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RIGID UNDIRECTED GRAPHS WITH GIVEN NUMBER OF VERTICES
P, HELL, Praha

Throughout the present paper we use the term "graph® far
a finite non-oriented graph G = (X,R) with [ X! > 1. A map~-
ping +: X — X is termed an endomorphism of a graph (X,R)
if (#(x), f(y))e R whenever (X, 4 )€ R. An endomorphism
is said to be an automorphism, if £ ( X) = X ., A graph is
said to be rigid, if it has no non=-identical endomorphisms.l‘he‘
notions of & multigraph, homeomorphism of multigraphs, etc.
are used in the sense of [2], We use the following notation
(for a graph G = (X,R)):
R(x)=fnpe X: (X, )€ RY, ilx)= IR(X)I, L(X)=mar £ (),
M= {xe X: ¢(x)>2%, R={xe M:IR(IAM;I> 2§, GX) =
= (X-{x}, R={(x,4): y e R(x§) .
Denote by 4 (G) the chromatic number of G . Denote by
{x4.., %> xz_,%...,%-#ryé the mapping £ : X — X defined by
fx)=a, (1=1,2,... m),$(X)=x otherwise. Write {x >4} in-
stead of {X—r Y, 4> x§.We sometimes say that x is joined
with y if (x, )€ R. ‘
It is proved in [1] that there is no rigid graph (X,R)
with IX| € ¥ , while there afe rigid graphs with any greater
number of vertices. The prese;nt paper deals with number of ed-
ges. Namely it is shown (Theorem 1) that there is no rigid
(X,R) with [ Rl % 13 and that (Theorem 2) for every n > 13
there is a rigid (X,R) with (Rl =n,
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Lemma 1. a) No full kegraph is rigid.

b) If G dis rigid and 4#(G) < 4, then G contains no
full k-graph.

¢) If G=(X,R), IXl=5 and G contains no full 5-graph,
then o (G) € 4 .

a) If G=(X,R),IX|=5 and G contains no rull 4=-graph,
then 4 (G) < 3.

e) If G=(X,R)IX|=6 and G contains no full 6-graph,
then o (G) < 5.

£) If G=(X,R), IXI=6 and G contains no full 5-graph,
then 4 (G) & 4.

g) It G= (X,R), IX|=6 and G contains no full 4~-graph,
then o (G)€ 3 or G is isomorphic to G¥*,

h) Let ¥ (B, RN P = P) =3 . Thn (G)= 3.

i) Let G = (X,R) be rigid, IRl £ 5, Then G con-
tains no full 3-graph.

J) Let G =(X,R) be rigid, | P, |= 6, Then either G
contains no full 3=-graph, or (P, RN f = & ) is isomorphie
to G*, ‘

Erof . Statements a),b) and ¢) are evident. Let us prove
a): If 4 (X) € 2 , we have evidently 72(G)% 3., If there is
a vertex a with <(a)= 3, there are &,c e R(g) with
(,e)¢ R and hence (G) € 3. If we have <(a2)= 4
for some a , there are vertices p, r, 8 in R(a) such that
(n,x1& R, (£,»)¢eR, (fnn,5)¢ R ,or vertices t,u,v,w in
R(a) such that (t,.) € R, (v, w)¢ R, Thus, we have always
7 (G) £ 3. Similarly we may prove e) and f). To prove g),
let us assume that G contains no full 4~graph and that (&)=
=4 (bye)y, »(G)&4), Thus, i (X) > 2 I £(X) = 3,

1 (a) = 3, we either may colour all vertices of R(a)
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equally (then 9#(G )£ 3 ), or there exist b,c,d € R(a)
with (£5e) e R, (&) R and then there is a vertex
eeX-LRia)u{all with Ce,c)¢ R and, again, y ()£
£ 3,If there is an @ € X with 1i(a) = 4 , the subgraph
(AR ~A"AxA) (where A={a} v R (a) ) is 3-coloured by
d) and we may colour £ € X~A and a e@ally, which is
a contradiction. Thus, there exists @ q € X with <(a) =
= 5. The question is, now, equivalent with looking for a five=-
point graph with the chromatic number 3 without full 3-graphs. "
We see easily that this is exclusively the 5-cycle Thus, G
is isomorphie with G* , The proof of h) is easy: first, co-
lour P, then M= P and finally X - M ., i) and j) follow
by a)=- h).
Lemmg 2. Let G=(X,R) be a rigid graph, |X|=m . Then

a) 4(x) 22 forevery X &€ X, 1 (X)> 2,
b) 1(X)$m-2 far every X € X .
¢) If 4{(X)=m-41, then |IF, |126.1R =6 only if (R, RN
n P x B ) 1is isomorphic to G¥*,
d) G contains no even cycle X,, X,, ..., Xyg » X, ouch that
1) =2 far 3=1,2,.., k-1,
e) G contains no cycle X,,«:, X, , X, such that ©(X;)=
= 2 for 3=2,... R .
£) If m =15, then G is connected.
g) We cannot denote some k points of X by X,,..., ¥ in
such a way that {X;— Xq ., ;,%=1,2,... &7 is an automorph~
ism; in particular, there are no vertices a,b,c,d with <(e)=
£i(d)=3 and (a,c) € R ,(a,d)ER, (£,e)eR,(&#d)€ER,c,d)eR "

Proof. a),b) are proved in (1}, c) follows by Lemma 1 i),
J)o The other statements are evident. E.g.,f) is a consequen-

ce »f [1), since if |X| < 16 there is either a one-point
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component or a component with more than one and less than 8
vertices.

Theorem 1. There is no rigid G=(X,R) with IR |£ 13,
This follows by the following lemmas:

Lemma Y. Let G = (X,R) be rigid. Then |R|> IX[+1 .

Proct By L.2 a), IRI >I1X|, If IR\ =IXI+1, M. consists
either of one vertex a with < (@)= 4 ,or of vertices b,c
with 4 (&)= ¢(c) = 3, In the first case, some of the compo~
nents is homeomorphic to the multigraph 4, , and we obtain a
contradiction by L.2 e); in the second case,some component is
homeomorphic either with mz (and hence G is not rigid by
L.2 e)) or with A, ,and then there are two ways of odd or two
ways of even length between b and ¢ , which is in contradic-
tion with L.2 d).

Lemps 4. There is no rigid G = (X,R) with IXl=m £ 11
and |IRI=m+2 .

Proof. Let there be such & G « Then G is connected by
2f) and, by 2a), there are the following possibilites for Mg 2
®) M={a},i@)=6 - IIM,={a,bc}i@)-4,i(8)=£(c)=3
A M ={a, b, i@)=5iw)=3 eIM={a,¥,¢c,dji@)-i(&)=1(c)=
¥) My=fa,b},i(a)= i (&)= 4 =id)=3

The graphs satisfying OC), ) or ) lead (similarly as
aid A,, A,, A3 ) to a contradictiom with L.2e or 2d. In the
case of J°) we obtain, with the exception of the non-rigid
graphs following evidently from 2e and 2d, a graph homeomorph-
ic to the multigraph B,. Similarly, in the case €), G
should be homeomorphie to either B, or Bj; « If G homeo-

morphic to B, is rigid, then necessarily /rt,,(a,c)-trfn2 (ac)
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and p,(a &)+ m(a!r) are odd by 2d and greater than 1 by
11 (where 1, (xa) signifies the number of vertices on the
i-th edge joining x and y ). Then, however, G 1is not rigid
wvhich may be seen from the Table 1(in the last row there is
written the lemma by which there is a non-trivial endomorphism).
Analogically, we may treat the case with G homeomorphic to
B, - see Table 2 (in the fifth column the corresponding endo-
morphism 4s marked concisely). It remains to prove that all
graphs homeomorphic to B3 are not rigid faa m < 11 . Put
M=macln (alr)+nbe)+n (cad; nplal)+ p(dd)+nlad);

o (be) + p(ed))+ p(&d); pac)+ prlad)+ pled)]
Nemin (... 1.
If we have M= N = 0 , the graph is not.rigid by la. If N =1,
the graph is not rigid by 2d. Hence, we have to examine the
graphs with M 2 N 2 2 and m £ 11 ; this is described in
the Table 3.

Lemma 5. There is no rigid G = (X, R) with \Xl=m £ 10
and |IRl=m+ 3 .

Proof. Such a graph would be comnected and M, would sa-

tisfy some of the following conditions:
fﬁ) M‘i:‘[a}, 1; (a,):-. 8

BIM,={a,b},i@)=¥ 1(8)=3
PIM,={a,}, i@)=6 i) =4
oIM,=1{a, e}, 4(@)=6 1(&)=i(e)=3

EIM, ={a,8, i(@)=i (&)= 5

M, ={a,8;c3,i@)=5 i(&)=4 ile)=3

MMM, ={a,&e,d}, ia)=5 (&)= 1L(e)=1(d) =3
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PIM_={a,b;¢e}, i@V ¢(B)= i(c)= 4

VUM, =1a,8,¢,d}, i@)=(i0)= 4 clo)=ild)=3

WM, =1a,¥e,d,ei,i@r i <(8)=tle)=<d)xi(€)=3

A)M = {a,be,d,¢f}, L(X)=3 for every xe M,

Cases o«) - &) cannot occur by L.2e,2d, In ) and %)
excluding the evidently non-rigid graphs, we obtain types of
graphs which are not rigid for m £ 10 (e.g.,for graphs ho=-
meomorphic to C, : If such a graph is rigid,we have, by L.24
ad 11, 1, @, 8+ n,(al) > 3 and 12, (ad )+ 1, (@d)+n @)+
+p(cd)2 4, which is, for m £ 10, impossible). Analogical=
ly in the case L) , after excluding evidently non-rigid
graphs, there remain only graphs homeomorphic to C, ; similar-
1y, in the case 2¢), homeomorphic to C, or C, , and in the
case ) homeomorphic to C; or C; . We shall prove that
the graphs homeomorphic to C, — (, are not rigid whenever
m % 10. We obtain, by L.2d and 1i, for rigid graphs homeo-
morphic to C, the following inequalities:

mal)+ p,lal) =3, placdrn@dl+ pled)2 2,
h(be) + plad)+pled) 22, n,@l) +p,al) + nl@e)+

+ pe) = 4,
1@l + () +p(ad) + pld) & &

Consequently (up to an isomorphism), either s, (af)+n,(al) =3,
plad)= pled)= p(brd)= 1, or p,@al) + p, (@)= 3,10
=f (ac)= pnled) =1 . Such graphs are non-rigid by
L.2g. We may deal similarly the graphs homeomorphic to C; o
If @ rigid greph is homeomorphic to C, , we have n(a &) +
+ale)r n(ae)z2, nlac)+fled)+ plad) 22.Since n<10,
we obtain (up to an isomorphiem) plafr)+nibe)+ 1 (ae) = 2 .
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The possible cases are described in the Table 4 \the iast row,
again, contains indications of non-rigidity). The grg hs homeo~
morphic to C; are not isomorphic to G*. Thus, if some of them
is rigid, we have by L.1J and 2@ pnat)+nke)+nefl = 2,
n(&e)+nled)+ nl(dd)=2 , hence, nadP)=0, nf)=0
and n(ed)=0. The possibilities are examined in the Table 5.
Finally, we see easily by L.2d or lemma 2g that the graphs ho=-
meomorphic to C; are not rigid for m = 8,9, 170 .

Lemma 6. There is no rigid G= (X,R) with I Xl=m £ 9

md Rlam + &,
Proof. We shall discuss only that cases of M, which do not

lead evidently to a non-rigid graph (as did the cases o) - #)
in previous lemma).

O M= fa,bre,d,e,¢1, £(@)x §, ilh) e L(0) = ild)m i) Llf)= 3
P My={a,b;e,d,e}, tl@) = c(&)= i) 4, itd)=d(e)=3

P M= a,0,0,d,e,03, i@)s i) = &, $le)= Ll@)e Lo i)z 3
g MG= {a;‘e’oc)dle)ﬂq;' it(@)= 4, “Wh)= ... =)= 3

e M= {a,0,c,d,¢,¥,¢, A}, t(x)=3

for every xe M,

In case o) [1] ylelds m = 8, so that, whilst IM_I=6,
we have \P;| <6 or IF;)= 6 and G 4is not isomorphic

to G*;now, we may use Lemma 1i and j.In case B) we oOb=
tain, excluding evidently non-rigid graphs, G homeomorphic
to D, , which is a contradiction, since, by L.2i and 24
nabrirneerrniber22, pae)rn@e)+n (ee) =2 2 oa
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ne)+nied)+ nbd) 22 , so that n(@e) = 2 , Since
also fr(be)+ nlab)r plae) 2 2 , we have fa(bec) = 2 , and,
due to the triangle abd, G ocontradicts L.li. If G satis-
fies 7y) , it is homeomorphic to D, or D, , which is not
possible, since, in D, , we have 1 (af) = 2 (asimilarly as
in D1), and, for m £ 9, some of the mappings {c—+ a3
{d—~+<3,{e— c¢? is an endomorphism, and the graphs homeo-
morphic with D, are non-rigid by L.2g, 1i,and 24 (we have
1,08) + n,lalr) =3 ). Case J? does not occur, since =
after excluding the obviously non-rigid graphs = G should be
homeomorphic to D, and {e-»+? would be an endomorphism
(there 18 IP, | £ 6 and G does not contain G* jwe may use
L.11 and § and, by L.2d, pn (@ &)+ n(&ec)+niac) = 2 ).In ca-
se €) we have, for m =9, IP, | £6 and G contains no
subgraph isomorphic to G*. Thus, by L.2i,J, and 4, G dis ho-
meomorphic to either I)s and D‘ o We see easily that G 1s
then not rigid. If 22 = 8 , then either G contains no tri=-
angle and hence it 1s isomorphic to D, and D, ,or G contains
a triangle (e.g., (a,&)eR, (&,¢)€ R, (a,c)e R ). By
L.2g, we have R(a) A R(&)Y - fc} =4 (otherwise

{a ¢+r{%1is an endomorphism), similarly for R(&), R(c) and
Ray, R(e) . Let, e.ge, R(a)=485¢,d3, R(&)={a,c, e},
Re)={a,&; #3. Then there is either R(g) = {d,¢,¥§ , or

R(g)= {d,e, 3} , i,e., we obtain non-rigid graphs D, and
D .

Lemmg 7. There is no rigid G = (X, R) with m. =
=|X|=8 and IR|=13.

Proof. By Lemmas 2f, 2b and 2c it suffices to investi-
8ate the connected graphs with i (X) < 6 (i(X)=6 1s
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impossible by 2b and < (X) = ¥ implies |F, | < 6§ in
contradiction with 2¢). Excluding the cases of graphs non-ri-
gid by L.1i,j and 24 (with m = 8 ), we obtain the follo-
wing possibilities for M :

L) M ={a,be,d,e,f} i@)= (B)=5, c(e)=...= <(f)=3

BIM=1{a, ¥, e,d,ef] il)= 5, ilB)=ile)=4, ‘@)=cE@)={F) =3
¥) M= {a,b¢,d,,4,g3 ila)=5, L8)=4, L(e)=.=t@)= 3
d')MG=X t2)=5 for some a € X, €(x)= 3 otherwise

&) Mas {a,¥,e,d,e,f,% ila)= €(&)=4i(e)= 4,
td=... = €(@g) =3

9IM.= X={a,4¢,d,¢,$,¢,13 i(@)=i(B)=4, (x)=3 otherwise .
In case o),G 1is obviously non-rigid by L.li,J and 2d,when-
ever (R, R x R n R) is not isomorphic to G* ;ot-
herwise it is not rigid by L.2e.
Similarly, in case (3), the only posibility to be investi-
gated is that of (R, R AP > B ) isomorphic to G*,
Then, G is isomorphic to E, or E, and hence non-rigid.
In case <), G is not rigid whenever IR 1< 6 ,o0r
IRl=6 and (R, R & AR) 4is not isomorphic to G*,
If this should not occur, we must have R (h)={e,&7 (where
heX,¢(h)=2). By Lemma 2d, R(@) " R(&)={h] , and
consequently (o,&)€ R . Thus, G contains the triangle
abh , and ¥ (G)= 3 ,(By Lemma 2g there are two distinct ver-
tices c,d e R(a) such that (c,ad) ¢ R . Thus, G may be
coloured as follows: Y (@) = @ (£)=1, (&) = ()=



sy@)=2,y@)=3(Ah)3, y@)either 1 or 3 , where R@)={¥;
ed,e,nl, R(¥)={a,f,g,#n])In case J°) put R(a)={&,e,d, e,*}
and X~ R(a)= {g,h}.

We have necessarily (g, # )€ R , otherwise {g—+a 3 is an
endomorphism. Investigating all possibilities (IRCg)n R (h)l=
=2,R@)AR(AII=1 and R(g)AR(R)= I ) we see
that kG is never rigid by L.2g. Incase &), fao IP | < ¥,
by L.11,J, G is either non-rigid or G contains no triangle.
We are going to prove that this is the case for |F, | =% , too.
Let /» € X, 14(h) =2 , Consequently, x € R(4) implies
L(XY= 4 . Let, esg., R(M)=4a,&} . ByL.2a, G
is either non-rigid or (@,&)e R and R(a)n R(&)>={h} -
Let R(@)=4{¥¢c,d, 0}, R(&L)= {a,f,g,h} . If i(e)=4,
by L.2g, G is not rigid. We may assume that R(e)= {c,d,¥}.
G 1is not rigid, if (e,ol) € R (by 2g) or if R(c)A R(d)-
-{aet+ @ ({ec—d} ord{d —+c? is an endomorphism). The=
re remains (up to an isomorphism) the graph G with R(e) =
={a,¢,g4,R(d)={a,e, #} which is 3-coloured. By L.1lb, hence,
a rigid G satisfying €) contains no triangle. Thus, it is
homeomorphic with E., o This is a contradiction, since some of
the mappings {a— &%, {&—~cj,{Cc—a} is then an endomorph-
ism. In case ¢) suppose first (2,4-) & R . By L.2g,IR(a)n
ARIBL,. If R(a)n R(&)= {e,d,e} (e.gey R(a) =
={c,d,¢,¢3, R&) =4c,d,e, } ), we have R($)nR(2)F R($)
(otherwise {¥ ¥ a3 is an endomorphism), similarly R (+£) A
AR(HY E R($) , 80 that, up to an isomorphism, R(4) =

= {¢,Mh,c}. In both cases (d,e)e R or(d,e) ¢ R
(ice. (d,gY 6 R, (e,h) € R ), the graphs are, by 2g, not
rigid. If R(a)n R()={¢,d}, G is non rigid by 2¢
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(it (e,d)ER or R(e)nR(d)-{a,&3#0) or by 1b (we investigate
easily both possibilities R(c)={a,,¢3, R(@)={a, &, +7 and

Rere{a, &}, R(d)={a,t, ¢} ,where ¢, f € R(a) and ¢ €
€ R(&)). Provided (a,4)e R , the graphs with 1R(a)1 N
AR (&)l =3 are obviously not rigid. If IR(@)n R(B)NZ=2
and R(@)={¥;¢,d,¢3, R(»)= {a,e,d,¥F , the grgphs
are, by 1b, not rigid in all the subcases: R (er=4a,be3%>
Rid) = {a,2;63; R(@)s{a,&hy, R(@) =12, 483 °
Similarly for 'R (@YA R (&)l = 1 , and for R(a) N
A R(&Y= @ all graphs are not rigid by Lemmas 1b and 2g.

Now, Theorem 1 follows from [1l].

Theoren g. If n 1is an integer greater tham 13 , there
is a rigid (X,R) with IR} = m -

First, define, for every A& = 4 @& graph G, (X, Re?
as follows:

x‘: {x 54%1,.00, 24+13, Ry= {(x;, Xy, (X, %, Yyees
e (Xyp 0y Xopy) (Xepqr%q )} U
US> X035 4= de, et1,... 241,10

u((o(“.“, x‘); 1’,: 1’ 2,:.. h;



Lemms 8, a) Let f be an sutomorphism of (X,R) . Then
L(f (X)) = i(x) for every X € X.

b) Let G be a subgraph of G . Then ¥ (G’) £ o (G) .

e) Let Y € X, and let there exist an endomorphism of
G into G'=(Y,Rn¥Yx VY).

Then (G’) = o (G) .

d) For every natural &k 2 4, ¥ (G,)= 4, and the sys-
tem of all the endomorphisms of G, consists of the identity
and the automorphism g = -f.xé—r °5w--3‘ (4=1,2,... k),

X =% Xoppy (GmR+Tyeee 2h-10% -

Progf. al),b),c) are trivial. d): We have evidently
7 (GI=4 ,while » (G’) < 3 for every G'S G . Thuas, by
¢),a), every endomorphism of G, is an automorphism and f(x,)=
= Xy, FOX,, )= X, ,, . Hence, R(Xe ) R (Xx,q,, ) must be
mapped onto itself, which leads either to the ldentity or to
& )

Broof of Theorepm 2: First, let m 2 18 . Thenm=4k+x
where M 2 4 and z is equal to 2,3,4 or 5 . Let us
construct graphs Gy = (X7, R.Z) g follows:

XZ= XuiXy,,,b for z=2,3,4,5, R = R U{i(xp,,,%,),

(Yptra s ¥eesh Ris = REPU 1 (Xygeng s X407 5
“l’= RTw A0 5 Xy 2 CRE T (CPE PR
We have evidently |RZ| = hhe +Z = m . We see easily that
always, for Rk > &4 ,
(1) (&= 4 ,
(2) Y (GE(xN=3 for i=1,2,... 2+, F(GZ(%, M=k,
(3) #(G) = 3 for every proper subgraph of G (X, ).
Let & > 4. Let f be an endomorphism of G .By L.8b and

8c, £ is an sutomorphism or a mapping onto
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G.‘:’(x““z) = G . Anyway, * /X, is an endomorphism of
G, and hence it is either the identity or g, . If f is a

mapping onto G (X,..2) , we have #(X,,,,)€ R(£(x,))N

AR(E(Xpoy VN = @ in both cases of /X, , whidk

is a contradiction, J* f 1is an automorphism, we have

RO (X NNARIGeO, N= RXy I N R (Xy ) = 4 while
R(xy) N R(xp ) = Xy, - Thus, f is the identity.
The proof for kR = & and 2z = 2,3,4 1is quite analogous.
Fork=4 and z=5, G has, besides G,”(x,), an-
other 4~-coloured graph, C—J"(.x,) . All other proper subgraphs
are again 3-coloured, If f is an endomorphism of G, ,it is,
by L.8b and ¢, either a mapping omto G,“(x;) or onto GI'(x,,)
or an automorphism, In the first case, /X~ - {x, 3 1is
an automorphism, so that, by Lemma 8a, f(X,)= X , furt=-
her *F(.x’) =X, ( x, 1is the only vertex with i(x) = 4

in X® - R(x,) ),etc. We see easily that £/ X[ —

- {X43 is an identity, which is a contradiction, since
$(xg1€ R (FLx,NA R (F(X,N= R(X%)n R(x) =0 .

In the remaining two cases we may proceed analogously as we
did in the case of k > 4 .

It remains to find rigit graphs with 14 € m £ 1¥ . Such
are, e.g., the following graphs G

ny :
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Guayy

Evidently G4 (and hence also Gy ) is a 4-coloured graph
and we see easily that all proper subgraphs of G, (and hen-
ce also of G4, ) are 3-colowed. Thus every endomorphism £
of G 1s an automorphism and we have at G, by L.8a
£(X) = Xg further £ (X,) = Xx, (since {Xx,%=
=X 14 (X )=43-R(X;) ) and £ (X;) = X (unique vertex
with i(x) =3 in R(x;) ) and #(X,) = X; (unique vertex
with i(x) =3 Jjoined with y such that i(y) = 4 ). Now, we
see easily that £ 1is the identity. Similarly with G,, -
Graphs G, and G, are again 4-coloured. Their unique 4-
coloured proper subgraphs are Gy, (Xg) and Gygy (X)) -
By 8¢, an endomorphism, £ of G, 18 either a mapping onto
Gy (Xg)  or an automorphism. In the first case,
£/ Xqq 000 X, ? is an automorphism and hence some of the

mappings
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X P X3 {X 6 Xy 7, { X € Xpy Xyer Xy §, {Xg € Xy 9
X 6y X, e X3, { Xg e Xy X e+ Xy, X, > X,
Anyway, R(£ (X NAR(F(X, N A R(4(X, N = F , which

is a contradiction. In the second case, we may prove easily
that f 1s the identity. Similarly with G, -

I thank to A. Pultr and Z., Hedrlin for much valuable advices
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