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Commentationes liathematicae Univefs_itatis Carolinae
9,2 (1968)
ON LATTICE POINI'S IN'HIGH;DIMENSIONAL ELLIPSOIDS
( Preliminary communication )

Bohuslav DIVIS, Praha

Let # be an integer, x » § and

L
(1) Q(u):—}.;ac}-u;, Xy >0 (f=1,2,...,%) -

For X > 0 1let Aa (X) be a number of lattice points
in a closed ellipscid @ (4 ) € X ,  the volume of which

V, (x) it
X = Ve, x, ... o, T(E+1)

We shall put

= - (-X) .
R(x)= Ay (x) Vi
The quadratic form Q)
re is such a real number o¢ that alle; (4=1, 2,...,2)

are integer multiples of o jotherwise we say that G («)

ig expressed by

AT

is said to be "rational” if the=

is "irrational".
The following results are well-known:
x4
I. Rx) = 0(x2%"") when () 1is rational (see [6])
and this estimate is definitive; namely the following result
is true:
£ -1
I1. %(x): JL(X ) for (@ rational (see [7]).
On the other hand:

- 199 =



I1I, PG\('X) = o(.xi-") for (@ irrational (for /£ =
26 seelll, for n =5 see [5]).

Furthermore we know that it is:

21
Iv. Pa(x) = A(x * ) (See [8J)o

V. For almost all systems «,, Ky yeeey Xy of positi=-
ve real numbers (in the sense of the Lebesgue measure in the
r-dimensional Suclidean space E, ) even the following is
true: % (X) = O(.x%*e) for every € > 0 (see [2]).
It is unknown if the estimates IV or V can be improved
but we Imow that III cannot be, in general, improved, as it

can be seen from the assertion:

VI. If ¢g(X)>0 for x>0 md g(x)— 0 for
X-~>+00 , then for arbitrary 4 > 5 there exists an ir-
rational form @, of the type (1) such that

R(x) = A cx*”q (x)) (see [91).

Far a deeper and more detailed study of the function %(x)
further specialization /of the form G, turns out advanta=-
geous. Let 0 md x; be integers, O &> 2; x; > 4
G=1,2,.,0) Romlthytoo. + 1, let oy > 0 (G=1, 2,.-,9-

We shall consider the following forms:
2) O« >—§o¢(uf : 2 Yo>00G=1,2,...,6)
2) QU= & o Wty o bt 3 %= 0 G = 1y 25eees

The assertions I - IV, of course, remain true also for the
forms of the type (2); moreover, IV can be essentially

strengthened due to the special choice (2) of the forms @ :




VII. Let & a@d Ay (G =4,2,...,6) be integers,

rR: > 4 (4= 1,2,000,5), 6 > 2, K=y kMt Ky

2
The following estimate holds for the forms of the typ (2):

¥-0
IZ(.X) = Jl(X ) (see [21).
We have now:
VIII. let 6 and %k; be integers, 6 > 2, %; > &
G=1,2,000,0), £ = M+t He Then for almost all
systems of positive numbers o, , X,,-.-, ®¢ (in the
sense of the Lebesgue measure in E.( ) the estimate

P(x) = 0 (.x%—‘”'

8 )

for every € > O  holds for the forms (2). (See [2].)
For any form @ of the type (1) let + = £ (Q) be the in-
fimum of those real numbers & for which

Rx) = 0(x®),
ice.,for every ¢ > 0

Rex)= 0", B x)= A xfE

Then, according to I,III,VII there is

X _ g 2 < It _

7 — 0 £ f(R) 7 1
for the forms (2); ¢, n; Dbeing integers, 6 > 2,
ry =2 U (G=1,2,...,6), n= K +n+c A+ ong -
It is obvious that for @ rational there is #(O.):%—- 1
owing to II and by VIII it follows that for “"almost all" @

there 18 +(Q) = %~ 6 .

Let us denote by 3 = (B (a) the supremum of those
real @ for which the inequality
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A

\%‘“’\‘ﬁ il

is satisfied for infinitely many pairs of integers {14, ;
gnle,> Qn>1, Qu—> + 00 . Notice that (3(x)=
gﬂ.(&) and that alwvays 2 & B(x)% 4 00 ; more~
'over, Tor almost 211 o (in the sense of the Lebesgue
reasure in E, ) we have B (k)= 2 .

Ilowry, the following statement is true:

IX. Let Az be interers, Ay > b (F=1,2), £ =1t
. &
+nz,a%>0 (3=1,2);1et ﬂaﬂ‘?"‘:‘7 3

L XIIR J droord ) .
ch)- d',, (“11 M~ 1’+ “v, (“"I “"_"
Then

R
F@)= T'1' '{ij'_‘]' (see [31)

1
B~

where for (3 = + 0o we put T = 0 . Notice that
ﬂ(%‘] =0 %“é ) . Thus, the assertion IX solves the
@Qestion of finding +(6G) for the forms (2) in the case
6 =2 . For G > 2 the following result is known:

X. et 6, ny be intecers, 6>2, n; > 4 (4=1,2,..-,6),
let K=K +nyboetng, %-64&F & % 4, Then there

exists a form (2) such that (&) = £ (see [4]).

Now, let us denote by B = 3 (a,, ..., %g ) the
supremum of those real numbers ¢ for which the system of
inequalities



‘ ,_T.‘.'Z'.._ o < (3 =1,2,..., 4)

A
e LA
is satisfied for infinitely many (k+l)=tuples {»r»,”,n-

NP ‘L,,,?:.,, of integers, ¢, > 1, @un—* + 0 -
1
Notice that -———; S B (K Xy )4 + co and that

for almost all systems o€y, Fp,.--, 0,  (in the sense

of the Lebesgue measure in Eg ) it is B (a,..., o) =

. Rr1

Ao

Our contribution is the following

Theorem 1. Let € be an integer, & = 2 ,let aca->0
(F=1,2,000, §), let f&=(3(£f" ) %,-.., % ) ;
let 'ﬂé‘a 7}_@; , n;  integers (3 =1,2,..0, &) ;

L= K+ Ry +oeet Hg -

Then for the forms (2) we have

4(Q)§%——4-73—:1_7 .

1 28
Weputm—o,'-ﬂ—_—_—,,—=2 for B = + co -

Assymmetry of the assumptions of Theorem 1 is only sceming

: o a o, . o )
because /sca-:-,—&A’-,...,1{-):(3(351;,-——%,...,%):
- - ﬁ “z orLg.
== AU, Frae, FE
Itis QR 2 —6.-57 so that -B-z-_&r £ 26 . According
to this fact we see that the assumption #n; > 25 is

# £RB-1
automatically satisfied as soon as %; 2 26 ., 1t (3

- 203 -



passes turough the interval ¢ gf—; y+00 >, £(Q) pas-

ses throuch the interval < % -6, ",‘_‘ -1 > -

Thus, the Theorem 1 generalizes the asseriion IX to the
roneral case 6 > 2 for which only the existence state=-
ment X was known up to now. The Theorem 1 solves the question
of finding of #(Q) for sufficiently large Xy for eve-

(ry form (2), Jarnik’s method was used for the proof (see V.
Jarntk [31).

References

{11 v. Jarwfx: Ober Gitterpunkte in mehrdimensionalen Lllip=~
soiden (zweite Abhandlung),ilith.innalen 101
(1929),136-146.

[2] Uber Gitterpunkte in mehrdimensionalen Ellip~
soiden,liath.Annalen 100(1928),699-721.

(31 Uber Gitterpunkte in mehrdimensionalen Ellip=
soiden,The T8hoku lMath,Journal 30(1929),354=371,

(4] Uber Gitterpunie in mehrdimensionalen Ellip-
soidenseine Anwendung des Hausdorffschen ilass-
begriffes,Nath.Zeitschrift 38(1934),217-256.

(5] V. JaRNTK, A. WALFISZ: Uber Gitterpunkte in iehrdiren—
sionalen LEllipsoiden,lath.Zeitschrift 32(1930),
152=~160.

(6] E. LanpAU: Uber Gitterpunkte in mehrdimensionalen Ellip-
soiden,lMath.Zeitschrift 21(1924),126=-132.

(7] . Uber Gitterpunkte in mehrdimensionalen Ellip-
soiden(zweite Abhandlung),MathsZeitschrift 24
(1926),299-310.

- 204 -



{8] E. LANDAU: Uber die Anzahl der Gitterpunkte in gewis~
sen Bereichen(vierte Abhandlung),Gottinger
Nachrichten 1924,137-150.

{91 A. WALFESZ: Uber Gitterpunkte in mehrdimensionalen
Ellipsoiden(dritte Abhandlung),Math.Zeit-
schrift 27¢1927),245-268,

(Received January 22, 1968)

-20 -



		webmaster@dml.cz
	2012-04-27T17:43:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




