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REMARKS ON THE DIFFERENTIABILITY OF MAPPINGS IN LINEAR NORMED
SPACES
Josef KOLOMY , Véclav ZIZLER, Praha

l. Introduction. In last time a great attention is paid
in developing of differential calculus for metric and non-met-
ric structures., Various definitions of differentials and deri-
vatives have been propmsed for instance by J. Sebastific e

Silva [1), G. Marineseu [21), A.R. Fischer [3], J, Gil de La—
madrid (4], E. Dubinsky [5), M. Sova (6], G.A. Reid [7], V.I.

Averbuch, 0.G. Smoljanov [8], H¢H. Keller (9] and others.

The purpose of this paper is to develop (cf. a footnote
on .53 {10 , § 31Hkhe theory of weak differential and deri-
vatives in linear normed spaces, examine these definitions to
derive some basic relations among them and to establish some
properties of mappings owing these differentiala, The connec-
tion between weak differentials and derivatives is also consi-
dered and some sufficient conditions for linearity and conti-
mity of such differentials are derived. Some assertions con-
cerning these questions are pronounced also for Gateaux and
Fréchet differentials.

The notions of weak differentials and dorivétivos seem
to be sometimes convenient if we deal with differential opera-
torl in immer-product spaces, for instance in sz . This
note 1s a continuation of our considerations [11] ,[12]).
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2. Hotgtione and definitiops. Let X ,Y  be linear
normed spaces, ( X — ¥ ) the space of all linear continmu-
ous mappings of X imto Y, X* (or Y¥* ) a dual spa-
seat X (or Y ), (x, ¢*) the value af e* & X*
st the point X € X . Let D={xeX: IxI &R}
denote the closed ball in X of radius R > 0 about

the origin; S the boundary of D . We shall use
the symbols “—> “ and "-%,"  to denote the strong

and weak convergence in X , VY (or in X™, ¥* )
respectively. Throughout this paper by a word "space" there
is meant a real space. A mapping F : X — Y of X
into Y  is said to be weakly (demi-) contimuous [14] at
%, € X i x ¥y X, ( x, — X, inplies
Fexp) ¥, F(X,) . Amapping F:s X —> VY is
called compact (weakly compact) on a set M = X  if for
every bounded subset E ¢ M the set F(E ) is com-
pact (weakly compact)e By VF (x,, A ) (by DF
(X,,4) ) we denote the Giteaux (a liner Giteaux) diffe~
rential of a mapping F : X — VY at X, € X res-
pectively. By dF Cx, , o ) we shall understand the
Fréchet differential of F at x € X (h € X) of.
[10,chapt.I). A mapping ~ F : X — VY is said to pos-
sess the G8teaux (Fréchet) derivative at x, € X if
DF(Xp, ) (dF(Xo, /) 18 bounded in fo on so-
B S - |

3. Now we introduce (cf. also a footnote on p.53 [10,
§ 3]) the notions' of weak GAteaux, Fréehet differentials and
derivatives, examine these definitions to derive some pus..
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relations among them and some properties of qappim having
thege differentials. ‘

Definition 1. We shall say that a mapping Fs X — ¥
possesses at X, € X a weak G8teaux differential '
VF(x,, ) 1

A
m( E(Xo + t&;)-F(x,)’ e*) - (VF(x,, ), e*)

exists for every 4 € X ama e* € Y* .

¥ VF (X, #) 1s a linear (i.e. additive and
homogeneous) mapping in 41 , we denote it by f)F’(.x,,h).
We shall say that a mapping Fi: X —=>Y has @ weak
Giteaux derivative F7 ( Xo) at X, € X if ’
BF(x,Jn) is bounded on scme S, -

Proposition ]. Suppose that a mapping F : X — VY
posgesses on a convex subset E c X a weak GAteaux A4if-
ferential (/‘F(.x,;h). If X, xX+H#h € E are
two arbitrary points of E , then
(1) (F(x+h)-F(x),e¥) = (VE(x+Th,h), %),

*

Where - ¢ is an arbitrary poiant of Y* and 0 < T =

= T (e*) < 1.
Proof. Set g (X, ™) = (F(x) €¢*) . Then

%[y(m-th,-e*)—gp(x, €*))= (%—[F(x-o-th)-F(.x)J,-e"‘) .

From this equality we conclude that there exist

Vg (X, h, e*) = (OF(.x, 4 ), e*), Since g (x+ b, e*) -

- g (X, e*)= Vg (x+Th,h,e"),0<r<1,we obtain at once (1)
Bropopition 2. Suppose that a mapping F : X —. VY

possesses a weak Giteaux differential % F(¢(x, ) 3

some neighbourhood U (X, ) of X, € X . Assume that
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vF (x, /o ) 4s demicontinuous at the poimt X, € X
far every (but fixed) A € X .
Then VF(x,,#) = DF(x,,h), h e X.

_ Eroof: depends on Proposition 1 and arguments similar to
that [10, § 31 .

Rempark 1. If F : X —# VY  1is a linear mapping of
X into ¥  demicontinuous at © € X, then F is
continuous in X ., Indeed, it is easy to show that F
maps each bounded subset of X into & bounded subset of
(as the weak boundédmas is equivalent to the strong one).
Linearity of F gives the continuity.

Analysing the proof of Theorem 3.1 [10] and using Remark
1 it is easy to show that this theorem holds in the more gene-
ral setting:

Proposition 3. Let the following conditions be fulfilled:
1) A mapping F : X — VY has a Gateaux differential
VF(x, ) in some neighbourhood U(X,) ofx, e X
and VF (x, &) is demicontinuous at the point
X, € X for an arbitrary (but fixed) 22 € X . 2)
VF (x,,4 ) is demicontinuous at =8 (I6I=0).

Then VF (X,, ) = F/ (x,) ~o , where F/(x,)
denotes the GAteaux derivative of F at X, .

Definition 2. A mapping F : X — V¥V  is said to
have a weak Fréchet differential & F (X, , 4 ) at X, €
€ X ir
(F (%t R V= F(X), %) = (A F (5,40 ), €% )4 (& (Xo, ), €%

holds for any €* € ¥* , where dF(x,,h) is
linear in h and .
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(& (Xp, A1), %) ]

LA T+l = 0.

I AF (%o, 2) is bounded on some S, ,
we shall say that F  possesses a weak Fréchet derivative
~
F(Xp) at X, .

Propogition 4. The following assertions are valid:
® If F  has a weak GAteaux differential at X, € X »
then F  is demicontinuous at X, under an arbitrary
directiom -, i.e. tng"»glﬂ-‘(.x,+ th)-F(x,), e*)l =0

for any £* € Y*, b) If F possesses a weak Fréchet
. derivative F’( X,) at X, , then [  1is demicomti-
nous at X, € X ,

Broof. For instance b). Suppose thet b, e X, i — 0. -
For any €¥ € Y* [ (Q*(Xoy, M), ¢*) 1 & K |l n, .
So that

ICF (X, + N, )= F(x,), %) &

&lle*l Brex )l b, I+ K I A 0 — 0,

Hence F (X, + A4, ) % F (x,).

Broposition 3. Suppose that F ¢ X — Y has a
weak GAtemx differential V F (x, , ) at X, € X.
~
Then Y F(Xo, 4+ ) 1is demicontinuocus at &2 = 0 un~-
der an arbitrary direction « (/l il = 4) if and on=-
ly if F  is demicontinuous at X, under the direction
A .

Proaf. Suppose that [  is demicontinuous at Xo
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under the direction .« . Then for any e* ¢ ¥* and

-E- > 0 there exists a positive number ©)  such that

for It < d:,' ~ there is ICF(Xo + tae) —F(X),

™) | < % . Moreover there exists o (ac) > 0

such that for |t | < O  “there is | ( & (xo,

tuw),e*)l < —% It | . set o= Min(d;,d; ), then
for |t | < 0  we have

I(OFQx.,tu),c*)! £ | (F(Xo+ ta)- F(X,)e®l+

+l(8(.x,.,tu),e*)l< _e£ (1+d; ) -

1r Lm | (VF (o, tw), e*)l = 0 foreny

et e W* , then the inequality

LCF (ot tw )= Flx,),e*)| & [(V Flxe, b 3, e*)+

+ (& (X t i), ™))

implies immediately the first assertion of our proposition.

Theorem 1. Let X be a Banach space, ¥ & linear

normed space, F : X —» Y  a demicontinuous mapping of
X 4in ¥ . Suppose that there exists VF( X, )
in some neighbourhoed U (X, ) o X, € X . Assume that
VFe x; 4 )  is demicontinuous at the point X,
an arbitrary (but fixed) S e X .
Then VF (X, M) = F (Xo) /o , vwhere E’(.x,)
denctes a weak Gateaux derivative of F  at Xy .

for
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A :
Proof. According to Proposition2 V F( X,, A ) =

~
= DF(X,, ) . Let e* € Y* be any element of
Y* | Then

(-%EF(.X,‘t-th)—F'(.x,)J,-e,*) is a continuous

linear functional in 4 on X ; because Ay, —+ A
implies

(L(Flx,+t by, ) - Fx, 0, %)~ (L (Fyrth)-F(x,» , e*).

rx t,— 0 as m —¥ o0 , then

A * m (1 - *
(DF(x,,n)e )sﬂ%(tﬂfF(%-rtnzh) F(x,)1,e*)
and hence ( D F(x,,#),e*) is a point limit of lirear con-
tinuous functionals defined on X . According to Baire’s

theorms (D F (X,, ), *) is continuous in
b € X . Hence D F( x, , /v ) is demicontinuous in

h € X .According to Remark 1, PFc X, ,# ) is conti=
nuous in S € X . Thus ﬁF(x,,h) = .E)(x,)/h .
This concludes the proof.

The following theorem gives sufficient conditions for
the weak and strong continuities of the smooth mapping in li-
near normed spaces. In such way this theorem completes the
reauli;s of [13, Theorems 1,2,5].

Theorem 2. Let X, ¥ be linear normed spaces,
F: W —Y a napping of convex bounded subset W & X
in Y . Suppose that F has a weak Fréchet derivative
£7¢x) on W having the property that F’(x) is

compact on W . Then F  is weakly continuous. Moreover,
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it F is compact on W , then F  is strongly conti-
nuous on W .
Broof. Use the arguments similar to that of [10, § 4.31.
Theorem 3. Let X, ¥ - be linear normed spaces,
F: X — Y amapping having a wesk Fréchet differential
AF(x,, /) (or the Fréchet differential o F(iX,,
A ) et x, € X ., It F 1is weakly compact in -
some neighbourhood U (X, ) of X, , then dF(x,,H)
(or dF(X,, ) ) is weakly compact on X - ‘
Proof. We prove our assertion for a weak differential
adFc¢ Xo, A ) . Suppose contrary, there exist a positi-
ve number €, , & linear functional e e Y*, Ilefl=
= 1 and a bounded sequence {.h, 3 € X, (A, Il &

£ R) such that

(L F Xy, by )= AFCX,, B )€l 2§, .
Choose a positive number t  such that X, + t.h, € U(X,)
for every m (m =1,2,...) .We have

[(F(X+thpn)- F(x,+th, J,e*)l 2

2t 1(AF (Xl ) -dF(x,h, 0,5 -

(D (% t 1), €0 ) = (D (%o, E M, ), €)1 -

But this inequality leads to a contradiction with our assump-
tion.

Definition 3. We shall say that a mapping F: X— VY
has. a weak bounded differential & F (X, , A )  if: a)

for any €™ € Y* there existe
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Lim (L LF(xrth)=Fx )1, e%)n(@F G, 1), 2%)

unifarmly with respect to I A ll = 1, ) AF(X,,4)
is & bounded mapping on S, .

Theorenm 4. Let X, ¥ be linear normed spaces,
F: X—Y amappingof X into Y  having in some
neighbourhood U(X,) of x, € X a weak GAteax dif-
ferential U F (X, , A ) . Suppose that for any e*e >*

Aim (VF(x,+th,h) - VF(x,, ), e*)= 0

holds uniformly with respect to 4. € SR and that
VF (Xo , ) is bounded in A on S, .
Then F  possesses a weak bounded differential
dF(x,, A et X, € X.
Proof. The proof depends on Proposition 1 and the argu~
 ments lim:llax" to that of the proof of Theorem 1 [12],
We shall say that VF (x, /o ) 1is continuous at
X, € X and strongly continuous at H e D, (I x I &
£1)c X Jointly if X, x,, #,. % h h eD hed,
imply VF (Xp,Mp ) —+ YF(X,, #, ). The following
theorem shows that the assumptions of Theorem 2 [1l] can be
weakened.
Theorenm 5. Let X be a reflexive Banach space, Y
& linear normed space, F : X — Y & mapping of X in-
to Y , Suppose that F  possesses the Gateaux differen-
tdal VF(x, 4~ ) 1in a convex neighbourhood U (X, )
of x, € X, Ift VF(Xx,4 ) is continuous et X, €
e X and strongly continuous in .\ € .‘D,' Jointly,
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then F  possesses the Fréchet derivative F“(x,) at
X, VF (X, ) = F' (X)h and F’'(x,) 1is
weakly compact on D, .

Proof. From our assumptions it follows that VF(x,,# )=
= DF(X,,N)= F/'(X,) /2, where F’(X,) denctes
the GAteaux derivative of F at X, . Since X is
reflexive, F(’_(\Xo ) is weakly compact on X , Let &
be an arbitraz;y positive number, A a fixed (but arbit-
rary) element of X , Then there exists a constant

d;(5)>0 suchthatifltl<d;(5) , then

(2) 1 wex,, thrI < &,

where @ (Xo, th )= F(X,+th)-F (Xo)- VF(x,tHh) -

Suppose on the contrary that

om || A -
(3) tl_(fr; I 7 @ (%, th)l 0
'1s not uniformon Il #v ll = 41, H € X ., Then there ex-
iets €, > 0 with the following property: for every m
(m=1,2,... ) there exist 43, € X, 4 |l =1
and t, suchthat 0 < |%, | < % and
1

Since X  is reflexive and Il A, | = 1 , bassing to a
subsequence {1, " §  we have that h”*—'—":b 4, € X.

)’,4‘

We have
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F(x.+t%ly%)— Flxy) = F'("‘”tmhm* @ (x,,t,,.l‘,% ),

(5)
F (o +tmp #0) ~ F(Xo) = Xy ) tp Mot @ oy gy P ),

Let €. € ¥* be any arbitrary elements of ¥* , From
(5), using the mean-value theorem, Hahn-Banach theorem and ad=

ding and substracting F’ (X, ) t,bhlb, , We obtain

1 1
] -f;;w(\x,,tﬂkh,,‘u)ﬂ & ”m&) (X, t,mv"ll, Yo+

+ F’(\xo*‘xw“t'whhwn)hwh- F'(xe) b, Il +

+ WF (X + B, ta, H0o) 8, - F/(Xe) P I+
+ NF (), = F/ (X)) Pm, I

where 0 < Olpge <1, 0< Pt < 1, (b=, 2,..).

since t, — 0, ,h‘ml"—», Moy Iy, )= 4 and

0<oc,.,ht,,mllh,,~bu=oo tm, —> 0 &s MR -—vo0,

Ko + OC,‘,b t”“ —y Ko
and hence F’ (X, + %fﬂ*hﬂ“)hw*—’ F'(xo)d »
Thus

Il -{'—;& W (Xo, toy Mg VIl — 0

whenever MR —>» 00 . But this contradicts with (4), This
completea the proof.

We shall say that a weak GAteaux differentialyF (x,h)
is demicontinuous at X, € X and weakly continuous on '
D, (lxll & 1)c X Joimtly if X, — X,, h, 2> h,
M, , & € D, imply VF'(o(Mh”)-"‘Lr VFE(x,, 4o ).
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Theorep G. Let X  be @ reflexive Banach space, Y a
linear normed space, F 3 X — VY a mapping of X into Y.
Suppose that F  possesses a weak GAteaux differential
VF(.X, 4 ) in & convex neighbourhood U(X,) ofx, € X.
bed VF(x,h) is demicontinuous at X, € X and
wegkly continuous on D., Jointly, then F possegses a
weak Fréchet derivative F7( Xo) at X, and F (x,)
is weakly compact on D, .

Proof. To prove this theorem use Proposition 2 and simi-
lar arguments as in proof of Thearem 5.

Definition 4. We shall say that & mapping F : X — V¥
has & local weak uniform Gitesux differential ¢ F ( x, A )
in By (Ilxll < R) ifforany & > 0, x, € By

e* e Y* and s 6 X there exist two positive con-
stamts OV (E, X, ¥, ), 7 (e, X,,€* 4 ) such that
if 0 <Itl < &, then

(L S cx,thr),e*) ) < &

for every X € B (X, ,7 ) n Bg , where

B(X,th)= F(X+th)-Flx)-VF(x,th), Bby,7)=
s{xeX: X=X len} -

We shall say that amapping F ¢ X — ¥ is said to
be locally ﬁniromly demicontimuous in By c X if far
every X € DBy there exists a neighbourhood U(x, ) of

%X onwhich F 4is uniformly demicontinuous (cf.[13]).
Theorem ¥ .Suppose that a mapping Fs X —> ¥ has in
By a weak Gitesux differential V F (x , 4 ) which is

demicontinuous in X € B, . Then F possesses & local
weak uniform Gteaux differential in Bg . Conversey, it F
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1s ioetlly uniformly demicomtinuous in By and posmses-
ses a local weak uniform GAteaux differential V F (x,4#)
in B , then DF(x , /4 ) 1is demicontinuous in

XCB"

1]

[2)

(3]

(4]

(5]

[6]

(7

Progf. Use the arguments similar to that of [11),.
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