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Commentationes Mathematicae Universitatis Carolinae

9,1 (1968)

REMARK ON A PAPER OF LOVASZ
V. CHVATAL, Praha

L. Lovész [1) stated and proved the following theorem
concerning finite undirected graphs without loops (multiple ed-
ges are allowed):

Let %. = (9,, G > be a graph of valency k with n
vertices., Let n, nz be non-negative integers such that n, +
* n,=n. Then there exist subsets g1 8, of g such that
F=%Uph,nigr=n (i= 4,2) and the sum of the valencies of
the subgraphs %g , 9'92 is at most k .

We shall show that this theorem is sharp in the following
sense:

Theoremo Let n , k , n ,n be non-negative integers,
k<n,n=n +n,;put as= min(n_, n;). Let at least one of
the following conditions be fulfilled:

(1) m oz 2k [22R]

(i4) k divides a , n 2 2a + R+ 1

(ii1i) there are non=negative integers P, @ such that
22, m=p-24k +q (k+1) and g does not divide a = pk .

Then there is a graph % ={g, G > with n vertices
and valency k such that, given any partition 9 =94 U Gy

m(gyY=m, (1=1,2) the sum of the valencies of the sub-
graphs cg%, ‘%—qz is at least k.
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Remark. If k=2 , n& 15 or k=4, n260 then it
is easy to find that the conditioi:. of our theorem are ful-
filled; see the following tables:

m
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Recall that by a graph %} we mean an unordered couple
<{g, G>, & being the set of the vertices of G , G being
the set of the edges of @. « A graph @, is said to have va-
lency k , if k is the greatest integer such that %- has a
vertex of valency k . The subgraph of % =<(g, G > spanned
by /Sr('b c 9.) is denoted by C%«,b , the number of elements
of a finite set g by n(g) . [X ] is the greatest integer
which does not exceed x .

\ Proof of Theorem. If %4 = <@, G> is a graph of valen-
ey k , we shall call a partition g = @, u 9, 8&ood, if the
respective sum is less than k .

Let 4 =<g, G > be a graph such that there is a par-
tition g = g'u ¢” , m(@ )=m(g”)=h amd (x,y)€ G
if and only if X € 9.', Y e 9” . It is easy to see that there
is only one good partition of % ; it is the above partition
g = 9-’ U 9.”, We shall call @ an even k-graph and g', g”
independent sets of %— .

If ¢ =<g,G> is a grgph of valency k and G
contains an k-even graph ‘Q;Qten given any good partition g =
= 81 (] 52 of ‘9— it is possible to denote independent sets
of 4’ by h, h, in such a way that A ,cg,, h, c g,
Egpecially, if <4 contains m even k-graphs, then
min m (@) & mir .

To prove our theorem, congider (under the respective con-
ditions) the following graphs

A
%, - graph of valency k which contains [ a’;/ ]  even

k-graphs,
%- a graph of valency k which contains % even

k-graphs and a complete graph with k + 1 vertices,
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% consists of p even k-graphs and q complete
graphs, each of them with k + 1 vertices.

Suppose @g-=g, U Gy to be a good partition of %,
mim m (G, ) = @& . Then using the above results we
have a 2 E—&i—""—J . &k which is false.

Suppose @ = @, U g; tobea good partition of %, ;
mim m (g.)= @ .Then there is an index i such that all
the vertices of the complete graph are contained in g;
which is a contradiction.

Finally, suppose g = Gy Y G to be a good parti-
tion of G, , mim m (gg) = @ . It follows from (iii)
that there is a couple of complete graphs (g,', G’ >,
< g’ 6"y, m(g')=m(g”) =k+1 such that mlg;ng’)<

<m(g,n g") holds. Then m (g, n @ )+m(g,ng”) 2 &k +2

holds and - as follows from the completeness of (g’, G'> ,
<9,", G”> - it 18 a contradiction.
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