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Commentationes Mathemoticae Universitatis Carolinae

9,1 (1968)

A PARTIAL GENERALIZATION OF A THECREM OF HURSCH
C.des MOZZOCHI,Hartford

This paper is based on part V of the athor’s thesis,

mmetric generalized unif and ¢ ) 8 eg, submittead
in partiai fulfillment of the requirements for the degree of h
Doctor of Philosophy in the graduate school of Arts and Scien=-
ces of the University of Connecticut. The author wishes to
acknowledge his indebtedness to Professor E.S./Wolk,under who=
se direction the thesis was written.
Let P be a symmetric generalized proximity space (c.f.
[1]) with proximity class TT (R) .
Theorem }. There exists a symmetric generalized unifom
space (cf.(2)), U (PR), , such that P (U (7-’)1 )= P,
Proof.(for notation c.f.[2]) Let X be a set with power
set P(X). For every A, B in P(X) 1let Uyp emal (X »< X) =
= ((AxBluB xA)). Let U={Uypl (A,B)¢ P} . Clear-
ly, UV satisfies: M, . Suppose A # B . Then uA’b [AlAB=0O.
Conversely, suppose there exists C, D such that
cP®PD and uc,n [AJAB =¢ . Then it is easly shown that
(AsC and Bs D) or (AcD and B C ) . Hence
AP B . So that (by theorem 1 in i(2])we have that 7/ satis-
fies M,, My, and M, . Let U ( P) eual {U IU=U"' and
W2V forsome V in ¥i. UCP); (by theorem 5 in
[2]1) is a symmetric generalized uniform space on X . It is
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easy to show that P (1 (P)) = P,

Theorem 2. U (P), is the least element of TT (P).

Broof. Let Uy, be in U (P), . Then A% B, But
it is easily shown that there exists V in 4 such that
(A BYANAVY =« ¢ . But since V =V"! we have that
(B<xAYNAV = ¢ ., Hence U.A.s 2 V.

Theorem 3. If % is the usual proximity for the reals
X, then YU C(P), 1is properly contained in % CP)*  the
Alfsen~Fenstad uniformity in TF¢(®) (c.f. [31).

Progf. We know by the previous theorem that % (P), &
S U(CPI* .Let Ac[1,2]; B=02,3);A,=[3,41; B,= [4,5].
Clearly, A P A, and B > B, . Suppose there exists P, Q
such that P # Q and Up q S Upp, n Uy p then
Px QG 2(Ax AU (BxB)-E, and@=xP2 A, xAlu (8, xB)= E,.
But (3,5) € (B x B/) imlies (3,6) € E, 1implies (3,5)€
€ Px Q@ ; imlies 3 € P; and (3,1)6 (A, x A)
implies (3,1) € E, implies (3,5)€ Q = P implies
3¢ @.Hence PN @ % ¢ implies PP @ which is &
contradiction. Hence there does not exist P, Q such that
PPQ and Upg & Uya M Uy

Theorem 4. (Hursch). Let (X,%) and (Y, %) be uni-
form spaces, and let ?2¥ be totally bounded., If $#: (X, P (%))
into (¥, # (2¥')) is p-continuous, then it is uniformly
continuous from (X,% ) into (Y, V). (c.f.[4]p.202).

We obtain a partial generalization of the Hursch theorem
with the foliowing .

Theorem 5. Let (X, %) and (Y, V) be aymmetric ge-
neralized uniform spaces, and let % be eqal to U(P),
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for some symm tric generalized proximity space P .If f:

(X, P(U)) imto (Y, P (?V)) is p-continuous, then

it is uniformly continuocus from (X, %) into (V¥Y,?%) .
Lemma: £: (X, U(P) ) inmto (Y, V(P) ) isu-

niformly continuous.

Eroof of Lemma: Suppose V € V' (®), . There exists

G, D such that C P (2”)D and V 2 U,, . Butsin-
e —— )

ce f 4s p-continuous, ¢+ 7(C) P(UIF 1 (D) . Let U=

u#"(C), 1 (D) . It is easily shown that (x,y)e

€ U implies (#(x),f(n))e V. The proof of theorem 5

is an immediate consequence of the lemma and theorem 2.

W (P), is easily shown to be totally bounded; hence,
by theorem 2 and theorem 3 we have that a complete generali-
zation of the Hursch theorem for symmetric generalized uniform
spaces is not possible.
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