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Commentationes Mathematicae Universitatis Carolinae
8,4 (1967)

LIMITS OF FUNCTORS AND REALISATIONS OF CAT EGORIES *
AleS PULTR, Bonn

The present paper is in a olose connection with [2]. We
show that the results of (2] remain, in essential, valid after
enlarging the discussed system of functors in order to close
it with respect to arbitrary limits and colimits over small
categories, and after allowing infinite systems of functors
in description of discussed categories.

Paragraphs 1 and 2 deal with limits and colimits of sys-
tems of functors (in particular, of set functors). Paragraph
3 contains, after some technical lemmas, the description of
the enlarged system of functors and some theorems about it.
The main theorems are formulated and proved in § 4.

The notation of (1) and [2) is preserved with the ex-
ception that we write SWF, Aoy inatead of

YCF, ;A )l v e JI) (in that point was the notation
of [1) and [ 2] inconsistent).

I am indebted to P. Vopinka and Z. Hedrlin for valuable
discussions and advises. The essence of the proof of Theorem
4.3 is due to P. Vop&nka.

* Supported by the Alexander von Humboldt-Stiftung
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§ 1. Lipits of trapsitive systems of functorg.

l.1l. Definition: Let C be a small cgtegory. For eve-
Ty obJéot a from C let there be given a functor F :
: R ~— % (always covariant or always contravariant), for

every morphiem g : @ — & from C let there be gi-

ven a transformation "c‘y : F;; — such that
a) if g = id, , then 7T, 1ia the identical trans-
formation of F; s
b) = T, .
T "

Such a system of functors and transformations will be termed
a transitive system (over C ) and denoted by (F, , %, ) -
The limit of a transitive system (Ff_, %, )c is a system
(Tat F = Rdaeotc of transformations such that
o) for every ¢ : a — &, Ty = %o Ta,
p)ir ¢ 1& i G = E ) is a aystem of transfor-

a
mations such that 7§ = 7, - 2§ for any ¢, them there
exists exactly one transformation ~»: G — F such
that 2 = T, e 7 for every a .
Dually the colimit of a transitive system ( f;, () )
is defined.
1.2. Regarks: 1)} The limit (colimit, resp.) of (R ,
Ty ) is, hence, formally the limit (colimit, resp.) of the
»functor® ¢ from C into the "category of all functors
from R into %  and their transformations" defined by
a2 =K, S~ 7, . " '
2) Evidently, both limit and colimit are determined up
to & natural equivalence.
1.3. Thegrem: Let (R, . 2,) be a transitive sys-
tem. Let there exist for every object X of &£ , & limit
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(colimit, resp.) of the functor $* : ¢ —» & defined
by $*(a) = F (X)), %) = ’r:;‘ . Choose, for eve-
ry X, Um = (oe) : FIX)—> Fx) Ceotim &*= (n:.' EX)+
—» F(X)) ). Then for every morphism f£: X — Y there
is exactly one F(¢): F(X) — F(VY) such that

E(frae) =98] F(f) (F(#)oeX=2e)F, (£) 1in the case of co-
limit for every a . The correspondence F just described

1s a functor and (9e : F — F) is a limit ((eg: L — F)

is a colimit) of AN D

Remark: The statement is formulated for the covariant
case. The reformulating for the contravariant case is evi=-
dent .

Proof: We have F (#).9¢f: F(X) — £ (¥) and,
for every ¢t @ — A,

'r;’o F(#)rvael= F;,(-H-t:- S = Fp(t)eae)

Thus, there exists exactly one F (f): F(xX) — F (YY)

with ) F(#) = F (4) 2% for every a . For #:
$X=— Y,g:Y —rZ we obtain 9. F(g)F($) =
=R (@) F(#) = E@IRIeS= | (gf) el for any
a , and hence necessarily [ (gf)= F(g)F(f) . Obvious-
ly F(éd) = ¢d . Evidently T, 0, = %, for any
9: a— & morphism in C .

Now, let (4 : G — £ )0640 be a system of trans-
formations with %, -4, = 1§ forany ¢ : a — 4.

Thus, we have for every object X in R -:: B = B
and hence (as ('ae: : FUX)y — R (X)) is a limit) there
is exactly one *  with & = 2} #*  for any a.
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Now, let f: X — Y be a morphism. We have (for every ob-
Ject a in C) '
) )% = E ()0} 8% = E (18 = VG () w 2] AG(H)

and hence F(4)8% =876 (f), o that # 1is & transfor-
mation. Similarly with colimits.

1.4, Notatjopn: If > : F — G is a tramsformation
and H a functor, we denote by 2~ H the transformation
FH — GH defined by (> H) = ~"* | vy H7
the transformation HF —» HG  defined by (Hz )X = H(z*).

1.5. Theorem: Let (e¢, : F — fi)dg.c be a limit
((oea’:F;—‘?F'),@c aeolimit)ot(a,’:,)c. Then
(06, G: FG — £ G) is alimit ((9, G: LG — FG)
is & colimit) of (F G, %, 6)p .

Proof: will be done for the limits and covariant func-
tors, the other cases are analogous. First, we have %, G:
iFG—EG

, and for every ¢ : a — 2.

(%, 6o, G = ((7, 06)6) = (o, G)¥ far every X, i.e.

T Gou,,G = at‘&G-.

L4
On the other hand let (24 : H — FG) be a ayatem such
that (79G)19~-1%_ for every ¢ :a — 4 . Thus,
. GeX)
for a firm X we have 7, 8) = B (for any ¢ :

+ @ — 4 ) and hence there exists exactly one 3%: H(X)—>
— F(G(X)) auch that #* = S M8%  (=(s, 6% 8%)
for every a . Now, let £: X — Y be a morphism. We have

. "(FG ()%= EG(0) S W EGCHIg s T HCE) =

= 2607 (18 7H (4))
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for every a and hence FG(£)18* = S7H(E) . Thus,
2% 1a a transformation of H into FG . Evidently, <4
is uniquely determined.

1.6, Lemmy Let C,D be small categorieas, (F, Ty %
(G, By )y
amt functor. For every object a in C 1let there be given

transitive systems, & : C — D a covari-

a transformation ¢, : £ —> G,., . Let, for eve-

ry morphism ¢ : a —» & mc,%;q,u,: 0 T, -
Let (1 : F — F) beacolimit of ¢Ff, % )% ,

(% : G — G) oolimit of (G, 44 ), . Then there

is exactly one transformation 2¢ : F — G such that
'1%,(“, %, = % 7T, for every a.
If @ is the identical functor of C and every 2, a

natural equivalence, then 9¢ is a natural equivalence.
Proof: follows immediately by the fact that for every

9: a— &
Cq’&w) % % = %(0)1%@)“4 = '%uu %

§ 2. Limite of special systems of set functors. Trans-
finite powers of covariant fupctors.

2.1s Since the category of sets and all their mappings
is both complete and cocomplete, it follows by Theorem 1.3
that any transitive system of set functors has both limit and
colimit. Im the present section, we shall deal with two parti-
cular cases of the categary C .

First let all the morphisms of C be identities. For
every object & of C 1let there be given set functors PF, .
For any set X 1is the cartesian product . ‘Xc Fo (XY to-
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gother with the projection  p: X RO = B(X) , deti-
ned by iy ((X,),,¢) = X the limit of

(F, (X)) If £f: X — Y is a mapping, we have

aelC ’
g (XECEN=FE ) ny for any b (whers X [ (#)
is defined by ( XF () (X )qee)= (BRI X Nage -

Thus, by 1.3, the just described functor c/)( F. is, to-
gether with the evident transformation n 2
duct) of the system ( F

, @ limit(pro-

Yo o
[4
Similarly we see easily that y F. defined by

(W)X = UL (XIx@)laelt, (MEIE)(X,&)=(FH)x), 4 ).

is a colimit (coproduct,join) of the system (F Y -

Repark: If C consists of two objects, we see that the
product of (F;)i‘z is ~ F and join is f v
v F,  from [2].

on

2.2. Now, let C be a directed set, i.e. a small cate~-

gory such that, for any two objects, the set M (a, &) v

u M(¥, a) congists of at most one element, and that
for any two objeots a,b there is an objeet ¢ with
M(a,e) =% g *M(4&,c). Write a &« b provided
M(a, &) = & , The relation <« determines the cate-

gory C . Now/, let (F, ’ r‘, )c be a transitive system.
Since the morphisms & : @ —y 4 in C are determined by
the objeocts a,b , we write Ty = Tar ¢

For a given X, (%) E(X) — F(X), 40 , defined

by FUX)= VEWXIE, (,y)eEe (x=(Xja) &y =

= (g, )& (e za, b, ¥ x'= gy '), 2hix)=
=L(x a)d
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(L §2 is the equivalence class containing § ), a co-
it of CE X, ) ), .
By 1.3, we may define, for f£: X — Y , a mapping F(¢) *
P FOXO — F(Y) by F(#)Lx] = L[EC#)(x’)] (where
x = (x",a)) , i.e. by

Fle)zl = 27 E #)
and we otfain a functor F such that (7, : £ — F‘)n_ed}.e
is a colimit of (F;, YU e -

2.3. Lemmg: If all the ~7 , are monotransformations,
then all the 7, are monotransformations.

Proof: is easy.

2.4, Lemmg: Let the assumptions of the first part of lem=
ma 1.6 be satisfied. Let, moreover, C,D be directed sets and
let for every b € D there be an a € C with & &« $(a).
Let P , G, Dbe set functors. If all the 9g are mono-
transformations (epitransformations, natural equivalences),
then o€ is a monotransformation (epitramnsformation, natural
equivalence).

Proof: We have (gee 1.6) 2*[x1 = Coel x’] for
x = (x",a) . Let all the %€,  be monotransformations. If
%' [x1= 0"yl (ap=(q,&)), there 18 a d € D such
that (@) €d, ¢(&) < d and

"};(a;.a ae: (X’) = 7%’:4_,'4, u,f ()
There i8 a c e C with o = $ (c) ., We have

X X ooy X x x x X x
B Xa = Bpu, Bhara ¥a (X)) = Bygia, Pooara % )=

X X
= By 100 g (Y

and consequently o) zX (x/) = ) 'c-;c (4’) , and hence,
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T, (x)= %% cy’). Tha, [x]=(y] . |

Let all the 2¢,  be epitransformations. Let [ 1 e G (X),
g =y, &), Lt §(a) > L. o B(X)—
g (X is & mapping onto and hence 12’., ()=
zoel (x) for some x € F (X). We have

2 C(xa1] = [Py, (41 = [y,

2.5. Definition: Let =~ : 1 — F be a monotrans-
formation. The functars ( F, 2 )* for ordinals oc are
defined inductively as follows:

1) (F,%)'=1, 7, ia the identical transforma-
tion of I,

2) 1 (F, »)?, Uy are defined for (3 €
€y <o, wedefine (F,2)=Fo(F,z)3 | 7.,

— G

identical, 7, = T(F,~» 2, Ty, Provided o« = B+ 1,
« . ]
(%, s (F,2) )~ (Fr) gms cotom ((F,z ), By hepa Toldentical,

provided o is a limit ordinal.
In the following we write often concisely F *  instead of
(F,z)% .

2.6. Theqrem: (F,2)R.(F,2)" & (F,=)**"

Proof: will be done by induction by B3 . For B =0
we have F°:F%= I1.F* = F**’ .,  Define %, as
the identical transformation of P , Let there be found,

[

for L < 3 , bnatural equivalences e, : F o

—_ F%te such that, for (. < (' < f3,

F™ —
— o
z-c-w,-c-ru ° % = u,a ° (2:,‘_, Foo .

Pirst, let B = 9+ 1. Wehave F?» =F-F" and
F*P = Fo F**7T , Put o, = F (2, ) . We have

= > F*'?, Ters, o1 Bop = zF% 7 .

?:d-u.,-u-,s L7 Ly
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F¥pecx)

x
Since always %, = F(ae?) , - We have %, z

- FoTtY (X) X
=T . 2e v

) and hence ?%'ft‘F'rF")-r(tF'"")-ae’.

We have
= r =
‘aeﬂc'z;ﬁ F*)= A (B F¥)F*). A F*= (TF** )aercz;rF“)

= "+7,
= TF0 Tari,ury " % = ’qc*p,‘fﬂ . %

If 3 is a limit ordinal, define @&, as the transforma-

tion 3¢ from 1.6, We have ('c;/3 : Fé — Fﬂ)z_‘,, -

=cem (F %) g, <p , @andhence, by Theorem 1.5,
(z:ﬁ [ F‘F"_,F/’F“):ca&}ny(F"F;"z‘"' F*).We have further
(Tb»"m s FP— F**8y ¢ a.o(o';nCF"‘,z'“, Y ewcarp °
Thus, since we have for L &« (' < f3

3
o =
Teu-a,ec-ru 8¢, %, -7, F",

we obtain, by 1.6, ’:,‘“_b"m ° % = %, ° ’r:‘_/. Fe

By lemma 2.4, ze/, ia & natural equivalence.

2.7« Repgaprk: In [2], a superfluous notion of "nice func-
tor" was defined. Every set functor is nice, since for every
one~to-one mapping f: X — Y (for every mapping £ of X
onto Y , resp.) there exists a mapping g: Y — X with
g = 14, (fg = 14, , resp.). We shall use the preserving of
monomorphisms and epimorphisms by set functors without fur-
ther mentioning.

2.8, Legmg: Let 2: I F, 2: 1 — G be mono~
traneformations, % : F — G a mono-(epi-)transfor-
mation with ¢ = = 2%,  Then there exiat‘mono-(opi-)
transformations a¢, : ( F’ vIC—r (G, ¥ O™ such that
%, is the identity trahsformation of I , 2¢, = 2¢ ,
and we have
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%t Ty = 7’;4' %,
whenever « = /3 .

Eroof: Let 2¢, be found for any @3 < oc. Let o =
= (3 + 1. Put 9&_‘=9¢G/”F’aep . We have

= B . s, Vi n =
'ag"z’ﬂ-aeé aFaen':F —:”-aeG oz G A

= ﬂo 0 = A ' = . -
=(272)G :%,ﬂ %, HG -25;7J 2, 7{2.,‘ %

For limit ordinals o immediately by 2.4.

2.9. Remarkg: Let F be s covariant set functor. Then
the transformations <« : ] — F are in a one~to-one
correspondence with the elements of F(1) (1 = {¢?). In
fact, define, far @ € F(1), T(a): 1 — F by

Tty (x) = F(gX(a) | where £X:4-X, §5(0)=x.
On the other hand, define, for * : I — F, A(?2) =

= 2'(&). We have AT(a)= T(a)'(@)= FCE)) (@) = Fadt a)=

= 2, (TA)Y (%) = F(§O (AT FUEX )2 (@)= 27X @)= =%cx) .

We see easily, that the monotransformations are exactly that
T(a) with F(§)a) * F(E*r(a) . Further,
we gee easily that the following three statements about set
functors are equivalent: I, F is faithfull, II. F(f,) +
* F(§}) , IIL. Tnere existe a monotrsnsformation ( :
1 I —= F .

Since in the following the powers of ( P~)?2 play an im-
portant role, we shall show, that they are (up to natural e-
quival ence) independent on the choice of monotransformation.
We have (P™)*(1) = P ({g,13)=40,1,{11,23%., T(&)

and T(2) are evidently no monotransformation . Define

- 6%2-



-
s (P-)2— (P by e*M)= {NIX~NeM3;

eince e o 2¢ is the identity transformation, 9¢ 1is
a natural equivalence. We have 2e o T(1)= T({1}) and
consequently ((P~)%, T(1))% and (CP-)%, T(<13))
are naturally equivalent by 2.8.

§ 3. T B =functors.

In the following, the term functor means always a
set functor.

3.1. Lempg: If F, =F for every a in C , we ha-

ve

VE = KeF, XF &G.F,

Proof is trivial.

3.2, Lepma: Let <« : F'— G be a monotransforma=-
tionand 7% ¢ F’ — F and epitransformation. Then
‘there exist a functor H , monotransformation > F—H
and an epitransformation €& : G — H

Proof: Define an equivalence r(X) on G(X) as fol-
Tows:

o ¢ L(FX) = ((a,L)€en = a = L),

o = wXa) = ((a,lr)entm> (br=e(h') & nX(a)=2n16"))

Put H(X) = G(X)/n (X) . If £:X — Y isa
mapping, a, £ € G(KX) and (a,&)e n(X) , vwe see
easily that (G (#)(a), G(H) (L)) & £ (Y) .

Thus, we may define H (+£): H(X) — H(Y) by H#)[al =
=[G (a)d (the square brackets designate the equiva-
lence class containing a given element)., Evidently, H is &
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functor. Define £ : G(X) — H(X) by e¥(x) = Cxl1.
We have H(4)eX(x)m H(FILX1 =LG(#(x)] = e¥YG(+)(X) »
Thus, € ia a transformation of G into H , evidently an
epitransfarmation.

Now, define » : F — H as follows. For x € F(X) ta=
ke an a € F’(X) with %%@)= x and put »(x) =
= L) ] (i 7X(@a) = x =7%(4), we have

(w* (a), (u—x(lr)) € £ ). Let £: X — Y be a mapping.
We have H(4)»*(x)= H(#) [ @*(2)l=[6h)ua)]=[u”F(f)a)]
for some a such that 7*(2) = x . Consequently,

L F/ () (@)1= V" F/t)@) = »YF#In%@) = ”F (4)(x) .

r »(x) = »x(fy-) , We have X =% a), 4 =7%(4)
emd [w*(e)] = [ (&)1 . Since <« 1s one-to-one,
we mist have %%(a) = 9%X(4) , i.e. x=y.
The proof for contravariant functors is quite analogous.
3.3. Theoreg: F < G (see [2]) if and only if there
is & functor H , a monotransformation « : F — H and
an epitransformation % : G — H

Broof: Let F < G . Then there exists a sequence of

functors F,, F,,...,F,  , , monotranaformations i, *
iR, F'“M— (4 > 0) and epitransformations 7; @
.'F;"—+ F;‘,q (i 20) (epitransformations My ¢ R B
and monotransformations wt, : Ei o F; {.a2 s Tespective-
ly) such that F =F, f-;‘_H = G ., Let n be the

least natural number with this property. n =2 2 leads easi~-
ly to a contradiction with 3.,2. If n=1 » We my in the
first case put H=TF, , in the second case we use, ags=in,
semne 3.2, If n =0 , we may repeat one of the functors and
consider its identical transformation.
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The reverse implication is trivial. . .

3.4, Lemma: Let oo, : f-;-vGa (a € C) bhe wmono-
(epi-)transformations. Then o :c\/F; — t:WG‘ and 3 :
: cx R —»/cx Ga defined Yy

af(x,a) = (X Cx), @), BX((X ea™ B (X uor
are mono-{epi-)transformations.

Proof is trivial.
3.5+ Theoren: Let F,_ < G for all &« € C . Then

y%‘y%: cXF;‘ch“ '

Proof follows immediately by Theorem 3.3 and Lemma 3.4.

3.6, Theorep: Let C be a amall category, (F , ’c;l)a
a transitive system. Let (%, : F—> F_ % eots 0 be a 1li-
mit, (B¢ G = F' oo a colimit of (F, %, ), .
Then there exists a monotransformation (« s F —r’g)(; £ am
an epitransformatiaon 7 :éwc F; - F’ ,

Proof follows by 1.3, proof of Freyd’'s theorem ((3I,
Chapter II, Th.2.4, p.45) and its dualisation.

3.7. Lemmg: Let = : I —» F be a monotrsnsformation,
*,(3 ordinals, ot = 3. Then (F,»)* & (F,z)% .

Proof: By lemma 2.3, all the Tup ‘ (see 2.5) are
monotransformations.

3.8. Lemmng: Let a monotransformation 2= : I — F
have the property that whenever for f£: Z — X and B c X
holds £(¢(Z)YA B = &, then F(I(F(Z))AT*(B)= 2.
Then

v (F,2)% =« CF,z)*0o V,

for any set A and any ordinal o¢
Proof: First, we prove that the described property of
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% remsins valid for every 7, _: I — (F,2)% . Poar
of =1 we have ~,, = T . Let all the =2, with 3<
<o have the property. If oc =3+ 1, we have.

FHE (P2 (B = RPN (FFAEZYAT™ By = 27 .

In fact, put #'= FA($), Z/= FA(Z), XK'= FA(K), B/= 25,(B);
we have ' (Z‘)A B’=f by the inductive hypothesis. Now,
let & be a limit ordinal,xe FS(#)(FZ))n %, (B) .
Thus, X = F%(#)(x) for some 2 € F¥(Z) and % =
=% 4 forama (B < o . VWeabtaln X =
= FHE) el (y) = i B8 (y).
On the other hand, X = % (&) = %, % (4 ) . Sinca
’t:”: ia ons-to-one, we obtain . ;lf) () = 'b‘,; &),
which is a contradiction.
Now, it suffices to prove that, if there is a monotransforma-
tion 7: ] = F with the described property, then the-
re exists s momotransformation et W) ¢ F — Foeo il
Defins w”*: F(XIvA—F(XvyA) wy
M, 0= Flz ), @*a, )= 2"%a, 1),

where 7,  1is the natural embedding of X inte X v A,
Both ou*) F(X) x (0) and fu"leC'I) are one-
to-one. Thus, since 4, (X)n (Ax (1) =g and consequent-
1y F(g ) (FIXN A+"(A) = #, @ 1ia cme-to-one. Ve
see easily that (Fel)(#)ee™ = w” (Vs F)(#)  for any
f: X— Y.

3.9. Thegrem: For any set A and any ordinal o. holds

\A. (CP=)2)% < ((pP=)%)*. Lo
m:_mrim v 1P by tix)= {MIxeMc X7,

Let £:2 = X, O € (PP (Z)AT*B) ,

L]
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loea A =(P2(8XM), Me(PIZ),A=I{NIbe Nc X}, beB.
Hence, & = {NINc X, ¢ 7(N)e m} .

Thus, b ¢ N if and only if ¢ " (N) e M . ILBn+t(Z)=
= 2, we have #77(N) = & (N-B) for ey KC Z
and hence ¢ ¢ (#-)-B , which is @ contradiction.

3.10. Thegreg: For every ordinal oc there is an ordi~-

«’ and a set A such that
((P=1)%s P= < PTe ((P)<s y, .

Progf will be done by induction. For oc = 1 it suf-
fices toput o«'= 1, A = 4 . Let the atatement hold
forall B <o . If o = 3+ 1 , wehave |
((P=)2Y*, P~ & (P=Y¥ s ((P-)2)B . P~ <

<P P (PP = P lCP)) ey,

‘ ”-' ’ ’.

Let « Dbe a limit ordinal. Put oo Mﬁ , A ﬂgA(,G)
(where A () is such that ((P-)t)3. P~ < ((P-)%)P o Km
holds). By lemma 3.7 and by [2]) (3.7, 4.3) we have

(P 1) e P < P ((P=)2)™ 4+ tor every 3 < o, Thus, by
1.5, 3.1, 305. 3.6, 3.7' 3.9 and by [2] (4.5- 4.8 )((P')')‘-
* P WUPINPo PT < K e PTe((P))%e V,, < (P)2e Y, o PTe
(P, < (PTY2e P (P2, |, = P=o ((P~)2)%" s Y%

where o' =oc”+1, A=oa v A’ ,

3.11. Definition: Transfinitely constructive functors
(coneisely TC-functors) are defined recursively as follows:

(a) I, v;\ , Koo Q.A, R, P* are TC-functors

(for any set A )

() Ir F,G are TC~functors, P o G ia a TC~-functor.
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(e) I (F,

small category C , rm TC-functors, (z: F > F ) a

limit (resp. (7, : L, — F ) a colimit) of (F , '26,7c

then F is a TC~functor.

2y de is & transitive system over a

() Ir F,G are TC-functors, one of them covariant '
and the other contravariant, then < F, G > is a TC~
functor.

A functor F 1s said to be transitively bounded (TB-func-
tor) if there exists s TC—functor G with P < G .

3.12. Thegrem: For every TB-functor F there is an

ordinal o¢ and a set A such that
F< (Pt (P )%y,
(41 =0 for covariant, i =1 for contravariant F ).

Proof: It suffices to prove the statement for TC-func~
tors. It holds for I, \,, ..., P* by [2] (§ 5). Let
F < (PYe ((p )% Y, , G<(P¥e (P ), . Thus, F+G <
< (P PN Yo (PPe (P Y, <(PUMUP Y (P)Fe (CPT))YA: Y, o

by [2] (§ 4; the results of this paragraph shall be used in
the following without further mentioning) and 3.9, If J =

=0, we obtain, by 2.6, FeG < (P-)%s (P ))**A o v, _ |

€ J %+ 0, we obtaim by 2.6, 3.9 and 3.10,

Fo G < (P e ((PIO) e (PINAY, <PV ((PI*e Y, e .

Let (%, :F=F ) bealimit (2t E — F) acom

limit of a traneitive system (F,, Ty )¢ + Then we have
-y% %o -yt -
oo < (Pe P ey, < (P)*ecP))®e

where o = AU “ﬂ’ A= UA‘ . By 2.6'3."3‘6,3-9 we ob-
?dﬂ,'tor a limt, F<'9Xc E < G’gc- (PYe (P ) Y <

o
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<P PPN gy o & (PP e Vo
Similarly for a colimit. :

Now, let F< (PO)%e (P-M)%eV,, G < (PP ey, ,

1 $ ; . Put 7-M(ac,ﬂ), C=AuB . We obtain
F < (P e (PITe \,, G < P e (P e ((PHIHT- Y,

and hence < F,G )< P3Q, o(PF+ (P )y, < (P ((PIH s g

by [2] (Theorem 5.6) and 3.9.

3.13. Metatheorem: The system of all TB-functors is clo-
sed upon compositions, forming of limite and colimits (over
small categorie.), the operation (-, - ) , subfunctors
and factor-functors. i

Proof: This follows by definition of majorisation abd
by the proof of 3.12,.

§ 4. Realisation of catesories determined by TB-funotors
;d their boundability.

4.1. Legm:: Let J be a set. Let F (L € J) be co-
variant set functors, A‘_ (L e J) types. Tha there
exist sets A B (L € J) such that

’ (9
SUFR ,0.) ;) SUK, @ *F iy, -

LLed
Lemua: If F (. € J ) ave covariant set functors,

we have

SWUFe,) =F S(VE)D) .

L Ced
Proofs of this lemmas are done in [2] (6.2 and 6.3).
The finitenesas of J from the formulation in [2] plays no
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role.

4.2, Theorepg: Let FL (v € ) be TB-functors,
A (L e J) types. Then there exists an ordinal o and

(9
a set A such that

SUF A ) es) TSP ey, ).

v ied

Proof: By [2] (Theorem, 1.5)
SUFR, 8., = S«G,A)

veo?
where G, are covariant TB-functors. Now, we obtain the
statement by 4.1 and 3.12 and [2] (6.1).

4.3. Theorep: Let C be an ordered set, (F , 2, , ),
a transitive system of cgvariant functors. Let all the E
be selective (see [1]) and faithful, let <,  be mono-
transfornations. Let (< : F — F >oéj e be a colimit
of (F—; ) 7nb)c , Then F 1is selective.

Eroof: Let A be & type. Since P, are selective,
there exist full enbeddings § : S(I,A) = S(1,4%)

(=L ny Ip<g*i) such that O+, = £ 0
( O designates the natural forgetful functors). We shall
construct a $: S(I,4) = S(I,A) such that
O«¢=Fea. Put K ={«x,, o lacotil,B<p},
where oc: was defined above, o, = 1 for every a .
We shall not index A directly by ordinals to simplify
the notation.

It is evident how the notation should be changed to obtain
the type in an ordinary form.

Let (\x,r) be an object of S (I,A). We have § (X, x)=

= (R (X),~%), where £% = (% ) 1is & relational
system of the type A% , We define a relational system
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Ro=(BYs B dasotye, aeyn on F(X) as follows:

YeRyo Ay eny, =2y

a
R, = X (F (X)) .

Let £: X — Y be an r s-compatible mapping. If g e /Z/;',
we have ¢ = 'c:. y for some Yy € /c,: . By the defini-~
tion of F(£) we have F(4))y = 1,-:5:; frye s
since P, (£) is r* s®compatible. If § € %k, , We have
§ = vi(m) forsme 4 e FE(X) . Thus,
FIO(EY = F(R) 2l (m) = o) (F (#)(n)) € 5,
Thus, F(+) : F(X) — F(Y) 1is T a-compatible. We may
define & : S(1,4) = S(1, 8) by

B(X, k) = (F(X), "), O P(f)=Fe-OK. d is evident=
ly a one-to-one functor and it remains to be proved that it
maps S (1, A) onto a full subcategory of S (1, 8).
Let g:F(x) — F(Y) bean T s-compatible mapping. Hen-
ce, first, it is T, 8, =-compatible, i.e. @(T:f-; (X)) e

c ) F C(Y) Consequently, by 2.3, for every x € f (X)
there is exactly one g, (x) & F (VY) with 9,2‘: (X)=
= t: %, (X) . Thus, we obtained for every a € oL (. =a
mapping g, : F (X) — F (YY) . Let y € k5 . Ve
have 2}y € k, and hence 2 g ¥ = g%y & Ay
and hence :here isa ge /b; with z;yg,“v = —::g;
Since 7% .  are (see 2.3) one-to-one, we have g, ¥ =
g € o7 . Thus, g, is r%a*compatible and hence there
existe an r s-compatible f,: X — Y with g = F, (£, ) .
Let a,b be objects from C . There is & ¢ such that a<

€ c, b& c.Wehave o E(£)=7 7, L(f) =g Ect)efs
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"’B:Qa't":- @t = @1l = W, =B (L) -

Since 'r"’ is one-to-ome, we obtain F, (£ ) = F (f ) -
Since F, 1is faithful, f =f . Similarly, f, = f . Thus,
all the mappings f, are equal to a unique mapping f and we
obtaln F(#) ) = v (=g, = gk for every a
and hence PF(f) =g , _

4.4, Thegrenm: Under the assumption (M) (see £11) about
the set theory, in particular, if there are no measurable car-
dinals, the following statement holds: Let 3R  be a category
which may be fully embedded into some S (( F o, A, ) e )
with TB-functors F,_ . Then R 1is boundable.

Proof: By 4.2, R == S P -V, ) for
some ordinal o -and some set A . By[1l] (theorems 2 and 8)
and by 4.3, ((P7)*y*, V, {s selective (under the as~-
sumption (M)). Thus, the statement follows by [2] (4.2) and [1]

(Theorems 2 and 6).
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