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Commentationes Mathematicae Universitatis Carolinae 
8, 4(1967) 

HOMOGENEITX PR0BLEB& POR EXFHEi&LLX DISCONNECTED SPACES 
Zdeněk FROIÍK, Praha 

Benote by CH(m) the statement that there is no Cardi­
nal between m and Z"* • The main result is the following 

The ořem 1, If either CH( # 0) holds or GHÍexp H 0 ) 
does not hold then no infinite compact space embeddable in 
an extremally disconnected space is homogeneous. 

We say that a space P is homogeneous if for each x 
and y in P there exists a homeomorphism h of P onto , 
P such that h x » y • The proof is based on Theorems Z and 
3 below. For the proof of Theorem 3 two results from [Î J are 
neededo 

Extremally disconnected spaces will be often called ED-
spaces* The closure of a set X is a space P is denoted by 
c t^ X , or, simply c i X , The symbol X * stands for o IX -
- X . 

T,třWm 1* Assume that a space F admits an embedding in 
an extremally disconnected space Q , and let X and X be 
discrete countable sets in P • The set 

Z m (X n X) u (X* n X) u (X n X *) 

is discrete and normally embedded in P , and 
c £ 2 = e 4 X n c £ X , %* = X*n X*- # 

Proof. Evidently the set Z i s discrete, and the inclu-

- 757 -



slons c hold* Any countable dlaorete set in an ED-apace ia 

normally embedded, and hence Z ia normally embedded in Q 

(and ao in P í , and also the aet 

Z0 « (X - c£X) u (X - e i X ) 

ia normally embedded. It follows that 

Ei * c£<X - e £ X) n c£ (X - c ^ X) • 0 . 

On the other hand, clearly 

• i l n e i l c e i l u Z ^ | and 

X*n X*bX*n Z., . 

Thua 

c£X A e ^ X c c£2: f and X*n X* c %** 

The proof ia complete* 

Nov we are going to introduce m partial order in the aet 

of the germa of countable normally embedded discrete aets* fhla 

ia not necessary, however, l t will simplify the deacrlption of 

some simple reasoningaw 

Pef inition 1« Let x be a point in a space P . Two seta 

X̂  and X2 define the samé gera at x i f U n l ^ * 0 n X 2 

for some neighborhood V of x • Denote by 7 l» (x ) f or simp-

l y 71 (x) , the set of a l l non-trivial germa at x of normál* 

ly embedded discrete countable seta in P * Of courae the t r i ­

v ia! germa are those with repreaentativea (x) and D» Thua 

two discrete normally embedded countable sets X̂  and X^ de-

fine the sama non-trivial germ i f and only if 

x € c i t í n r ) - ( X o I ) . 

A partial order -< on 71 (x) ia defined as follows: 

n > a £ i f ř X^c e i X - - X,̂  for some X̂  e n̂ . • 
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The ořem 2. If P ia embeddable in am extremally diacon-
nected apace then 71 (x) ia linoarly ordered for eaeh x 
in F . 

Bfoof* Immediate ccořo11ary to Lemma 1. 
In what f ollows le t T be the eět of al l typea aa intro-

dueed in CF13» Boughly 8peaking, the typea are equivaXence 
claates of the claaa of a l l paira < X, f > , where f ia 
a free ultrafilter on a countable aet X , and two paira 
< X , ^ > , < %x , f2 > are equivalent iff there exista 

a one-to-one mapping f of X onto X. 8uch that ti f^J * 
* fa • T h e s e t T i s ordered by the relation $ which ia 
read "produees", see CF4 ,Definition 1.43* 

Def inition 2, Let x be a point in a apace P . I£ X 

ia a nonaally embedded diacrete countable aet in P with 

x € c i X - X , then the interaections of X with the neighbor-

hooda of x f orm m ultraf i l t er on X , and the type of this 

ultraf i l t er ia called the type of x wrt X , and denoted by 

X (x,X,P) • If n € 71 (x) f and X<f, X̂  c n , then clearly 

X (x, X^P) • X, (x, X£|P) , 

and the common value of a l l tr (x,X,P) f Xe n , is called 

the type of n , and denoted b# X <n»P) or aimply t n. 

The aet of a l l X> n , n & TL (x) , ia denoted by T(x,P) or 

Simply T x • Finally, denote by x the relation eonaiating 

of al l paira < n, X (n,P) > • B^idently, the mapping tr : 

s 71 Cx) —* ř ia order-preaerving for each x and P « 

Theorem j# Let P be & apace embedded in an extremal-
ly disconnected apace* For each x in P the mapping 

X i Tt(x)—* * 
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Xa one-to-one, and the cardinal of any aection { t i - . V e Tx, 

t < t c J of Tx ia at most exp ríc • I f P i s compact 

then T x ia a aec t ion- l i xe aet in T , i . e . i f t^c T^ 

then í t l t < t j c T x , 

Proof. Aaeume that a^ € 71 (x) , n^ * nz • We may, 

and a h a l l , assume that » 1 < n^ . There exiat normally 

embadded d iscrete countable seta X^ e n^ such that X/J c 

C e i X ^ - Xft • Consider the subapace R » e i X 2 of P t 

and the Čech-Stone compacttficat ion /3 fi of E • Clearly 

/3H ia a free eompaot separable space ( i . e . a copy of /3N); 

by The ořem C in fP^J (the proof followa from Theorem B in 

IT%3) the type of x wrt X^ f and the type of x wrt Xf are 

d i e t i n c t . Thia provee that X J % (x) —» T ia one-to-one• 

To prove the aeeond s ta tě ment consider a t0 «* T n0 , and 

chooae a normally embedded discrete aet X̂  in n^ o By de-

f i n i t i o n , for each t < t^ there exiat8 a normally embed­

ded d i scre te countable aet X^ c e£.Xc - Xe i n n^ a t " - 1 t • 

Theorem C In lWA1 applies t o /3 c i X0 and g i v e s tta» est imate £or 

{ t l t e Tx , t < t e f • I f P ia compact then c i X c ia com­

pact , and hence /3 ©i Xp * 0<£Xo ; the l a s t s ta tě ment followa 

by def i n i t i o n of the def i n i t l o n of typea. 

Now we are prepared to prove Theorem 1. for convenien-
c e , we atate the fol lowing evident lemmas. 

hmm Ž» &•* h be a homeomorphism of P onto i t s e l f . 

For any x in P , h induces an iaomorphiam of 71 x on­

t o 71 hx , and f x onto Th x • 

fcf PM •?» *f a apace P oontains a copy of fi N (N de-

a t t e s the d i scre te aet of natural members) then T(P) * T , 

A e r a T(P) » w { f * i x € P ] # 
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Proojfof The ořem 1 # Assume that an i n f i n i t e compaet homo-

geneous space P admits an embedding into an ED-space • Then 

P contains a copy at /3 N by Lemma 1 , and hence, by Lem-

mas Z and 3 Tx =* T f o r each x in P • By The ořem 3 t h e -

re exist® no eardinal between exp ft0 and exp exp K0 « 

Thus the second condit ion in The ořem 1 i s s u f f i c i e n t . To pro-

ve that the f i r s t condit ion i s su f f i c i ent we sha l l ver i fy the 

fo l lowing, may be a l i t t l e more generál , proposit ion. 

Theorem 4« Assume that P i s an in f in i t e compaet spa­

ce embeddable into an extremally disconnected space. Then P 

i s not homogeneous provided anyone of the following condi-

t ions i s f u l f i l l e d : 

lo CB( ?t0 ) • 

2 . There e x i s t two d i s t inc t types of P-points . 

3 . There ex i s t two d i s t inc t incomparable types , i*e . T 

i s not l inear ly ordeřed. 

4# Tx ^ f for each compaet space K embeddable in an 

ED-space and each x in K • 

5» T x * T for each x in any compaet ED-space. 

6 . T x * * for each x in any free compaet ED-space. 

Proof . Condit ion 1 implies Condit ion Z b$ W.Rudin Í1U. 

The type of any P-point i s produced by no type (because a 

P-point i s the c lus ter point of no countable se t ) ,and there-

fore Z implies 3 . By Theorem 3 Condit ion 3 implies Condition 

4. Evidently 4 implies 5 , and 5 implies &• Condition 6 im­

p l i e s Condition 4 because any space in 4 i s a subspace of so-
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me space in 6 • Thus Conditions 4,5 sod 6 are equivaient* By 
Lemma* Z. and 3 , i t foXlows from Čouditi on 4 that there ěxist» 
no homogensous infinite compact space embeddable in an ED-
space. 

gejaaE&# Without any assumption on the set theory (excepfc 
for the axiom of choioe) an infinite compact space K i s not 
homogeneous provideď that one of the following conditions i» 
fuifiXled: 

au K i s embeddabXe in an ED-spáce,and Tx -£ T for sooe 

x in K • 

b« Á type of a point of X i ives in an ED-space I s K 

outsido of K* ZA partieuXar ease of a J 

cc K is a subspace of a compact ED-space 1 such that 

E - K is not countably compact. [A. partieuXar oase of b#] 

ám K i s a subspace of fl N Cor equivalently, of m 8epa­

ra bie ED-space ) • [A partieuXar oase of b#] 

e. There exists an extremaXXy disconnected spaee P such 

that K i s embeddabXe in P &xů contains a copy of W •C*|J» 
f • There exists a compact ED-space P such that K i s 

a nowhere dense subspace of P , and contains a copy of P , 

mu 

x) A.V.ArchangelskiJ has observed in Dokl.Akad.N*SSSR, 175,pp« 
45X-4,that the condition i s equivaient to the statement that 
the totaX character of K is at most o • 
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