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FIXED POINT THEOREMS BASED ON LERAY-SCHAUDER DEGREE  °
Svatopluk FPUS{K, Praha

le Intpoduction. This note deals with the existence of
the solution of the equation Fx = x . The technique used here
is the so-called Leray-Schauder topological degro‘e. This met~-
hod has been largely used by Altman [l), J. Cronin [2], Leray
and Schauder [6) and others.

In this péber there is given a generalization of Alt-
man’s result [1) (see Remark 2). Theorem 8 is the extending
of Theorem 7 for a special case.

Other theorems are well known, but the proocfs are based
on topological degree theory (see Theorem 1 and Theorem 10),
These theorems were proved in [7), [4] resp ectively, by an ano-
ther way.

Using the theory of topological degree and the proper-
ties of Minkovski’s function we prove Schauder s fixed-point

theorem for a convex get (compare [2], p.139).

£a Terminology and notatiops used in this paper. Banach
space is denoted by X, its normby I | and O  is the ze~
ro element in X . The symbol f: M —> X denotes mapping de-
fined on M © X with range in X . Let be I identity map-
Ping in X and F be completely continuous operator defined
on M € X ,The ball Ko in Banach space is set of all x ,
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IxW <R and Sp 1is its boundary. Let M be subset of X
and £: M — X . The symbol M denotes closure of M (in
normof X ), OJM its boundary and f£(M) the image under

the transformation f .

3a.Brouwer’s apd Leray-Schauder’s degree. Let G be a

bounded and open subset of X , f: G— X and z, € X =

- £(9G) (arbitrary but fixed). If X 4s finite dimensional
Banach space let f be continuous mapping on G and in ano-
ther case let be £ =1 - F , where F is a completely conti-
nuous operator.

Degree a(f, G, z,] has following properties:

I. 4afl1,G,32,] =1 for 2, € G.

1. a(I, G, 2z) =0 for z, 4 G.

III. Let G,, G, be bounded and open subsets of X , f:
:G 0 G, —X and z,e X-(£(8G)u £(JG,)), G G,=
=% ., Then is dL[1,6, v G;,2,1sd[$,G,2,1+d[f, G, 2,].

IV, Let dC+f,6G,2 ]+ 0. Then exists x, & G such
that (%) = %, .

V. Finite dimensional case, Let £(x,¢): Gx<O,1)> X
be continuous mapping such that for all x € 0 G and for
all te<0,1> is f(X,t) %, € X . Then

dlf(x,t)6 2,] is constant on (0,1> .

Infinite dimensional case. Let F: T~ X be comple-
tely continuous operator such that for all x € P G and for
all t €€0,1% 18 (I-tF)xs2 € X . Then

dl1,6,2,]J=» dl1-F, G = 1.
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4, Fixed point theorems in finite dimensional gpace.

Theorem 1 ({7)): Let £ be a continuous mapping of f; )
into fintt e dimensional space X and let m be any constant.
Suppose that f satisfies one of the following two conditions:
(1) Fr x € S; such that f£(x) =ax is a € n,
(2) Fr x* € S, such that f(x) =ax is a » m.

Then there exists at least one element x e fg such
that f£(x,) = mx, .

Proof: Let the condition (1) be held. We assume that
for all x € S, is f(x) s mx and we define

Hix,t) = tx = (1=t)(f(xX)= mx)
for all x ¢ K, and for t & <0,1 > . The function
H(x,t) satisfies assumptions in V and we have (by ¥ and I):

dl-fx)+mx,Ke, 01 mdll, Key, 8= 1.
The theorem is proved by the property IV. Analogously for con-
dition 2.
Theorem 2 ([7]): Let £ be continuous mapping of ’R‘R
into X satisfying one of the following two conditions:
(3) For each x € S, there is Ix =f(x)12 >
> I+ + Hx Ui,

(4) For each x € S, there is [x -~ FIXII* &
U2+ 1 x I,

Then there exists a point x, & K, such that £(x,) =
=0 .

Progf: Let the condition (3) be held. We suppose there
exists x € S, such that f£(x) = ax . The condition (3) im-
plies that a %0 and the condition (1) is satisfied. Analo-
gously for the condition (4).
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Theorem 3 ([71): Let f be a continuous mapping of K,
into X eatisfying one of the following conditions:
(5) For each x € S, there 18 |l 4(x)=-x 12 >

2 D4CON2- ux ¥,

(6) For each x € S, there is Pex) - x 12 &
€ NecxNt - Ixi .

Then there exists a point x, € En such that f£(x,) =

Brog : Define for all x & K, g(x) =x - £(x) , The
function g satisfies the conditions of Theorem 2,

Theoren 4 (Rothe): If f is a continuous mapping of
E, imto X such that f£(Sp)c K , then there exists
x, € K, osuch that f(x,) =x, .

Proof: The assumptions in this theorem imply the condi-
tion (5) of Theorem 3.

Theoren 5 (Brouwer): Let M ¢ X be homeomorphic with
in and £ be a continuous mapping of M into X such
that £(M) ¢ M . Then there exists x, € M such that
2o(x,) =x, .

Broof: Let be M=K, . The assertion is valid by
Theoren 4, Let be N = h('fg) where h is homeomorphisme Then
A (K € E“ and there exists w, e K, such
that ¢ A" (W)= w ., The point X, = Kuy ) satis-
fies the equation F(X,) = &, -

Zheorem §: If f is a continuous mapping of K, into
X , there exist a point X, € Ke and a real number A, >
» 0 such that #(X ) = A,

Proof: If there exists point X, € K, such that
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£ix,) = 6 we have A, = O . Let for each x e K,
be f(x) s 6 . Define function g for every e X, as

x
gx) = R » i—féf’)—“ + We obtain 9(&): ER and

x, € K, ouchthat Gg(X,) = X, l.e. f(X,)=q, X, ,

where A, = ﬁ%ﬂ_ﬂ_

Lempa l. Let p beafealnumber, p>0,p#*1
and a» b > O, Let the inequality
‘ Lagn (n-11a-8 > [agn (n-1)](a"- &™)
be satisfied. Then & =Db .

‘m__;. Let p be mreal number, p = 0 , 1 and
a>Db > 0. Then

[rgn (h=11] (a - &) < [agncn-1)1C"- &%) .
Theogrem 7: Let F be a completely contimxo;zc operator
of K, into X and p be a function of Sp into real num-
bers such that n (x> > 0 and (X)) 3= 1 for every
x € S; . Let the following condition be fulfilled for each

xeskz

[ Agn () =11 1% = Fx I > Lagn (2 (=131l Fx ™2 1 i™*%

Then there exists x, é ER such that Px, = x,
Proof: We suppose that for each x € sn is x4+ x .,
Define the operator H (X, t)= X - tFx for every x €
e i“ and each t e <0,1> .
Lemma 1 proves that the assumptions of property V are valid
and by property I and IV we obtain the assertion of Theores 7.
Thegrep 8: Let F be a completely continuous operator
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of ¥, into X such that for every x e S, there is Fx.¢
$ 6 and Fx s X,
Let p be a function of SR into real numbers such that for
each x ¢ § there i8 n(x)* 0, nix)+ 1 . Assu-
me that for all x € Sg ‘
noo o

Lagn (Alx)=1)] lx= Fx I > [ngn tn(x)= DI CUFxIT= Ix 770,

Then there exists the point x,& K, sugh that Fx =
=X, o

Proof; As Theorem 7 but by using Lemma 2.

Repgark 1: In Theorem 7 and 8 we can assume that F 1s
defined"onset T, 6 € G  and the conditions are satis-
fiedon OG .

Remark 2: If p(x) =2 in Thearem 7, we obiain Altman’s
fixed point theorem [1]. This Altmn;a sondition is equiva~
lent to (FX, %) £ (X, X ) in Hilbert space, where (¢, )
is inner product.

Theorem 9 (Rothe): Let F be a completely sontinuous ope-
vator of ¥, into X such that F(Sp) € K, . Then
there exists x,€ K, such that Fx, =x, .

i

As in finite dimensional case.

Theorem 10 ([4]): Let X be Hilbert space with inner
product (o,-i,gcx, ¢4 anmapping of X, into X
satisfying one of the following two conditions:

(7) Por eash x ¢ Sy  there is (X, $Cx)) & (X o)
and I =f is a completely continucus éperator, ,
(8) Por eash x € & there is (x,f(X)) 2 (X, 4)
and I +f 1s a completely continuous operator.
Then there exists x, € K, such that £(x, ) =y .

Brogf: Let the condition (7) be satisfied and let be
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F=aI+f~-y,Then P is & completely continuous oprc,tu;
and for each x € & 18 (FX,X )= (X, X) + (f(X), X)~

~(X,n) € (X, x) and the remark 2 proves this thecrem.
Anglogously for the condition (8).
Remerk 3: Let M be an open bounded subset of X , 6 €
€ M, W aconvex set, Set J(xX)={a,a>0,% € M}

for every x € X and t(x) = a o The function t has

inf
8eIJ(x)
the following properties [31:

0 £t(X)<00 for A 20 and xeK is t(AX) =

SAt(X), for X, g€ X 18 t(xX+ag) & t(X)+t(y) and
(9) x e M if andonly if t (X)) < 1 ,
(10) xeJ M if gndonly if t(x) =1,
€11) x ¢ ¥ ifand only if +Cx) > 1 .

Theorem 11 (Schauder): Let M be an open bounded set
o X,
tor of into X euch that F(M) ¢ M . Then there e-
xistsa x,€ ¥ such that PFx,6 =x, .

Proof: We assume that for all x € & N 1s Fxs x
and © € M , Let exist 7, €(0,1) and x €& J N such

3
that x,= % FX, . Then t (Fx)=t(F) = 1 >1,ma

¥ a convex set and P a completely continuous opera-
X

(11) implies Px, ¢ M , and this contradicts our assumptions.
The assertion is valid by property V , T and IV, If @& ¢ M
we must use a translation for the set M .
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