Commentationes Mathematicae Universitatis Carolinae

Miroslav Katétov
Products of filters

Commentationes Mathematicae Universitatis Carolinae, Vol. 9 (1968), No. 1, 173--189

Persistent URL: http://dml.cz/dmlcz/105168

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105168
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

9,1 (1968)

PRODUCTS OF FILTERS
Miroslav KATETOV, Praha

Suppose that Z is a topological space, § z la € A3
is a family of points of 2 , ¥ is a filter on A . If =z
is a point of Z and, for any neighborhood U of 2z , the-
re exists a set F ¢ ¥ such that a € F = z e U , then
z 1is called an % -limit of {x § , written x = F-lim x, .

These limits with respect to a filter may be useful,
e.g., if Z 1is the space of mappings of a space X into a
space Y . In this case, they make possible a classification
of (discontinuous) mappings, roughly speaking, according to
how complicated filters have to be used to obtain them from
continuous mappings. The approach of the classical descrip-
tive theory of functions is similar in the sense that dis-
continuous functions are obtained from continuous functions
in a prescribed way; it is substantially different since the
use of iterated limits is quite essential.

It may be shown, however, that iterated limits may bve
replaced, in a specified sense, by a single limit (of course,
with respect to a more complicated filter) . Namely, if %,

CJ, are filters, x, = g-lf/m za,,} for every a , X =
= F-Um %, ,then x = (F. g )~ lim 2, 5 , wnere F:§
is the product of filters # and (G ( see 1.2 below).
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Some results related to these questions are intended
for publication elsewhere. Here they are mentioned only in
order to show the motivation for the study of the product
of filters, which is the main topic of the present note. It
seems, however, that a thorough examination of filters and
operations on them may be interesting and important in it-
self,

It must be stressed that only filters on countable sets
are considered. The sometimes trivial, sometimes difficult
problem of carrying the results over to filters on arbitra-
ry seﬁs is not considered here.

Some definitions, partly well known, and some auxi-~
liary propositions are contained in § 1. In § 2 some easily
proved assertions are given concerning non-commutativity of
the product of filters. § 3 contains some definitions and
simple assertions concerning sequences of positive numbers.
In § 4 we show that in a rather general situation filters do
not commute. Namely, if two filters 5 and (. are "mitual-
ly singular” (see 4.6), then, for any filters A , /3 , the
filters A .% and @B .(@ are mutually singular and there-
fore non-equivalent; in particular, # .4 and G .F are
not eguivalent.

§ 1.

1.1. The terminology and notation of [1] is used. On
the whole, it does not differ from current terms and sym-
bols, and only some points of difference should be mentio-
ned. An (ordered) pair a,b is denoted by ¢ a,b ) . A fa-
mily of elements x, with an indexing set A 1is denoted by
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{X, la € A 3} or simply by {xw} y etc. If M 1is a set,
then the collection of all subsets of M is denoted by .
exp 4 . If{X la € A} is a family of sets, then Z{Xa_l
|2 € A3 (or %Xw , etc.) denotes the sum of { X7, 1.e.
the set of all {( a,x > , a € A , xe X, .

1.2. Convention. In what follows, a filter always
means a free filter or a countable infinite set. Thus,
e.g., the assertion that ? is a filter (or an ultrafil-
ter, etc.) on a set M , always implics that M 1is a coun-
table infinite set.

1.3. Definition. Let ?_; be a filter on M"-' s 1 =
= 1,2 . If there exists a bijective ¢p: M1 — M2 such
that Fe 4 > ¢ [Fled , wecall ¥ end %
equivalent, and write £ ~ 5‘2' .

Let T be a fixed relation assigning to every filter
F an element TF in such a way that v % = ¢% if
and only if ’f’; ~ .’1‘: . We shall call =% the type of
F and denote it by typ ¥ .

1.4. Definition, Let #; be a filter on M; , i =
= 1,2 . A trirle <%, %, » 7 , @ being a mapping
of M, into M, , will be called a morphism from .?1' to
ﬁ‘; if gf"CFJ e & for every F € %, ; we often shall
also call ¢ 1itself a morphism.

It is clear that filters as objects with morphisms
just descrived form a category.

1.5. Definition., Let %  be a filter on M; , i =
= 1,2 ., An injective morphism ¢¢ from 3,' to ?'2" is
called an embedding if every E, € ?7' is of the form

9_1[F2] , K e @;‘ . If such a morphism exists, we shall
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say that 7 can be embedded in % .
Clearly, if # 1is an ultrafilter, then every filter
embedded in £ is equivalent to £ .

If T, » ’Uz are types of filters, we shall say that

’t:1 can be embedded in ’t‘z if there are filters 3; N 9;
with T; =tyn #; such that %  can be embedded in 7 .

1.6. Definition., If %

. 1is a filter on Mi , 1=1,2,

and there exists a morphism from .?1' to .?; , Wwe shall
write % < % . It is easy to see that the relation
<4  is transitive and reflexive; if 7. ~~ 5;' , 1 =1,

;
2,ma % 2 F ,them £'2 4 .12 5 3L,
'tistyﬂ.ﬁ: ,we put T, < T, -

1.7. Most concepts defined for filters are immediate-
ly carried over to types of filters, as described e.g. in
1.5 and 1.6. Therefore, we shall use types of filters when-
ever necessary (as a matter of fact, only at few points )
without further explanation.

1.8. Definition., Let # be a filter on A . For any
a€ A, let (G, be a filter on B, . Then the collection
of all a.%FG“’ , where F e F, G € G, , is a base of
a filter which will be denoted by %{Q@ lae A? orbvy

; G, , and called the sum of the family {G 3} with res-
pect to F .

Remarks. - 1) I# ¥ and %’ are equivalent filters
on A, % G, and % G, 8re not necessarily equiva-
lent. Therefore, we may define the sum of a family of types
of filters with respect to a given filter, whereas the sum
of filters (or types) with reapect to a type of a filter is

meaningless except for special cases. - 2) For the case of
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ultrafilters, the sum of filters with respect to a filter
has been investigated by Z. Frolik; see, e.g.,[2]. For the
general case (arbitrary filters on arbitrary sets) the sum
of filters with respect to a filter has been considered by
P. Vop¥nka [5].

1.9. Definition, Let ¥ be a filteron A, ¢ a fil-

teron B. If G = G for every a€ A, then ;Q,w is
denoted by F - G and called the product of ¥ and G

’
Remark. This product is different, of course, from the

cartesian product 3{; > 5‘; of # and % , the base of

which consists of all B > F , where F; e 5 . Clear-
ly, #;, x %, 2 5;.?’2 ; I do not know whether 7 - 7,

cun be equivalent to 3;',' > 3’; for some choice of %  and
?2 .

1,10, Let ¥ be a filter on A . For every 8 € A,
let G, be a filter on B, . For every be B, let ’63,,&-
be a filter on C, , . Put G = X G, . Then it is easy to
see that

Fi%, <@ le SRIVSIZ (G, 14 Bilac Al

Consequently, we have A - (B« € ) (A-B).€ for any
filters A, B, € .

1.11, Let ¥ , G be filters. If there exist filters
G, »8ae€ UF , such that gwng,wewrite g =
2 7,

Clearly, < is transitive and 3; < 3; implies
9: < 3'2' . However, the relation = i8 not reflexive-
(since, by 2.6 below, if % ie an ultrafilter, then F# < F
does not hold; cf.,e.g., Z. Prolik [3]) . I do not know

whether F < G implies (F X G or F~ G )
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whenever ¥ , G are ultrafilters.

It is to be noted that if 7 1is a type of filter,
there exist at most expw, types 6 with = ¥ 6 ; cf,
Z. Prolik [2] .

1.12. For any filters, % < %, @ < G; implies
9;‘91 <% - Q,z . For any filters % , G we have
FoGRF, F-6<G -

I do not know whether % % %, G, % G, implies
#-6, 8% G, , norvhether £-G ¥ G  for arbitmary
filters £ and G .

1.13. Let F be an ultrafilter on A . Let & ,
€ A , be ultrafilters. Then %. G is an ultrafilter.

a €

- In particular: the product of two ultrafilters is an ul-
trafilter.

This is known; see P. Vop&nka [5], Z. Frolik [2] .

1.14. The follcwing proposition is sometimes useful:
if f is a mapping of a set X into a set Y , then the-
re exist disjoint sets X , X, , X, , X; such that (1)
Xoux1u I,v X3= X, (2) xeXx,=> fx=x, (3) £IX;In
NX, = g for i=1,2,3,.

Remark. This proposition is contained in the author’s
note A theorem on mappings, Comment.Math.Univ.Carolinae 8
(1967), 431-434. As I have learned, it was found earlier by
H. Kenyon and published in the form of a research problem
{ Amer.Math.Monthly 70 (1963),p.216; the solution appeared
in vol.71 (1964),p.2191.

1.15. Proposition. Let ¥, be an ultrafilter, %

Pl

a filter. Let \’7'1' < %’ < ’{" . Then ¥ can be embedded

in 4, ; if %  is an ultrafilter, then £ ~ % .
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Proof. Let f: M, — M, be a morphism from % to
% , end let g: M, — N, Dbes morphism from % to
9’;’ « Put h = g e £ , Choose sets xo, x", Xz, Xs pos=-
sessing, with respect to h , properties from 1,14. If 1=
= 1,2,3 , then ~lX;JAnX,=f and therefore, h being a
morphism, X;mon € #; . Since £, is an ultrafilter, we
get X, € 9;' ; and we have x = hx whenever x<& X, . Choo-

sc aset X, € F X, c X, , such that X, - X, is infi-

nite and choose a bijective Yy : M, - X  —fL[X - X, 1. Por
xe X, put gx =fx; if xe M -X, ,put @x= Y x.
It is easy to show that ¢ : M, — M, is an embedding of 7
into % .

1.16. Convention. We denote by N the Fréchet filter
on N, i.e. the filter consisting of all X c N such that
N « X is finite.

§ 2.

2.1, Definition, We shall say that a filter ¥ on A
has property (o) if the following holds: if infinite sets
Anc A, ne N, are disjoint, then there exists a set P ¢
e ¥ such that all A, - F are infinite.

It is easy to show that a filter & possesses proper-
ty (oc) if and only if neither N nor any filt er of the
form G . N can be embedded in F .

2.2. Bvidently, every ultrafilter possesses property
(g) .

2.3, Let © denote the class of all families {t |m €

€ M} such that (1) M is a countable infinite set, (2)

t,, are positive numbers, (3) for any € > O , there are
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only finitely many m with t > €, (4) > 4{t,, |m € M}=
= 00 . For any t={’tm|rméM}69 wedenoteby.@
the colle ction of all Xc M such that Z{tmjfm.s M-X13<0o.

It is easy to show that ft-’ is a filter possessing pro-

perty (o) .
2.4. Theorem, Let # ©be a filter on A . Let fil-

ters G, , a€ A, possess property (o) . Then the fil-
ter ;wa also possesses property (ec) .

Proof. We may suppose that A = N and every G, is
a filter on N . Then G = ; %, is a filteron Nx N .
Let Amc N< N, me N, be disjoint infinite sets. Put
B,=(n)x N, For any me N, let L(n) be the set of
all me N such that A ~n B,, is infinite.

Let neN .If L(n)=g, put H, = N . If L(n)%
4+ § , choose a set H, € G, such that the set A, N B~
- (n)>x H_ 1is infinite for every meL(n) . Denote by H
the set 2 {H Im eNj.Clearly, He @ and A_ - H
is infinite whenever m € UL (m) . '

Now put K= N-UL(n).Then, for any me K, ne¥N ,
the set A N B is finite. For any née N put [, = U{A,N
nB,lmeK mgm}, S=U{B-P ImeNjClearly, Se G and
4, =S 1is infinite whenever me€ K .

Put G=HAN S . It is evident that G € G  and eve-
ry A,, -G 1is infinite.

2.5. Corollaries. - 1) If a filter ¥ possesses pro-
perty () , then . ¥ and N'. F are not equivalent.
-~ 2) If a filter ¥ commutes with A , then £ is of
the form G « N .

Remark. I do not know what conditions on a filter ¥
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vaV"V

are necessary and sufficient for the equivalence

~ N F .
2.6. Theorem., Let # be an ultrafilter on a set A .

Let G, , a€ A, be filters. Then % < % G. does not
hold (hence, neither ¥~ 4;_' G, nor¥F % % G. holds),

Remark. For the assertion in parentheses see Z. Frolik

[BJ.

Proof. Suppose that £ < ; G - Put B,=UG,, B=
=U{B,la € A}, G= ;.:9‘:» 5 then @ is a filteron B .
Let ¢o: A—» B be a morphism from § to G . Denote by
Jr the mapping which assigns a to {Q,&>€AxB and put
Y = e . Then ¢ 1s a morphism from F to F . From
1.14 it follows that there exists a set M € ¥ such that
WX = x whenever x € M . Clearly, ¢p[M] intersects e~
very (@)= B, at one point at most. Therefore we have B -
- ¢ [Mle g, hence A—gp"[g’[MJ] € § , which is a con-

tradiction since M € F .
2.7. et F , G be filters. If §< F- g , then

# 1is not an ultrafilter. If G < -G , then g is
not an ultrafilter.

Proof. We are going to prove the second assertion; the
first follows from 2.6.

Suppose that # is a filter on A , ¢ 1is an ultra-
filter and that ¢¢: B— A < B is such that X ¢ ¥. g =
=7(;'1CXJ € G . Denote by p the projection of Ax B
ontc B . Then ¥ = f2 o 1s a morphism from § to & .
By 1.14, there exists a set M€ G such that x e M =
= YX = X .

For every a € A denote by B, the set of all points
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y € M such that (Q,4>= gy . It is easy to see that B N
N Ba.’ = § if as4 a ., Therefore B mon € G for eve-
ry a€ A with one excepticn at most., It follows that
(A=< B)- 3 B, belongs to £+ G . On the other
a€EA

hand, a%}\ B, = ¢ [M] . We obtain a contradiction.

2.8, Theorem, Let & , § be ultrafilters. If . g ~
~ G+ F, then either F~ G or F¥ G or G X F.

This proposition follows from Theorem z of 2. Frolik
[4]. I give a different proof not using topological concept's.
We may suppose that F and Q.. are ultrafilters on N . Sup-
pose £- G ~ G - & . For convenience, let X be a fil-
ter on K and let f: N<x N-»> K , gt N>< N — K be bijec-
tive mappings such that X € § . g &= flXJe x,
YeG.Fe gLYIe X

Let C, be defined for {x,% > € N < N

o’ Ay Bxy
as follows: C.ws-f'[(x )< NJngliy)=N1], C_,"fg.[(y)x Agyl=$L(x)x Q‘"].
For any McN>x< N put C(M):U{Cx',,”(x,fy,)e M3 . Consider
the following conditions: (0) Axmrnme F, B_,(,,y_ mone @G ,
WA, ef BoeG, (2)A mned Bey€ G, (3)
A"‘ﬂl- e 7, Bx’yﬂwn € G .Denote by .ﬂi , i =0,1,2,3 , the
set of all points (x,% > € N> N such that the condition
(i) is satisfied. By 1.13, X 1is an ultrafilter; hence exact-
ly one of the sets C(A;) belongs to X .

Now we show that C(A,)mon € K . Let A/, consist
of {x,ny>€ A, such that x < y and put X =A - A/ .
It is easy to show that 9.'4[C(.7u;)]m.0’n €eGg-7%F,
£770C (A )Imon € F- G . This implies C (A ) mome X .

We are going to consider the case C(A,) € X . The

case C(2A,) e X 1is quite similar. If (¢ 20 e K we
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obtain the equivalence ¥ ~ G ; the proof may be omit-
ted.

Write ¢ instead of A, . Thus ¢ consists of all
<{ %,y such that A_,"yrmmc—: %, Byy © g . Clearly, &
is a single-valued relation. Denote by Q the set of all
Yy € N such that U{Ax# lpx=mny } e F; put P= g"EaJ .
It is easy to show that Q@ € G , Pe F .

I yeQ, define a filter f on g 'yl in the

following way: X c 9'1[@_] belongs to ﬂ,;_ if and only if
U{Ax&lxe X3e F, Let F’ consist of all PA F ,
F e F; let G’ consist of all QN G, G € G . For any
xeP put yx=<{gx,XV ., It is easy to prove that 7 :
: P— %cy"[ry,] is bijective and X € K’MV[XJG%Q; .
From this, ¥ X G follows at once.

§ 3.

3.1.Definition. Let 4w € 8, v € O (see 2.3) ; let
m={iy lkeKs: vre{y, ImeMj 1f, for any set H and any
bijective mappings :H— K, ¥ : H— M | we have
Z{mm(%h,%h) I/ eH}< 0o , then we shall say that u
and v are mutually singular (or that u is singul r with
respect to v , v is singular with respect to u) .

3.2. Definition. We denote by O* the set of all se-
quences t = {t Im eN}e @ such that t, = theq *B=
=0,1,2,000 . If w={1y € K3e@,v={u, ImeMiec O
and there exists a bijective @ : K — M  such that Y=
= u, for any k € X , we shall say that u and v are
equivalent. It is easy to see that for any . € © there

exists exactly one secuence t ={t ImeN3}e€ ©* which
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1s equivalent to u . It Will be denoted by «*= {u*Ime NJ-
3.3. Let u:{umlfm.eMZee.Let fL={n,lme N¥,
fvm€ N, 2 1 . We denote by p# u the sequence
obtained from w* = {u{ by repeating the n-th member Prn
times (i.e., px u={z§, 3z = q": 1oném< Z n; ).
3.4, Let u={iy lk e K}, v={y, ImeM} bvelong to
© . Let q N—K,y: N—>M bve bijective map-
pings. Then Z M(M‘p,%__ ) & i’ mum (AL 1):.»*) for any
ne€eN.
The proof of this almost evident proposition may be
omitted.

3.5. Proposition. Let a, >0, 2, >0, a, >£r>a for

i+1
every 1€ N; let lima = 0. Let s € N, Q; €N, ;>
>0; z‘n&a‘i’oo’zQi%= wtz'ﬂf;“b«;<w) ZQia’»t'«-‘l < oo -
Put @ ={a,}, Lrafl; }, =i}, q=1q}, =nixa,t=gx & .
Then 8 and t are mutually singular.

Proof. By 3.4 it is sufficient to prove that
Z{m(bﬂ,tﬂ)\méNZ<m.Let K be the set of n Such
that awé t, » and put La=N - K . For ie N let K;
consist of all n € K such that g = a, , and let I,
be the set of all ne€ L such that %t = b; . Clearly, K
has p; elements at most, L, has ‘q1._ elements at most.

1f nek; , then t & A = @, , hence t, € £ .
Therefore, 2.{t, Ime K. 3 £ n, &; and S {mim (B, ,t )1

ImeK(e En, &, < o . Similarly, if ne€ L,
then 5, < t = &;  hence A, < @, . .Therefore,
Z{t Imel j<q;a ieq 804 S {mim (s, , t, ) Mmel}s

¢ S{t,lmelL}<S09;a,,, < c© .
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3.6. Example. Let 7 € N 22, Z,,,;: < oo . Put

2k 2e41 - P
Pl =T, =1 , 4 = g . Clearly,

a={a 3, U={ 3,1 ={1%3,2=124} satisfy the conditions
described in 3.5 and therefore s = pxa and t = q* b

are mutually singular. In addition, if mn =={rn3~;, my, € N,
m, 2 1 and Em“f(;:<ao, then mx s and mx t

are mutually singular.

3.7. Repark. If u = {unlne Nje 6%, lim inf nu >0,
then no v € © 1is singular with respect to u .

Clearly, it is sufficient to consider the case u =
=fud, u, =1,u = n! for n= 1,2,... « Suppose
that v = {v IneNje 6¥, = min (w,,v,)< 00 .Put zg=
= 3 {min (u ,v,) 2% "2 n< 2"} ; then = {min (u_,
v,)IneN} = = g, . Put w, = v, . Denote by K the set
of all k such that wg2 2°® ., Then for keK we have
z*‘% k-1, 2'“ = —}_— ; therefore, K is finite. For k €
€N =K we have gz = 2*" , w, 3 hence > 2%, 3, <
<. Clearly, for any keN - X , Z{vwlz"’é n<2®e
cak w, « It follows that.’e%-~K =4 vnIZ"'é_-s n<2*%<

<o), hence X {v, IneNj< co , which is a contradic-

tion.

3.8. Let mw={w 3e* v={y,}e 0% be mu-

tually singular. Then there exists a sequence 2= {42, 3

such that 11 € N, 0 < £ 1 £, € ..., 1,~>00,and the se-

quences p X a and p > b are mutually singqlar.

Proof. We have 3 mim (u,,V;)< co . Clearly,

there exist positive integers p, such that f,&€n & ...

and Z fn, min(w, 1,) < 0o -
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§ 4.

4.1, Definition, Let ¥ 1be a filter on M . Let t =
={% 14 € K7 belong to & . If, for some bijective ¢/:
: M—> K, XC M belongs to ¥ whenever Z{twlm eM-
- X}< 00, we shall say that F 1is strongly dominated by
t .

Clearly, if & 1is strongly dominated by ¢t € 6, Q,N
~ % and 4 € © is equivalent to t , then G 1is strong-
ly dominated by s ; if & is strongly dominated by s =
={A,,ImeMie & end t={1%,IlmeMje 6 , then it is
strongly dominated by {mu'n'z(/bm,%)lm € Mj.It is easy to
see that if § is strongly dominated by t={t, ImeMieh,
then it is strongly dominated by any {t, Ime M- Aj, A
finite.

4.2. Definition. Denote by ¥ the set of all sequen-
ces f ={,ﬂm; such that (1) for any n e N, p,€ ¥, p2
2 l,p &0, - (2) p,—> 00 -

Let ¥ be a filter on M . Let t={t Ik e K} belong
to © . If, for any N € ¥, ¥ is strongly dominated by pxt |,
we shall say that % is dominated by ¢t .

The statements in 4.1 remain true if "strongly dominated"
is replaced by "dominated".

4.3, Theorem. Let F be a filter on A . For any ae€
€ A, let Q‘a, be a filter. Let t={‘§hlk € K3 velong
to © . If every @, is dominated by t , then ; Ga
is dominated by t .

Proof. I. Suppose that every (4, is strongly domi-
nated by t . Let fr={fy 3 € ¥ . We may suppose that
A= N eand every , 1is a filteron N . Put c = 0;
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for k = 1,2,... let cg be equal to the least n such

that R, > X . Por {mynd>e N> N put q(m,n)rq";o-M.It
is easy to see that, for any k € N , the set cf’flcl con-
tains P elements. For any <m m > e Nx N put

Mmm - t‘!(m’n’ 5 putu-{&gv__ fmeN,me Nj . It
can be easily shown that wu* = 1 x Tt .

We are going to prove that ; Q@ is strongly do-
minated by u . Let KcC N> N be such that T {4, . |
J<m,m > € K}< oo ., For every m € N, the sequence
{um,nlm € N};.-{tc':”lm € N} strongly domimtes &G, ,
and therefore the filter qu contains the set of all n
such that {m m >mon € K . This proves that N> N - X
belongs to 5’; Q«m . We have shown that u strongly do-
minates . G .

I1. If every G‘a« is dominated by t , consider an
arbitrary 2 € ¥ , It is easy to see that there exist gqe
e¥ ,ne ¥ such that 4, & 1, wherefu, j=f % T,
{fv;n J=m ok (%* t )., Then every g‘n« is strongly dominated
by qx t , hence, by the first part of the proof, Z’.g@
is strongly dominated by 4% % (g » t ) , hence by px t .

4.4. Proposition., For any ultrafilter %  there are
exp expn, types of ultrafilters of the form A . F .

Proof, For any x € (3N - N let F(x) denote
the ultrafilter of all UAN , U a neighborhood of x in
/5 N . Clearly, there exists a discrete countable infinite
set S c BN-N  such that F(x)~ F for every x€
€ S . It is easy to see that for any y e S-58 s We have
?(fl})ﬂr;-(?rx)l.x €5} where A 1s the filter consis-
ting of all VA S, V being a neighborhood of x . Since
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Flx) ~ & , we have F(ag)~ A «- F for every g€
€ 5 - S . It is well known that § contains exp exps,
points.

4.5. Proposition, For any 4 € © , the set of all
types of ultrafilters strongly dominated by u is of car-
dinality exp exp «, .

Proof. Clearly there exist »» € © and N1 € ¥ such
that, for any ne€ N , u, g W, where{'u,l;lg=4z*1/:Evi-
dently, every filter dominated by v 1is strongly domina-
ted by u . By 4.3 and 4.4, there are exp exp Na types of
ultrafilters dominated by v .

4.6, Definition. If & , q; are filters and there e-
xist mutually singular « € 8, 2 € © such that u do-
minates % , v dominates G , we shall say that # and

@ are mutually singular.

4.7. Theorem. If ¥ and C,’_ are mutually singular fil-
ters, then, for any filters A , J3 , the filters A -
and J3 . q; are mutually singular (hence non-equivalent).
In particular, -G and G- F  are not equivalent.

This follows at once from 4.4,

Remark. By 3.5 and 3.6, there do exist mutusally s.
gular sequences from 6 , hence also, by 4.5, mutually s

gular filters (even ultrafilters).
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