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Commentationes Mathematicae U n i v e r s i t a t i s Carolina* 

9 ,1 (1968) 

ON ISOMORPHISM OF QUASI-ISOMORPHIC TORSION FREE ABELIAN GROUPS 

Ladis lav BICAN, Praha 

In t h i s paper we s h a l l give a f u l l d e s c r i p t i o n of a l l com­

p l e t e l y decomposable t o r s i o n f r e e Abelian groups wi th the p r o ­

p e r t y t h a t any two such groups are quasi- isomorphic i f and on­

l y i f they are isomorphic. By the word "group" we s h a l l alwagrs 

mean an a d d i t i v e l y w r i t t e n t o r s i o n f ree Abelian group. 

Def in i t ion 1 . Two groups G and H are sa id t o be quasi-

isomorphic i f the re e x i s t two p o s i t i v e i n t e g e r s m, n and sub­

groups S, T of G and H r e s p e c t i v e l y such t h a t 

(1) mu G s S £ G-} mH s T Q H and S at T . 

We wri te G Of H . 

Def in i t ion 2 . We say t h a t a group 1 i s an IQ.-group i f 

i t i s isomorphic t o every group H such tha t G » H * 

Def in i t ion 2 . We say t h a t the group G has the IQp-pro-

pe r ty if G & H f o r a l l subgroups R of G with ft G £ 

S H s G . 

Lemma 1. A group G i s an IQ-group i f and only i f G 

has the IQp-property for every prime p • 

Proof. Only the su f f i c i ency must be proved. I t i s easy 

t o see tha t Q & H i f and only i f t he re e x i s t a p o s i t i ­

ve i n t ege r k and a subgroup P of G such t h a t At <r & 



S U s G and H ^ 1/ . I f ^ ~ f** • <f\ • •• • • fv^ , then 

a simple induct ion by m shows t h a t G i s an IQ-group if 

and only i f , fo r every prime p and every subgroup H of 

G with <fi** G s H for su i t ab le p o s i t i v e i n t e g e r n , 

t h e r e i s G sr H . To prove the su f f i c iency of the condi­

t i o n of Lemma 1 we apply the induct ion by n . (The d e t a i l s 

of the proofs are l e f t t o the r eade r . ) 

Def in i t ion 4 . A. group G i s ca l l ed completely decom­

posable if i t i s a d i r e c t sum of rank one groups: G -=• 

= -v \ • 
Notat ion. The p-height of an element g of the group 

G i s denoted by Jhr (%>>). I f f i s a he igh t , then tr 

w i l l be the type t o which the height f be longs . By T(G) 

we denote the s e t of the types of a l l d i r e c t summands DL of 

a completely decomposable group G-* JS. & DL . f C9.) w i l l 

denote the type of the element g in the group G (more p r e ­

c i s e l y T C 9 - ) ) • t (G) denotes the type se t of 

the group G - i . e . , the s e t of the "& (9. > for a l l ge G , 

and f inal ly G ^ ) « - f ^ « ^ J "£ C9.) a. 4* j . 

I t i s wel l known t h a t , for every type nc G (% ) i s a 

pure subgroup of G • 

In the following we s h a l l use : 

K 0 v a* c s theorem (see [ 2 J , theorem B) : I f G i s a com-

p l e t e l y decomposable group such tha t T(Gr) i s i nve r se ly 

wel l ordered ( in the na tu ra l order of the t y p e s ) , then G 

i s an IQ-group. 

Remark. Let M be an a r b i t r a r y se t of the typesu By 

G*(M) we denote the subgroup of the group G generated by 

a l l the elements of G , i h e types of which are g r e a t e r or 
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•qua! than a l l the elements from M . I t i s easy to see that , 

in a completely decomposable group G*J§idL 3C ; G*(M) is 

just the d irect sum of those Jt , the types of which are 

greater or equal than a l l the elements of the* se t M • 

l-ftffliffly 2- Let p be a prime number and G a comp letely 

decomposable group with the IQp-property. Then, for an a r b i t ­

rary type se t M , the factor-group G- a 7G*CM> has 

a l so the IQp-property. 

Proof. Let H ft G and jv 5 £ H . By the isomorph­

ism theorem, there e x i s t s a subgroup H of G such that 

G*CM> S H s G and H/Q+(M)£Z H . Further , G/H = 

-= G/G*M)/U/ g % > 8 0 t h a t f ^ S fi H . By hypothesis 

there e x i s t s an isomorphism ^ of G onto H . I t i s easy 

to see that G*CM) « H * C M ) (because G*(M) s H 

implies <S*CM) s H * ( M ) ) . Moreover, the type of an e l e ­

ment is an isomorphism invariant , hence (G*(tA))<f * G*(M) > 

and t h i s fact completes the proof of the Lemma. 

Lemjfrfr ^a Let G be an arb i trary group, H i t s subgroup 

such that ^ v O £ H . Then H i s a q-pure in G for a l l p r i ­

mes q £ p • 

Proof ft Let the equation £ X ~ M,f 4t> e H be so lvab­

le in G . From the re la t ion ( f t , g,*' ) » 1 i t fo l lows 

that there ex i s t integers r , s such t h a t ^ / ^ - f g, /b -=- 7 , 

and then X * H, (JVX) + /> (<£** ) € H . 

Theorem 1. Let G be a completely decomposable IQ-

group. Then every i n f i n i t e increasing sequence i 1^ J of the 

elements from T C ( j ) has the fol lowing property: For eve -
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ry prime p , the inequality "Zr̂  Cji) sfs oo holds for a 

f in i te number of n's only. 

Proof\ Suppose conversely that there exists an infinite 

increasing aequende {*&„, } of the elements fro* T(&) 

and a prime p such that %^Cfv ) 4* OO fo? a l l integers 

n • 

By Lemma 1, the group G is isomorphic to each i t s sub­

group H with ft, & fi H , The same property has the group 

6 m /Q*(M) *he*e M «* i ^ J (see Lemma 2). It i s ea­

sy to see that the group Tl i s isomorphic to a completely de­

composable direct summand Qi of G such that: 

(2) X„* TCQH) n% - 1, 1,... ; 

(3) No element % with ^ > *£..*. .,-?<* all integers n , is 

in TCG . ,) * 

Let G » -lE^ D̂  be a completely decomposable group, 

the type set TCGr) of which has the properties (2) and (3) . 

Theorem 1 will be proved by constructing a subgroup H of G 

with *ft G ft H .£ <r, H being not isomorphic to G • For th i s , 

we denote by D^ that rank one direct summand of the given 

direct decomposition of G for which 1? Oj ) & ^ and 

put 

(4) V = J ^ J4; V- Xld 3. 
L + 4 

so that e ~ U 4- V . 

In each 3; , we choose an element AJL± with JV^C-u^)-

s 0 . Now, define the subgroup H of G by the formula 
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C5) H « { V>f*U> ut- AC^ f i . f ,2,.„ } . 

Clearly, <fi & Sr H . First of a l l , we shall prove 

(6) ^ 4 H • 

Suppose conversely that -U^ c H . Then 

(7) ^ » or -f. ^ ^ + ^ X *^J C ^ i - ^ 4 . 4 > * 

Because AA, C (J 9 there exist integers m ,. a*i ; 

i * 1, l,'*<j<n • such that /wx-tt> * ,X O- ^ , in view 

of A ^ (AA^ } •» 0 we may suppose (inf <p„) m 1 , From 

(7), i t immediately follows 

(8) /m,u4« m,<r + {ufLa>t*JUi + .SL ^n£r4 C^^u^^i 

with (rm>, -f* ) -» 4 . 

In view of the independence of the elements v and u. $ 

i r f. 2,»";'H, j the eojuality (8) holds if and only i f 

(9) 

***-"MŁч-• ö 

From the last equation i t follows that ji \&*.-<§ t than 

^ ' ^ - i from the preceding one, etc. Thus we obtain that 

>fvl^ * i* * i} l7...f /ft — 4 j and the second equation now 

yields -ft- Iitv - which contradicts our hypothesis (8)# 

This contradiction proves (6)« 
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Clearly Jv Cx) -fe Jvl 0<) for a l l x e B • Fur­

ther, if Jk^Coc)** OO then necessarily x € V , hence 
u 

A%^ Cot) ss oo . From this and from Lemma 3 we conclude that 

the type of each element from H is the same in H as in G . 

Suppose that the group H is completely decomposable: 
(10) H - . S * 1^ . 

Because f^AA^i e H , the element pu^ has a non-zero compo­

nent in f ini te ly many of A^'s • H. be the direct sum of 

those direct summanda 1^ of the group H , in which pu^ 

has a non-zero component, and Ĥ  be the direct sum of al l 

the other direct summands 1^ of the group H , so that 

H * H, 4 H2 is true. 

From (3) and from the finitenesa of ^ CH^ ) i t follows 

that there exists tr • so that 

(11) ^ £ x for a l l % e 4- CH, ) . 

From this fact it follows that pu • has a zero component 

in every direct summand of H,. ,hence <(*><*-£ & Hz , 

Further,M^-Ai^m C^-AA^)* (U^-AA^)*...* (">^-<UJ ) € H , 

hence we may write u^ - <Uj - ^ + ^ , <h>i * H4 , 4 - ^ ^ * 

Then jlAA,^ - fiu^ * flh, + i^H% and finally fLiX.^* p,^ 

(by the definition of Ĥ  ; i * f, 2 ) . But G is tor­

sion free, hence AJU^ m fy e H which contradicts (6). The 

proof of the theorem is now complete* 

Let G' (H') be a maximal p-divisible subgroup of G 

(H) • If G« S? H and Cf is an isomorphism of G onto H , 

then it may be easily shown that G'cf « H' • We shall use this 

simple fact in the proof of the following 



Lemma 4» Let p be a prime and G a group which i s 

the d i rect sum of a p - d i v i s i b l e group G. and a p-reduced 

group Ĝ  , G s G1 4- Ĝ  , Then G has the IQp-property i f 

and only i f Q% has; the IQp-property., 

Proofo First of a l l , l e t G have the IQp-property, aid 

l e t W% be a subgroup of \ with {%, ^ €. H z & &x . If 

we put H • G^ + Ha ., then -ft- 6* a H f so that by hypo­

t h e s i s there e x i s t s an isomorphism cp of G onto H • Be­

cause Ĝ  i s the maximal p - d i v i s i b l e subgroup of both G and 

H , there i s 6i cp » G^ and G% * %^ &&,<?** 4 ~ H a # 

Conversely, l e t Ĝ^ have the IQp-property and l e t H 

be a subgroup of G with j % G '.s H £ G 0 From the p - d i v i -

s i b i l i t y of G..̂  i t fo l lows G f« f i ^ fi ^ i ^ s H hence 

H - ^ K ^ H J c ^ ; ^ . Further, f t &2 S <p, & s H 

and ^ Ĉ  £ & , so that fi G% £• G± n H -**• H2 . B y hypothe­

s i s we have (J2 =-= Ĥ  and now i t may be e a s i l y proved that 

G 3- H , too . 

Lemma 5. Let G be a p-reduced , completely decomposab­

l e group such that TCG) s a t i s f i e s the maximum cond i t ion, 

and l e t TCG-) contain two incomparable types which are ma­

ximal in TCG) . Then G contains a subgroup H with 

f v ( j £ H and ex #-* H • 

Proof o Let & f be two incomparable types from 

TCG-) which are maximal in TCG) . Denote by XSA that 

rank one d i rect summand of G ( in a given d irect decomposi­

t ion) the type of which i s t ^ ? by U2 that rank one d i ­

rect summand of G the t;ype of which i s f f and by G* 

the d i rect sum of a l l the other d i rect summands of G . Hen­

ce G = Û  •+• \}% 4- G* , Because Û  and tOt̂  are not 
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p - d i v i a i b l e , t he r e e x i s t two elements *JU e H. and x ^ 6 

e U2 such t h a t M?^ (AJL± ) « 0 , * » <f, 2 . 

Define the subgroup E of G : 

(12) H * -C & ' ; ft (/, ; f t l/a ,- 44,^ - ,U 2 ? • 

Clear ly j%& & H . F i r s t l y , l e t us show 

(13) /* , # H • 

Let U1 € H # By (12) we may wr i t e 

(14) ^ 1 » g , ' + f t ^ + f i 4 4 ^ 4 v f e f ^ - ^ ) , where o / e 

e S ' , ^ e U . ; i . 1, 2 . 

Now t he r e e x i s t i n t e g e r s n, m, a ' , b* such t h a t /rt4x,i » 

-s afuif /mA4*± m Ar'AAx , and we may suppose t ha t 

Otvfft) ~ 1 and fort, <f% >sr 4 # Then, fo r - / • f / m , ^ n ] i t 

ho lds (*tf <fi> ) m 1 t o o , and the re e x i s t i n t e g e r s a , b 

such tha t IAJL\ * aic^ f tu,^ m > ^ . Mult ip lying (14) 

by Z , .we get 

(15) lu^ m Ic}!+j%a,u.i t ^ ^ + y f c i C44-1 -Mi>* 

In view of the independence of the elements g', u^ , u t , 

the equality (15) holds if and only if 

*<}'* 0 

(16) fl,Q, + A£ * At 

fiSr- HI* 0 

From the l a s t e q u a l i t y i t fo l lows t h a t ft IJz,£ 7 hence the 

second equat ion g i v e s fi \J f which i s a c o n t r a d i c t i o n . 

Hence (13) i s t r u e . 

Now suppose t h a t H i s completely decomposable: H -» 

s 5 1 4 1 ^ . Denote by H the d i r e c t sum of a l l H A 
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the type of which i s "fc' , and by H^ the d i rect sum of a l l 

the other d i rect summands of H . Clearly H • H4 4- H 2 • 

From the incomparability and laaximality of types i t fo l lows , 

by (12) , 

(17) iiu,, e +^ ', 4%4*± e Hx . 

Further, AJL^ * AJ,± e H implies -U f- -U^sr A f -r^fe where 

Jh, € H± . J&iltiplying by p , we get 4% AA,^ ft AA^ *» A%AH +fih*% * 

But then fvAA,^ *? ftJK^ f and, by the tors ion free character 

of G , AJL^ * A f € H^ £ H which contrad icts (13) . 

This contrad ict ion proves Lemma 5. 

Theorem Z. Let G be a completely decomposable IQ-group. 

Then, for any two incomparable types X^ t t ^ from TC&)7 

we have >***/*, {x1 , t ^ J » Coo, <ao, ~ . , 0 0 , .** ) . 

Proof* For an arbitrary prime p we denote by G.,' 

the d irect sum of a l l p -d i v i s ib l e rank one d i rec t summands of 

G ( in a given complete decomposition), and by G^ the d i ­

rect sum of a l l the other rank one d i rect summands of G • 

Clearly, G * G*** 4- &£* where G^ i s p - d i v i s i b l e 

and Gf*% p-reduced« 

It suf f ices to prove that T*C G£*) i s ordered for eve­

ry prime p • Suppose conversely that there e x i s t s a pime num­

ber p such that TCG^cfv>)- i s not ordered. For t h i s prime, 

denote G%* simply by (5^ j <L = 1, 2 . By Theorem 1 , the 

se t T(GX ) s a t i s f i e s the maximum cond i t ion, so that there 

ex i s t two incomparable types Xf , X^ such that , for every 

X e T(GX) for which x > *£ implies X > X% and the 

se t of a l l types x € TCG^ ) , x £*ufi ix ,'VZ\ i s ordered. 

It i s easy to see that , for the group G= ^ 2 / Q * / ^ where 
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M * {%* £ $ f
 a** t n e condi t ions of Lemma 5 are f u l f i l l e d , 

so t h a t the group G conta ins a subgroup H such t h a t 

ft G £ H and G & H • On the o ther hand f applying 

Lemmas 1, 4 and 2 , we get & 3? H . This con t r ad i c t i on 

proves our theorem. 

Theorem 3* A completely decomposable group G i s an 

IQ-group i f and only i f the following two condi t ions are 

f u l f i l l e d : 

(oc) I f {f^ | i s an i n f i n i t e increas ing sequence of e l e ­

ments from T(G-) t hen for every prime p the i n e q u a l i ­

t y % t £f l ' ) a t r °° holds for a f i n i t e number of n ' a only. 

(fi) For any two incomparable types nf1 , ^ z from TCGr)f 

there i s AMfv { fy, fx J » (<*>, <&,*••, oo, *> * ) . 

Proof. The condi t ions (o t ) and (/S) are necessary by 

Theorems 1 and 2 . Now we s h a l l prove the suf f ic iency of the 

condi t ions (oc) and ( / J ) . 

Let p be an a r b i t r a r y prime. Let G, be the d i r e c t sum 

of a l l p - d i v i s i b l e d i r e c t summands ( i n a given d i r e c t decom­

po s i t i on ) of G , and G2 be the d i r e c t sum of a l l the other 

d i r e c t summands of G • Hence, G «• Gi 4- (JZ , Gi i s p -

d i v i s i b l e and G^ p-reduced. By condi t ion ( a c ) , " V r ^ ) 

f u l f i l s the maximum condi t ion and by ( /3) TC G-z ) i s orde­

r ed . Then by Kova'cs a theorem Ĝ  i s an IQ-group. By Lemma 

1 Qz has the IQp-property. Then by Lemma 4 G has the 

IQp-property , t o o . Because p was an a r b i t r a r y prime, G i s 

the IQ-group by Lemma la 

A simple consequence of Theorem 3 i s t 

Theorem 4. A completely decomposable group G with orde­

red type s e t T(G) i s an IQ-group if and only i f the 
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the condition (ocj froa theorem 3 holds. 

R e f e r e n c e s 

[11 L. FUOBS: Abelian groups, Budapest,1958. 

122 L.G. KOVXCS: On a paper of Ladislav Procházka,CJSech. 

Math.J.13Í88)(1963)„612-618. 
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