Commentationes Mathematicae Universitatis Carolinae

Josef Kolomy
On the differentiability of mappings and convex functionals

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 4, 735--752

Persistent URL: http://dml.cz/dmlcz/105145

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105145
http://project.dml.cz

Commentationes Mathematicae Universitatis Caroclinae

8,4 (1967)

ON THE DIFFERENTIABILITY OF MAPPINGS AND CONVEX FUNCTIONALS
Josef xOLOMI, Praha

1. Introduction. This paper is a continuation of our dea-
lings [1),121,[3), (4] concerning the differentiability of map-
pings in linear normed spaces. Theorems 1,2 give sufficient
conditions under which a mapping F 4is Lipschitzian and pos-
sesses the Lipschitz Fréchet derivative on a convex open sub-
set of a linear normed space X . Theorem 3 deals with the Dar-
boux property of the Gdteaux differentials, Theorem 4 is the
generalization of Roll‘s theorem. It is shown that the set of
all x € X where the Gitesux differentisl of a demiconti=
nuous mapping exists is a Fer =set (Theorem 5). For the re-
cent papers concerning the differentiability of mappings cf.
the papers eited in [1],[2],

Second part of this paper ies devoted to the study of con-
vex functionals. :

Main result (Theorem 6) of this part is an extension and
generalization of S, Mazur’'s result [13,§ 9] to u-mux funetio-
nals and simultaneously it contains some answer to an open
question s) by M.Z. Nashed [5,p.75] soneerning the differentia-
bility of eonvex funetionals. This paper soncluces the study
of the one-sided Gatesus differentials V, ¢ (X, ) of eon-
vex funetional ¢ [ Theorem 8], For recent investigatioms in
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the theory of eonvex funectionals see [6) and the papers eited
here,(7),(8],(9].

2. Notatiopns and definitiopns. Let X,Y be linear normed
spaces, ( X — VY ) the spage of all linear continuous mapp-
ing of X imto Y . Throughout this paper by a word "space"
there is meant a real space. We sghall use the symbols " — ",
" _&, » to denote the strong and weak convergence in X, Y .
K pairing between ¥ € X* (or z*e Y*)andxe X
(or yeY) 1s denoted by (x, €* ) ,(or by (g, z*)).
A mapping F: X — Y 1s said to be demicontinuous [10] if
Ky, —F X, implies F (X, ) < F (X,) . We shall
use the notations of Cateasux, Fréchet differentials and deri-
vatives in the sense of [1ll,chapt.Il.]. We ghall say that a
mapping F: X — Y possesses the Lipschitz Fréehet derivati-
ve F'(x) omr a subset E of X if there exists a positive
eonstant M sueh that | F/(x,)= F'(X,)) & M X, - X, I
holds for every AX,, » X, € E . Recall that a mapping F:

X — Y is said to be uniformly Fréshet differentiable [1l1,
eshapt.I)l on a set Ec X if for any positive comstant € the-
re exists 0" > 0 sushthat it 0 < Il l- < o,
thea law (X, ) < € § A | for eash x ¢ E , whe-
re @ (X, )= F(X+ 0 )-F(x)-F'(X)h (F'(x) demotes the

Fréehet derivative of F at x) .

3. Theorem 1. Let X be a Banaeh spase, Y a linear nor-
med space, F: XY ‘ a somSinuocus mappimg of X into X
having on & eomvex boumnded opem subset E of X the first
and seeond Gitesux differentials VF (x, £2) ,
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V2 F(x, o, k ) . Suppose that V2F (x, o, L)
is demieontinuous at h =0, k = 0 uniformly with respeet to
xe€ k.

Then F 4s Lipsehitzian on E and possesses the Lipsehits
Fréehet derivative F’(x) om E . Mereover, F is uniformly
Fréshet differentiable om E .

Proof. Simee V2 F (X, 4, 4 ) is demieonti-
nuous at (0,0) uniformly with respeet te x € E, for any

<2*¥ e Y* and any positive comstant M > O there exisi m,
m, > O suehthatir Ihil & m,, Ikl &€ m, ,
thea |(V2F(x, r,4),e*)| &€ M fa every
x€E.As €* 1s limear and eontinuous amd V2F ( x 9
Adr, a R)= 2o V2F(X,/,4e ) for any real A, oL , we
have that for every h, ke X amd x € B .

' 3
W 1V G,y Ao, 0% = B2 Behy (ver o, TEY

%i:),e*)n &€ Nlal el ,

where N = M (m,.m, =1 . Suppose now that x , X

are two arbitrary points of E, h is an arbitrary (but fixed)
element of X . Set

@(t)= (VF(X,+the, b ),e*), h=x0-X,, t € <0,15.
Thern ¢ (0) = (VF (X, h),€*), @ (1) = (VF(x,,4),€%).
There exists the derivative ¢ (%) amd

Pt = (VEF (X, + tde, b, b ), €*) .
Aeeording to the mean-value theerem

(2) (VF(Xq, )= VF(X,, ), e* )m (YAF (X, +Th, b,k ),e*%),

0 < T < 1, From (1),(2) it follows that
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VVF(Ryy A1) = V(X ), €)1 & NI, - X, I 1A .
Using the Hahn-Banaeh theorem we obtainm

(3) BVF(X,,h)= VF(Xo, ) &€ NlIX =, I 1A .

Thus VF(x,h) 4s uniformly continucus in x € E . Aceording
to [11,§ 3] VF(x,#H) = DF(x, A ) ., Sines X
is a Banasgh spaee, F a econtimuous meppimng of X imto Y,
using the Baire’s theorems we have that DFx,A)= Fitx) A ,
where F’(x) @enotes the Gateaux derivative of F at x € E,
Hence

BF (%) b - F(xX) Il & N ILX,= X, 0 1Al

for every X,, X, € E . Sinee hé€ X,h #+ 0 is an
arbitrary element of X , we can choose it sueh that

LF (X)) =F(x) 1 25 IFTx)-Fiix) 1 .
Thus

(4) I F/(x,) = Fx)h &€ 2N 1 X, =X, 1

for every X,, X, € E .  Therefere the Giteaux diffe-
rential is uniformly eontinueus in the aomé of the uniferm
eonvergense of the transformatioms im (X —* YY), Thus

F'(x) 4s the Fréchet derivative for every x € E . Fixing

x*¥e E s We have that

NF (X)) & IF(x™i+ 2NK
for every x € E, where K .“:m Il x-yll < co .
Thus F (x) 4is unifermly boumded om E . Im view of the mean-
value theorem F 1is Lipsehitzian on E . Using the first
part of Theorem 4.2 (11] we see that F is umiformly Fréehet
differentiable on E . This eompletes the procf.
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Remark 1. From theorem 1 it follews that F is boumled
on each comvex closed subset P of E and that IF’'(x) I £
£ A& uniformly with respest to x € E ., The assumption
that Y2 F (x, &, &) is demicomtinucus at (0,0)
uniformly with respeet to x € E can be replased by the
stronger one: | V2F(x, 4, k)1 € M Il A Il 4]
holds for every x€ E and h, k € X; (M>0) .,

Corollary 1. Let X, Y be limear mormed spases, F: X —
—> Y a mapping of X dinto ‘Y having em D = {fx e X :
Ix Il < R 3 the first and seeomd Giteaux differentials
VF(x,H), V2F (X, , 42 ) . Suppose that VF(0,h)=0,
IveF(x, , RN & MlAll I4ell for every h, k€ X and -
x € B,

Then F 4is Lipschitziam on E and possesses the Lipsehitsz
Fréchet derivative F’(x) en E . Furthermore, F is uniformly
Fréehet differentiable on E .

Theorem 2. Let X, Y be linear rormed spaces, F: X — Y
a mapping of X into Y having on a comvex bounded opem sub=-
set EC X the first and second Giteaux differentials VF (X,
), VEF (X, 4, 42 ) . Suppose that fer an arbitrary
(but fixed) element h € X VF (x, &) is denmi-
continuous ia x € E and for every x € E VE(x,#)
is demicontimuous st h = O ., Assume that V2 F (x,H, KR )
is demigontinuous at (0,0) umiformly with respect to xe€ k.

Them F 1is Lipschitzian oa E and pessesses the Lipsehits
Fréchet derivative F’'(x) em E . Moreover, F 1is unifernly
Fréchet Adifferentiable on E ,

Proef. The proof depends on Preposition 3 [2] and the ar~
guments similar to that ef preef of Theorem l.
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Let X X, be two arvitrary elements eof X . Ve
use the fellowing signifiocatioms for the followinmg subsets
of X :{X X=X +t(X,~X,), t€<0,4>F=<Ix%,,X;>
Lk X, = X+t (X, X,), te€(0,1)}= (Xxy, X5 ) -

. Theoerem 3. Let X, Y be limear normed spaces, F: X—
—> Y a mappimg of X inmte Y , havimg the Gitesux diffe-
rential VF (X, ) em <X,, X, > c¢ X . 1If fer se-
me e*te Y

(53 (VF (X ,A)e*)<ca < (VF(X,,~)e*),

where A = X, -~ X, them there exists X, € (X,, X, )
sush that @ = (VF (X,, A ), e* ) .
Proof. Set ¢ (t)=(F(x +th),e*), te<0,1>.
Them there exists ¢ '(t) and g'(¢) = (VF (X, +
+ th,h),e*). According to (5) g’ (O)<a < &' (1) .
Simee & possesses the derivative & (¢#) omn < O,1 >,
¢ (%) sssumes all values between ¢ (0) amd @7 (1) .
Therefore there exists O € | 0,1) sueh that a =
= g (8)= (VF(X,, #),2*), Xo= X, +60h .
:l‘_hm_{. Let X, Y be limear normed spaees, F: X — Y
& mapping of X inte Y . Suppese that F is a sontinuous
mapping on {(xy , X, > c X havimg =r-th Gateaux dif-
ferential V™ F (x, A, - Ao ) o (x,,X, ).
Assume that there exist the poimts x () - Xy, Xy > 5
(i=1,2,0.m+1), >‘“’=-'°Q+t_-—(0<,_-x,, ), where 0 £ £, <
<ty<o.<t, £ 1 , suehthat F(x“) =0,
(e, 20 m+ 1),

Then for every <* € Y*  there exists

- ¥40 -



f(e*) e (x,,X,) sueh that (V*F (§, h, h,...

o), e*) =0, where h = X, - X, -

Proof. If = = 1, them our theorem is valid secording
to ordinary Roll ‘s theorem. Suppose its validity for = - 1.
According to Roll’s theorem there exist 6,, 8,,..., 6, ,
t, <6, <t <8 <ty< .. T, < 6, < thyq
sueh that ¢’ (63 ) = 0, (4 =1,2,... n ), where
@ (t)=(VF(X,; +th, ), €*) . Apply Theorem 4 to g(t) =
= ¢’(t) amd the interval < 8,, 6,, > . Then there ex-
ists O € (9,, 6, ) such that ¢ (8) = 0 .
But this denotes that (V*F(x,+Oh, h, b .- 1), e¥)= 0 -

Lemma ). Let X, Y be limear normed spaces, F: X — Y
a demicontimuous mapping of X into Y . Them for any posi-
tive number ¢ the set E (¢c)={xe X: I F(x)Il £ ¢ ¢
is clesed in X .

Preof. Suppose that X —» X, X, € E(e), X, € X .
Simee F 1is demicontimuous, F(x,) <5, F(x,) ., as

Il Fi(x, )l £ Lm | F(x, )l £ ¢ , we have that X, €
m ¥ oo

e E(e) .

Theorem 5. Let X be a linear normed space, ¥ a Banach
spage, F: X — Y & demicontinuous mapping of X into Y .

Then the set Z of all x € X where the Gatesux diffe-
rential VF (X, 42 ) exists is « G —set.

" Ppeef. Let h be any (but fixed) element of X , Set
$t, 0, )= L(Flx+th)I-F(X N, Z,  c {xeX: 0<
<itlgd 0<1¥igh et x,h)-ft)x, mr1EL 7 -

Aceerding te lemma ) Z‘mm‘ are clesed sets in X . Set
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[ 4

Z=YZ.,.,Z -“fﬁ’ Z, - Then Z is & [ . -set.
Suppose that~ VF (x,, 42 ) exists. Them for any imteger
R there exists o) > 0 such that if O < [+ | <

< o ,thea N4 (%, X, RI-VF(x,h)lIl & L .

¥ m<d eo<Iitiél,o<itrs L,
then~

L4 (t %o, )= (¢, X,, 201 & L .

Hemee X, € Z,, farevery m (m=1,2,...) and thus
X, € Z ., Suppose that X, € Z ., Simee x, € Z, for
enrﬁ m (meq,2,...) there exists m, sueh that if
m & m, (m" & m), then

ek %, o< £k s, mon e L .

, 1
Simf Y 4s complete, there exists m% Flom » %, ) =

= #4(x, h). 12 0<1tl & 3L, thn
N4t %, )= $(fh , %, h)N & L .
Heonee

B0ty Xy )= £% (X0, I & || £ (2t X, B) =
= F 0 ke, NN # (X, =, X, RO

+ UG %, )= #(x,, N — 0 as t >0,

Therefore VF(X,, ) = f¥(x,h) .

Corellary 2. et X be a linear normed space, Y a Ba~
nash space, F: X —» Y o demiecomtinuous mapping of X imte
b N

Then the set P of all x ¢ X where the Giteaux diffe-
tential dces net exist is o G'd‘a' ~-set.
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4. Copvex functionals. We shall deal only with resl
functionals defined on real linear normed spages X ., Ve shall
say that ¢ : F — E, ( E, denotes the set of all real
numbers) is & comvex functional on X if g (tx + (1-1 )y)s
gty (X)+(1-t)g (4) for every X, 4 € X and
t€<0,1>.If < 1s a convex functional defimed on &
convex open subset D eof a limear topolegical spaece L, them
there existe V, 9 (X, /o) fer every x € D , where

Vo (x, )= lim LLXE thlo) ¢ =0).

+

Moreover, the one-sided Gdteaux differential V, ¢r (x, &)
is positively homogeneous amd subsdditive im h e X (ef.[12],"
ehapt.10).
Set V. @ (x,h)=-\ ¢ (x,~4 ). We shall prove
the follewing: B
Lepma 2. Let ¢/ be a conmvex fumetional defined om @

limear normed space X ., Thea
(6) g (X)—cp(x-h )€ \Lg(x, ) £V g(x,*h ) & p(x+h)-G(9)-

for every x€ X, he X .
Proof. From (10) [ 12,chapt. 101 it follows that

(1) G(X)-G(x-h) £ VX, h)& @(x+h)-FCX) .

We shall prove that @ (x) — @ (X~ 4) & V. & X Hh).
Since (O<t< 1) . |
Glx-th)=g((1-tIx+1t (X- ) £ (1-3)op (X)+EP(X~P),

j{; (@(x)-g (x-thN 2 {—(q(.x)— (1-t)p(x) -t P(X-H))=

= QX)) - Cf(.x-h.) .
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Henee
(8) V.g(x, ) 2 g(x)~Pp(x~-h) .
Replaeing iz @(X)- @P(x-A) £ @ X+Ah)~ P(x) the

element h by th and divide by t we have

p(x) - g (X ~th) & plx+th) - X
t t

(9)

Henee V. g (x,#) & V., @(x, ) . This relation
together with (7),(8) gives (6). This concludes the proeef.
Remark 2. Let ¢ be a comvex functienal defined om a li-
near normed space X . Then V. @ (X, - ) is positively
homogeneous and cencave functional im h & X for every x € X.
Indeed V. g(x, L +h)= -V @(x,~(H + &)
s Y, @(x~-kR)E Y glx,~h)+V,glx,— k), we
have that

1) Vg lx, h+ik) 2 Vg (X, )+ Vg, &) .

Simee (t > 0, « > 0)

ot P(x)-@(x-ath)
To

LL_ () = Plx=~ATh) =
Vg (x, o ) 1is pesitively homogeneous in h € X . This
faet and (10) imply that V. & (X, 42 ) 1s comcave in he

e X.

In next we use the following argument:If Cy 1is a convex
Lipsehitzian functional with constant M > 0 and V|, ¢ (%, ,
A )  denotes the one-sided Gatesux differential of ¢ at
x € X , then

(11) | \{‘_cy(a,,,h,,)- V, g(%e, 4,01 £ M W, -, Il
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for every .h,, #, ¢ X . This fact follows at omce from
the defimitien ef \{,_ @ (X,,4# ) and the preperties of & .

Theorep 6. Let X be a separable limear normed space,
g: X = E, = comvex Lipsehitziam functiomal om X . Then
the set Z of all x € X where the Gateaux derivative
@’(x) eof cp éxists is a G -set of the second catego-
ry. Mereover, if X 1is a Banaeh space, then Z contains a
G =set which is dense in X .

Proof. The proof of this theorem depends on some argu-
ments of S. Mazur [13,§ 9]. Let &, , A, ... be a
countable snd dense subset in X, Z, = {xe& X: V, &(x,

&

I ) ==V g(xX-H, ), m=1,2,...5ince ¢ is convex,

Vif (Xo, 4 ) exists and (11) is valid for every 4#2,, 'hz €
€ X . Tus V ¢ (x,,4% ) exists if and omly if

Vg (%, M)=-V, @ (x,~h), € X . Hemee x, € Z e

& V. 9x,, M, ==V, @(X,,~#, ) in view of continuity of
V+ g (X, 4 ) imn h and separability of X . Therefore
Xp € Zyy (= 4, 2,00 ) and Z =%§1 Z_ . Aceor-

"m

ding to lemma 2 and (9) set

Zppg= 1% € X: %[cy(.x,+th,,,)‘ 2 (%) +cplx, -

~th,)] = %’; ; for some te 0,97y 2
for any integers n, p, q . Since < is continuous, Z'nf»g

sre closed. Obvieusly X - Z,, =#g4 Zmng and X -

-2, (m=1,2,...) are Fs —sets. Hence Z, are
Gd' -gets., The sets Z, (m = 1,2,... ) are dense in X .
Suppose that x* e X, x* & -Z-,n_ . Then
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Vig(x, h 14 -V p(x,-Hh, ) for each x & U (x*)

of some meighbourheod U (X*) o x*: lx-x*|g&
£n (£ >0).5e8 $(t) = Q(X* + t ) for
t € (~0o,+0c0).Sinee G 1s Lipschitzian, f£(t) posses-
ses the derivative £ (t) almest everywhere. Let t, be
such that | t, | & -]7"":-"— and suppese that f'(t.)

‘exists, Set X, = x* + t, &, . Then lx-x*I £ 2

.‘ D‘a € Z,n' ; 10.0 V‘-q(‘xp7’h§‘,)= - \./‘.C?(“ar"'h‘n)

k'

whieh is a comtradictiom. Hence Z, are dense ia X (n =1,

2,0..) and X =2 are mondense. Since
X-2Z= x~ﬁ5’l z"‘-.mt-')'t (X _Z"".) ’

X -Z is & set of the first category in X , se Z is the
set of the secomd category. Being Z an iatersectioa of Gd- -
sets, Z 1s also a G, -set.

» Suppose that x, € 2 1s an arbitrary point of Z .Then
Vg (X, h)= V g (Xp,h) = L@ (x,, ). Since V, &5 (X,,#)
is subadditive in hex and V. @ (x,, £2) satisfies (10),
we have that V@ (X,, )= Dy (x,, #2) for every x, €
€ Z . According to (11)

| Dy (X,, #,)~ Dy (X, #y) 1 & Ml Ay~ S,

for every x, € 2 and A,, i, € X . Hence D (x,,H)
is continuous at h = O for every x,€ 2 . Thus Dg (X,,#)=
= @'(X, )% . If X is complete, according to well-known
theorem 2 contains a G, -set which is dense in X ., This
completes the proef.

Remark 3. S. Mazur [13,§ 9] has proved the following re-
sult: Let o : X — E. be a functional on a separable Ba-~
naeh space X sueh that QP (X+y) € () + P(Y),
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g(tX) mtyx), (Y& M I x | held for every x ,
F€X, ¢+ 2 0 (M>0) . Then the set Z eof all x€ X where
the Gitesux @ifferential Vcp (X, v ) exists is & G-
set whigh is dense in X, X = Z is the set of the first ca-
tegory.

The result ef S. Mazur is comtaimed im Theorem 6. Ia fact,
subadditivity and pesitive homegemeity of & imply eonvexi-
ty and subadditivity with < (x) € M Il X I  give a Lip~
sehits comditien of < . Indeed,

QX)) = P (Xym Xg+ Xy ) o PUX= Xy )+ P Xy )
implies

G(Xq) = R (X)) & QX=X ) & M N x -, e

Regark 4. The following theorem is well-kmewn [14,p.336]:
If T: D — K, is Lipsehitzian on a beunded domain D of
R, (E,, denotes the euclideam n-space), them T pouéeuea
a total differential almest everywhere. The preef of this in-
teresting assertion depends on lemma 1 [14,p.335] and Theorem
of H. Rademacher [15] which proof is rather complicated and
not quite easy. Since every linear normed space X with
dir X = n is homeomorph to E_, this result can be extended
at onee for such spaces. Combining Theorem 6 with the proeeof
of Theorem 1 [16] and aware that every limear normed space X
vi#h dim X < o is a Banach space we can preve simply
(witheut theory of measure and imtegrals) the fellowing par—
tial essertiop: Let X be a limear normed space with 4im X <.
< oo, g: X — E,  a comvex Lipsehitzian fumctiomal
on X . Then the set Z of all x € X where the Fréchet de-
rivative ‘(X)) of ¢ exists is & Gy -set of the se-
cond category and henee it contaims @ G~ ~set which 1s den-
se imn X,
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" Lemma 3. Let < be & continuous ecomvex funetional om
a Banach space X . If there exists the Gateaux differential
Vg (X, ) of g at x,€ X, then Vg (o, , )=
=q’(X, )4 , vwhere G7(x,) denotes the Giteaux deriva-
tive of & at x, .

Proof. Since VY, ¢ (X,, /o )  1s subadditive im h
ama V. g (x,, /) satisties (10), Vg (X,, £ ) =
= Dop (X,, ) 1n view of V, g (x,, A)= (X, )= Vo (x,,h)-
Aceording to Baire’s theorems D, )= (X, Lo

Theorem 7. Let &  be a convex continuous functional de-
fined on a Banach space X .

Then the set Z of all x € X where the Gitesux deriva-
tive g (x) of ¢ exists is a Fp--set.

Proef. This assetion follows immediately from Lemma 3 and
Theorenm 5.

Corollary 3. Let ¢ be a comvex continuous functionmal
on & Banach space X . Then the set P of all x € X where the
Giteaux derivative does not exist is a G, -set.

Now we shall investigate the properties of the one-sided
Gateaux differential V. ¢ (X,, 42 ) of convex functionals.
These functionals have been used by M.Z. Nashed [5) to charac-
terization of best approximation in limear normed spaces. Re-
call that a functienal <y (X ) is said to be weakly lower-

semicontinueus at x, € X if X, <, x, implies

9(X,) & Lm o (X_ ). It is easy to preve the following
m e
Propositien 1. Suppose that <& : X — E_ is a fune-
tional defined on a linear normed space X . Then g 1is

weakly lower-semicontinueus if and only if feor every real con-
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stant ¢ theset E(e) = {x 6 X TP & e ? is weakly
clesed in X.

From this proposition it follows the following consequence:
If ¢:X—~E, is a quasi-convex [21) (i.e. £(tx + (1=-t)x,) =
£ max(f(x),f(x,)) for each x, x,e X, t €<0,1>) and lower-se-
micontinuous functional, then ¢ is weakly lower-semicontinuous.
Indeed, E(c) ={x € X: ¢ (x) £ ¢ } is a convex closed set for
each real number ¢ and hence it is weakly closed.

By Proposition 1 ¢ is weakly lower-semicontinuous. This re-
sult has been obtained by B.T.Poljak [21] (for convex functio-
nals cf.[17]) by an another way. This assertion together with
The9.2 [ 7] gives some conditions for extrema of such functio=
nals in reflexive linear normed spaces (for futher results cf.
f211,061).

Theorem 8. Let ¢ : X — £, be a convex functional de-
fined on a linear normed space X . Suppose that & is conti-
nuous at x, € X .

Then: &} Y, @ (x,, /o ) is a bounded functiemal in
he X; b} V, ¢(x,, /o) is continuous and weakly lower-
semicontinuous in h on each bounded open convex subsét E of
X.

Proof. a) Suppose that ., — O, 4, € X . Accor-
ding to Lemma 2
Gl )= P (o= My ) & Yy p (o, P ) & o (o + 1, ) =P (X, )
Since ¢ is continuous at x, & X, V, @ (x,,#,)—+ 0 as
R —y 0o . Hence V, o (X,, /1) is continuous at h = 0.
Thus for any positive number M > O <there exists o > (@ such
that 1f (Al & 0%, then |V, @(x,, )l & M.
Since \./‘_ & (X,, /4 ) 1is positively homogeneous in h ,
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‘vu have that

W, (x,, )1 & ) BEE %q(x.,-n"%’r & Mm™" Il
for any h € X . b) According te a) VY, @ (X,, ©2 ) s
finite on E . If Mc E 1is an arbitrary open bounded sub-
set of E, then V, & (x,, 4 ) 41s bounded on M . Accor-
ding te [18,chapt.II,§ 51 V, ¢ (X,, 4) is continuous
in he€ E ., Being continuous and convex im h , V, ¢ (x,, &)
is weakly lower-semicontinuous on E . This completes the proof.
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