lpa(G), let Dc L’i’ (G ) . Suppose there exist
a number o, > O and a function Ny 4 on GxG

4
I =
for every g €D, el (G) with 1hl =1

such that

7 GfN?,h(o,t)dt e L(&)

and

(8) ] KC/:»,'!:,.><‘,(t)+'z~h(t))gv(/b)l.éNg,',L (»,t)

for almost every 5, teG and every T € (0, d;,i..’ .

Furthermore, assume one of the following two conditi ons is
fulfilled:
(a) D = Li.’ G) .

(b) The linear hull of D is dense in L,v.' (G) and
M is bounded in Lz (G). Then F is an operation from U
into L.qvfG) hemicontinuous at the point x -

m. Let ? D and S e L‘ﬂ' (G’), “h"l-,‘_= 1 ’be
arbitrary elements. Continuity of the function K (»,t,-)
on G for almost every »,t € G implies
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(9) Kt xX,(E+rht)gr)— Kb t,x, () ls)

for almost every A,t e G whenever 2z —» O . According
to Theorem on continuous dependence of integral by parame-
ter, the formulas (7),(8),(9) imply

(10) [Kia,t,x,(t)rrh(ENgBIds—s [Kist,X (EDg (»)ds
6 (<4

for almost every t € G whenever = — 0. Furthermore,
(7) and (8) give
SRt %, () s eh gt €SN, o (5,8t

for all 4 € (0, 0 4 ) ; using the last inequality and the
relations (7),(9), we have that

SRt X, (Br+rh(t) g (o)de)dt —>

¢ <

— SOSK (5,1, %, (£))gp (B)lA) AT
¢ ¢

3¢ 7w — 0., As in the part II of the proof of Theorem 1, we
can prove now (according to the theorem of Fubini) that
f(ch(A,t,x(t»g’(b)d/b)dtr {Fx,g> (xelL,(G),geD)
&
and hence
(Fx,+vh),g)— <Fx,,o9?>

for *—5 0, weD, ‘Under each of the conditions (a) and
(b) of Theorem, this relation means hemicontinuity of F at
the point x, .

In the same way as we have derived Theorem 2 from
Theorem 1, we can obtain the next theorem from Theorem 3 now.

I_ng_gl;gg_g. Let x, be an element of L_ﬂ_C(r). Suppose
there exist a neighbourhood U of the point x_, in LFCG')
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and a constant C such that

GflfK(A.v,t,.x(t))dﬁzdé £ C

[
for all % € U . Let there exist a number o >0 and a
function Ny on G >~ G for every 1 € L, CG) with
llhll‘_”- 4 such that
. dt LC&)
GJ‘Nh( ,t)dt e

and
IK (s, t, X, (8) + 2 hCt)] € Ny (A, t)

for almost every A,t € G and every €(0,9 ).Then F

is an operation from U into L.ZCG) hemicontinuous at the
point x .

Theorem 5. Let H be an open subset of L, (G), suppo~
se there is a constant C such that

ofoK(b,t,x(t))dtlzdé &« C
for all x € H . Let there be such a number 0, >0 and a
function N, 4 on G> G forevery xe H and
A e L,@6), u,hu,_;zr , that
Q/N_x"» -, t)dt € L (G)
and that
IK(n, T, xCt)+2h(t)) « Nx,,v (A, t)

for almost every A,t € G and every 2 € (O, o, au ) - Then
F is a hemicontinuous operation from H into Lg‘ «G) .

Proof. It is evident the operator F satisfying the con=

ditions of this theorem fulfils the conditions of Theorem 4 far

each point X, € H . Hence F is hemicontinuous at all points

of H.
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3. Operators of Nemyckije We turn our attention to de-
micontinuity and hemicontinuity of operators of Nemyckij now.
In the following all theorems, we shall assume that G 1is a
bounded measurable subset of E, , g is an N-function on
G < E, and that h is the operator of Nemyckij genera=-
ted by this function g . The assumptions concerning p, q
and q' are the same as formerly.

Theorem §. Let X, € L (G) ,let D be a subset of
by (G) the linear hull of which is dense in L. (&) .
Suppose there are an integer n, , numbers afe<c 0, n)

(4 = 1., ), a constant M7 and functions M e L, (G)
X B
#-27

(1= 4,...,40?) for every ¢ €D  such that
e T Mot & M L 1™
lg (t, k)G CEN & 2 MICt)laal + Ml

for almost every t € G and every &« € E1 . If there exist
& constant C and a neighbourhood U of the point =x, in
L4 CG) such that

Jlect, xni*at £ c

whenever X € U , then h 1is an operation from U into
LZCG) demicontinuous at the point x, .
Proofo Let ¢p be an arbitrary elememt of D. Set
kcf (t,w) = g (t,u)eplt) ;
kg, is also N-function on G x E.., and so it is possible to
introduce the operator of Nemyckij generated by the function
kg: - denote it by Ry, .« According to Lemma 1, it follows

from the assumptions of our theorem that Rg is a continuous
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operation from L, (G) into Lz,(G) , lea.
SIRx, I(t)= (Rx,)(t)|dt — 0
& .

whenever N, — %, "L,;‘* 0, X,, X, € Lp (G) , This rela
tion is equivalent to

Shx, rdt — Shx (g Erdt .

. ;

We have proved that < Fx, ¢ > — <Fx, ,& > for eve=
ry g€ D  whenever X, ~ X, I, — 0 ; but the linear
hull of D ies dense in LZ'(G)’ IFxl £ C for x € U
and so F is demicontinuous at the point x, [cf. 4,chapt.
VIII,§ 2]. The proof is complete. ‘

Thegren 7. Let x, be an element of L, (G), Let the-
re exist a constant C and a neighbourhood U of the point
x, in L, (G) such that

(11) G/lg_(t,.xcw)l”dt £ C

for all x € L ., Assume there are an integer n , numbers

A, € <O,n) (=4,..., ), & constant M, and functions

—n

Meln (6) (£ =4,..., m) guch that
n-,;

m a; n
lg (t, )l & 5 M)l + M, lal
v31

for almost every t € G and every « € E,". Then h is an
operation from U into L-%CG') demicontinuous at the
point x, .

Remark 4. The operator h satisfying the conditions
of Theorem 7 is @ continuous mapping from U into L{ cG)
(see Remarks 1,2),
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Remark 5. Suppose the assumptions of Theorem 7 are ful-
filled, let H be an open subset of L, (G) . If there B
a constant C such that the inequality (11) holds for all
X € H , then h 18 a demicontinuous operation from H in-
to the space Lﬁ. (G) .

Theoren 8. Let X, € L,(G), Dc L, (G), let the 1i-
near hull of the set D be dense in the space L., (G). Sup-
pose h maps certain neighbourhood U of the point x, in
Lp(G) onto a set M which is bounded in L. (G). Let the-

re exist a number o’;’f >0 and a function N, . € L @)
for every €D and § e L, (G) with lfﬂ,_”. 1 such
that

(12) 1 G (t, X%, () +2EEN QL) &£ Ny o (¢)

for almost every t € G and every v € (0, d‘;»i ). Then h
is an operation from U into L% G) which is hemiconti-
nuous at the point x .

Proof. Let @ e D, § € L, G, Ilflans 1 . It fol-
lows from continuity of the function g . (t,-) om E that

9 (t, X, (E)+ T (t)) — g (t, X, (t))

for almost every t € G whenever * —» 0 ., From (12) and
according to Theorem on continuous dependence of integral by

perameter, we have that
a_fh(x,-o-'eg)(t).y(t)dt —drofhx, (t).cpCt)dt

for 2= ~» 0. This relation means that

CIlx+2§),pd—> <X, D

whenever % — 0  for all § e L,(G) with I§ll =1
and for every & € D . Since the linear hull of D is dense
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in L.g,CG') and M 1is bounded, the mapping h is hemi=-
continuous at the point x, .

The following two theorems are implied by the preceding
theorem and we present them without the proofs (compare Theo-
rem 4,5).

Theorem 9. Let x, € L CG) , suppose there are such &
congtant C and a neighbourhood U of the point x, in

Ly CG) such that
Gflq,ct,.xcu):’“dt é“c

for all Xx € U . Let there exist a number a'; >0 @nda
function Nf € L(G) forevery § € L, (G) with
g llL = 4/ such that

n

1gCt, % () + G CEN] & N (£)

for almost every t € G and every 2 € (0, d; ). Then h
is an operation from U into L%CG) hemicontinuous at

the point x .

Thegrem 10. Let H be an open set in the space L, (G),
suppose h maps H onto a bounded subset of ch G). Let
there exist a number o’;,f > 0  and a function N, g € L(G)
for every x € H anda § € L, (G) with NEl__ =1
such that

lgct, x(t)+wECEN] £ Nx,g‘ (t)

for almost every t € G and all v € Co,af_\:‘,g ). Then h is
a hemicontinuous operation from the set H into the space
L G,

b4
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