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ON ISOMORPHISM OF QUASI-ISOMORPHIC TORSION FREE ABELIAN GROUFS
Ladislav BICAN, Praha

In this paper we shall give a full description of all com-
pletely decomposable torsion free Abelian groups with the pro=-
perty that any two such groups are quasi=isomorphic if and on-
ly if they are isomorphic. By the word "group"” we shall always

mean an additively written torsion free Abelian group.

Definition 1. Two groups G and H are said to be quaai-
isomorphic if there exist two positive integers m, n and sub~
groups S, T of G and H respectively such that
(1) mGs Ses G; mHs Te H and S & T.

We write G & H .

Definition 2. We say that a group % is an IQ=group if
it is isomorphic to every group H such that G & H .

Definition 3. We say that the group G has the IQp-pro=-
perty if G = H for all subgroups H of G with G s
sHes G .

Lemmg l. A group G is an IQ=group if and only if G
has the IQp-property for every prime p .

Proof. Only the sufficiency must be proved. It is easy
to see that G & H if and only if there exist a positi-
ve integer k and & subgroup U of G such that k& G =



"y e |
cselUes G and H éU.Ir/k=p,-4zz—....ﬂr",then

a simple induction by m shows that G is an IQ=group if
and only if, for every prime p and every subgroup H of
G with /n"G e H for suitable positive integer n ,
there is G & H . To prove the sufficiency of the condi-
tion of Lemma 1 we apply the induction by n . (The details
of the proofs are left to the reader.)

Definition 4. A group G is called completely decom=-
posable if it is a direct sum of rank ome groups: G =
= 2473
LsId' ¢

Notatione The p=height of an element g of the group
G 1is denoted by A, (3). If 7 is a height, then &=
will be the type to which the height <  belongs. By T(G)
we denote the set of the types of all direct summands J, of
a completely decomposable group G= “ZI,L J. . ’?(9,) will
denote the type of the element g in the group G (more pre-
cisely ’%‘ (g ) ). "E‘(G) denotes the type set of
the group G ,i.e., the set of the 2 (g) for all ge G,
and finally G(® )= g € G; %fc}) 2 27 .

It is well known that, for every type f'z‘:’ G(%) is a
pure subgroup of G .

In the following we shall use:
Kov dcs theorem (see [2], theorem B): If G is a com~
pletely deco;:pm able group such that T (G) 1is inversely
well ordered (in the natursl order of the types), then G
is an IQ=group.

Remgpk. Let M be an arbitrary set of the typeae. By
G¥*(M) we denote the subgroup of the group G generated by
all the elements of G 4 the types o which are greater or
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equal than all the elements from M . It is easy to see that,
in a completely decomposable group G-z“%d, 3, , G*(M) is
Just the direct sum of those J, , the types of which are
greater or equal than all the elements of thé set M .

Lemmy 2. Let p be a prime number and G a completely
decomposable group with the IQp=property. Then, for an arbit-
rary type set M , the factor-group G = G/G* (M) has
also the IQp=-property. ’

Proof. let H & G and nG s H . By the isomorph-
ism theorem, there exists a subgroup H of G such that
G*M) e H & 6 amd H/guq, & H . Further, G/ =

= G/G*(M)/H/G*(M)g%’so that G & H ., By hypothesis

there exists an isomorphism & of G onto H . It is easy
to see that G*(M) = H%* (M) (because @*(M) s H
implies G*(M) s H* (M) ), Moreover, the type of an ele-
ment is an isomorphism invariant, hence (G*(M) ¥ = G* (M) ,
and this fact completes the proof of the Lemma.

Lemma 3. Let G be an arbitrary group, H 1its subgroup
such that f+G € H . Then H is a g=pwre in G for all pri-
meg Qq# P .

Proof. Let the equation th = f, e H Dbe solvab~
le in G . From the relation (f2,@®) = 1 it follows
that there exiat integers r, s such that pr+ g”/a =1,
and then X = K (LX) + A(gPx) e H .

Theorem l. Let G be a completely decomposable IQ-
group. Then every infinite increasing sequence ‘f%ﬂf of the
elements from 1 (G) has the following property: Far eve-
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ry mime p , the inequality 2z, (n) % oo holds for &
finite number of n’s only.

Proof. S\xpposev conversely that there exists an infinite
increasing sequence { <, § of the elements from T(G)
and a prime p such that <, (1) % 00 fa all integers
n.

By Lemma 1, the group G is isomorphic to each its sub-
group B with 1 G & H, The same property has the group

G= G/G“(M) where M e {2, 1 (see Lemma 2). It is ea-

sy to see that the group @ 4 isomorphic to a completely de=-
composable direct summand G,, of G such that:

() 2 eT) m=12,... ;

(3) No element & with T » /c:”,fcr all integers n , is
in T(G ) -

Let G =“Zx4 I, be a completely decomposable group,
the type set T (G) of which has the properties (2) and (3).
Theorem 1 will be proved by constructing a subgroup H of G
with n G 8 H € G, B being not isomorphic to G . For this,
we denote by J; that rank one direct summand of the given
A

direct decomposition of G far which T(J;)= 4; , and
put

(4) u=§.1d 3 ; v=‘:;id J,

8o that G-U-i—V-

&
In each J; , we choose an element &L, with. by, ()=

’

= Q . Now, define the subgroup H of G by the formula
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(5) H=4{V;nU; «; -«

;*1 ? 1.4= 1,2,0—a } .
Clearly, 42G & M . First of all, we shall prove
(6) w, ¢ H .

Suppose comversely that 44, € H . Then
m1

(1 = v+ s S wg- 4y,

) .

Because 4 € U , there exist integers m , a; ;

m
t=1,2,..,m ; such that ma = .2; Q; M4,
of gy (u;d)m O

»  In view
we may suppose (mm,fr)w 1, From
(7), it immediately follows

—v+q

m mn-1
; . (e, — L, )
(8) mu1=mv+p§’a-‘u.,+i%m.@; 3

with (m, )= 1.

In view of the independence of the elements v and u ;

1= 1,2,..., . ; the eqality (8) holds if and only if
m vV = 0
na+mi;s m
4»@,- m»e’; +/m1)2‘-_— 0
9)

EXE

Tl‘ah«- m'&;—'t *ml‘;"‘ 0

na, - Mb"n-q =0

From the last equation it follows that s (&, ., , then
,ﬂ,l,(r .z from the preceding one, etc. Thus we obtain that
plbyy i=1,2.. m—1; and the second equation now
yields 41 lmm , which contradicts our hypothesis (8).

This contradiction proves (6).
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Clearly ,h:, (X) & }u;(.x) for all xe B, Fur-
ther, if S (X)= cO then necesssrily x& V , hence
h: (X)= 0o . From this and from Lemma 3 we conclude that
the type of each element from H is the same in B as in G .

Suppose that the group H 1is completely decomposable:

(10) H=>41_.

Y
Because fiu, e H , the element pu, has a non-zero compo-

nent in finitely many of 4 ,'s o H, be the direct sum of

1
those direct summande Io of the group H , in which pu,
has a non-zero component, and B,_ be the direct sum of all
the other direct summands 1, of the group H , so that
H=H + H, is true.

From (3) and from the finiteness of = (H,) it follows

that there exists f’r.‘-:; 8o that
(11) T, £ % far all T e & (Hy) .

From thig fact it follows that pug has a zero component
in every direct summand of H, ,hence nu«; € H, .

Further, 4t - 44 = (= ity ) (it Y# oor 4 (logq =4y re H,
hence we may write i,- 4y =ty +h, , ;e H;, 1= 1,2 .

Then f,- Ny = ﬂ.ﬁ, + »ﬂhz and finally f14¢,= f?—h.,
(by the definition of H; , 1«1,2 Je But G is tor-
sion free, hence 4i, =4, € H which contradicts (6). The
proof of the theorem is now complete.

Let G° (H") be a maximal p-divisible subgroup of G
(H) . If G= H and & 1is an isomorphism of G .onto H,
then it may be easily shown that G& = H’. We shall use this
simple fact in the proof of the following



Lemmg 4. Let p be a prime and G a group which is
the direct sum of a p=~divisible group GA, and a p~reduced
group Gy , G =G, + G, . Then G has the IQp-property if
and only if G, has the IQp-property.

Progf. First of all, let G have the IQp-property, md
let H, be a subgroup of G, with pnG e H, = G, . If
weput H=G, + Hy , then nG & H | so that by hypo-
thesis there exists an isomorphism ¢¢ of G onto H . Be=-
cause G,, is the maximal p-divisible subgroup of both G and
H, there is G, ¢ = G, mdqe6éz®@q= H/G, = H,.

Conversely, let G, have the IQp-property and let H
be a subgroup of G with 4G € H € G. From the p~divi-

sibility of @, it follows G,=nG &€ nG & H | hence
H=G, + (Gn H)= G, + H, . Further, n G, S n G £ H
amd 1 G € Gz , 8o that £ G & G AH = H, . By hypothe-
sis we have G2 =4 Hz and now it may be easily proved that
G = H, too.

lemmg 5. Let G be a p-reduced, completely decomposab-
le group such that T (G) satisfies the maximum condition,

and let T(G) contain two incomparable types which are ma=-
ximal in TC(G). Then G contains a subgroup H with
nGeH wmd 6 ¥ H.

Proof . Let /13;, 7%2 be two incomparsble types from
T(G) which are maximal in T(G) . Denote by U, that
rank one direct summand of G (in a given direct decomposi-
tion) the type of which is %,, by U, that rank one di-
rect summand of G the type of which is %1 , and by G’
the direct sum of all the other direct summands of G . Hen-

- . . [} 3
ce G = U1 + U,_ + G', Because U, and ¥  are not
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P=divisible, there exist two elements u, = U amd 46
e U, such that )«C;_(.u.;),; 0, +=1,2.

Define the subgroup H of G @
(12) H={G';TLU,;11U2;M,-M1} .
Clearly £#G € H . Firstly, let us show

(13) u, ¢ H.

Let «, € H , By (12) we may write
(14) w,=g'+ pau; +pa;+de (u,-44,) | where g'e
e G, uiéU‘; 1= 1,2 .
Now there exist integers n, m, a ', b’ such that tnu; =
= a,'u,, ,mu; - lr'uz , and we may suppose that
m,pr=1 and (m, =4, Then, far L =[m,m] it
holds (£, 12 )= 1, too, and there exist integers a, b
such that Lu, = aut, , Lat) = 4t . Multiplying (14)
by £ ,.we get

(15) lu, = 19.'+4;a,u.,+ s, + o £ (y—aty ).

In view of the independence of the elements g', u, ,u
the equality (15) holds if and only if

2 1

l9.,= o
(16) 11«04-&1 =4
12,!7- &l =20

From the last equality it follews that 42 &£ , hence the
second equation gives 41 |4
Hence (13) is true.

’ which is a contradiction.

Now suppose that H is completely decomposable: H =

= 24 1, . Denote by H, the direct sum of all H,
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the type of which is 4, , and by H, the direct sum of all
the other direct summands of H . Clearly H = H, + Hjy .

From the incomparability and meximality of types it follows,

by (12),

(an hu,eH 5 nu, e H o

Further, 4, ~ «, € H implies 4, 4t,= ‘hf"hi where
’97?: € H; . Multiplying by p , we get pruv~pic, = pnh +nh, .
But then fu,= nh, ,
of G, u=Hh € H, & H which contradicts (13).

and, by the torsion free character

This contradiction proves Lemma 5.

Theorem 2. Let G be a completely decomposable IQ=groupe.
Then, for any two incomparsble types %, R f:‘:’,_ from T(&),
we have Asup {T, T, § = (c0,00,:., 00,02 )

Proaf. For an arbitrary prime p we denote by G_,(")
the direct sum of all p-divisible rank one direct summands of
G (in a given complete decomposition), and by G,_m’ the di=
rect sum of all the other rank one direct summands of G .
Clearly, G = Gf’” + sz, where G1(M is p-divisible
and G-z‘”) p=reduced,

It suffices to prove that T(G™)  is ordered for eve-
ry prime p o Suppose conversely that there exists a pime num-
ber p such that T(GM™ ) is not ordered. For this prime,
denote Gi‘”’ simply by G; ; <= 1,2 . By Theorem 1, the
set T(G,) satisfies the maximum condition, so that there
exist two incomparable types %., ) ’?_;_ such that, for every
£ e T(G) for which & > %, dioplies T > %, and the
set of all types € € T(G ), % 2mup {%, 6 %, } is ordered.
It is easy to see that, for the group G= G"/G-z* (M) where
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M "{%'1,%3.} ,all the conditions of Lemma 5 are fulfilled,
80 that the group G contains a subgroup H such that
n& = H and G # H . On the other hand, applying
Leomas 1, 4 and 2, we get G = H . This contradiction
proves our theorem.

Theorem 3. A completely decomposable group G is an
IQ-group if and only if the following two conditions are
fulfilled:

(ec) If {’9”3 is an infinite increasing sequence of ele-
ments from TC(G) +then for every prime p the inequali-
ty T, (h)# co holds for a finite number of n’s only.
(B) For any two incomparable types %1 , %2 from T(G),
there is Asup {24, 2, § = (00, 00,..., €O, - ) .

Proof. The conditions (oc) and (@B) are necessary by
Theorems 1 and 2. Now we shall prove the sufficiency of the
conditions (&) and (/3).

Let p be an arbitrary prime., Let G,, be the direct sum
of all p-divisible direct summands (in a given direct decom-
position) &€ G , and G, be the direct sum of all the other

direct summands of G o Hence, G = G, + G, , G, is p-
divisible and G, p-reduced. By condition (), T(G, )
fulfils the maximum condition and by (/3) T(G, ) is orde-
red. Then by Kovéca’s thearem G, is an IQ-group. By Lemma
1 G, has the IQp-property. Then by Lemma 4 G has the
IQp-property, foo. Because p was an arbitrary prime, G 1is
the IQ=-group by Lemma 1.

A simple consequence of Theorem 3 is:

Theorem 4. A completely decomposable group G with orde-

red type set TCG) is an IQ-group if and only if the

- 118 -



the condition (ot) from Theorem 3 holds.,
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