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Commentationes Mathematicae Universitatis Carolinae

8,4 (1967)

THE INVARIANT CLASSIFICATION OF 3-DIMENSIONAL LINZAR S)UB-
X
SPACES OF INFINITESIMAL ISOMETRIES OF E‘

Oldfich KOWALSKI, Brno

In this paper we shall investigate the "gerral®™ 3-di-
mensional linear subspaces of a Lie algebra ffg isomorph~-
ic to the Lie algebrs %* of the full isometry group Gy
of Es ( = the 3-dimensional Fuclidean space). Pirst, we
shall determine the invariants of these subspaces with res-

pect to all automorphisms or with respect to all inner auto-
morphisms of C@- . Further, we shall show a geometrical sig-
nification of such invariants using the "finit e representa-
tions" of ¥} on Gy . Finally, we shall find a classifica-
tion of the preceding subspaces from the point of view o the
appearing of rotational subgroups in finite representations.

1)Bagic concepts. Let & be a Lie group isomorphic to
the full isometry group of E, . Let us denote by G7 the
component of unity in & . The Lie algebra Y of G has
abasis 1 X;, X,, Xy, X, Xpg, Xy 3 sud that
x) This article was suggested by some questions posed by A,

Svec at the Seminar of Differential Geometry in Brno.



[X;, X1 = 0, [Xey, Xid = Kj, ey, Xil= =Xy,

X -0

for 1,3,R = 1,2 3 <f%j, g+hk 6 R+,
DXy, X1 Xy DX X0 = Xy ) DXy, X 1= X,

Each basis with this property is said to be canonical. Here,
X,, ’ Xz 5 )(3 generate the largest commutative subalgebra
‘7 of ? . Each 3-dimensional linear subspace 73 of
Y} satisfying /B AV =10} is said to be general or

is called a J=block.

Proposition 1. The manifold /B  of all 3-blocks pos- -
sesses the natural structure of a 9-dimensional linear space.
Proof. Let us choose an arbitrary canonical basis. If
B e B then B A ¥ ={0} yields that B ia éo-
nerated by the (uniquely determined) vectors
Xu¢aqx1+a,‘)<2+a,’x’ 43 Xq—,&'x +,0-XJ
Xy * ¢ X +e, K, o, X, _
Denote by .x- y Xy iz the coordinates of any vector
in % with respect to the basts X, X .}
Then each 3-block is determined by
Xy = Gy Ky ¥ By Xy +C, %, Xy w @y, + X, + G,
b( = Ay X, + Ay Xgy +.Cg Ky 4
In this way, to each canonic¢al basis of ‘q— , it corres-
ponds a coordinate system in B - of the fo;'m

o 4 e
B — % 'e'i ¢,
a 4 o
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Moreover, to each change of canonical basis in G (or

to each automorphism of ¥ ), it corresponds a linear
transformation of coordinates (@, 4, ¢, ). Q.E.De

Fach automorphism of fq deterumines a linear trans-.

formation of [B , called an gutomorphisy of [B . Now, we
choose a fixed Cartesian coordinate system ( X ,.ry,,z) in
Es, Denote by G* , G: and 5%* respectively the
fullrisometry group of E., , its component of unity and

its Lie algebra respectively. The infinitesimal transforma=-
tions <

a9 8 9 8 _ g_ 9. _,0 3 a2
8x' By Bz Hax~Xoy POy " ¥ox ok *ox

form a canonical basis in ‘@r* ., Any canonical basis
1 X , X‘-’-] of ‘% determines exactly one representa—

tion I : Y — Y siven by
9
x"—-)a:;’ Xz-_’%,7 )(3-')%
9 =) 9
Xu‘*’ygi“"%;)‘xf’“a;"ﬁz, Xn_"x&?‘z% ‘

Let ey, @ Y —+ Gf and eep : Y — G be the
exponential maps (see,for example,[1] pp.94-102), Then to
each Lie algebra fepresentation r; ‘q— - ‘%* there
corresponds exactly one group representation <£«/1 r . Gt-’
- G: such that the following commutative diagram hélds:

¢* el , 6}
TM : TW*

@' r = ‘%n

(1)
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The composed map  £if2, © I’ will be called briefly a
finite repregentation of %% on Es . Hence, to each ca-
nonical basis of ‘q—, it belongs exactly one finite repre-
sentation of @ on E:! , and conversely.

Elementary representation pro

Let IP: & — <Yy be a Lie algebra representation

and VLV : qu* o ° the corresponding finite representa-

tion of fq/ on {Ea .Let us take ¢3 € B . Because
B A ¥ =403 the set (4 ) 1is the union of 1-

dimensional groups of screw-movements (in the large sense)
in E3 4

one l-dimensiopal gubgroup_in p (03) sugh_that the axis
of the movepent_is parallel to 7 .

To_each unit_vector 7 of E 3
n

Really, let { X, X‘-?- 3 be the canonical ba-
sis corresponding to L . Let ;@ =(eosor, cos/3, coo )
and let the 3-block (3  be determined by

Yo = Xt oan X, t X, + a X,

g = Kyt G Xy ¥ Xy + B K

o= X, ¥ e X v o, X, + X, .
Further put

Y= Y,y + Y, ssa + Y, e .

3 k4
Then

u'o(‘/>=tryfm;r—zmp+A)5%(+(zmw-xma~+8)5%
Lt (X ey essa +C)5—j%
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where A = @, ¢x @ + by 8 x + o, e f3
B = aq w7+ b, covoL + Cy 003
e = a, e g + ﬁ;md(.*- e, o 3

Introducing the new variables
W= XA+ Ny B+ X ess Y
v = 0oy — X 3
w = x(coa-1)rnycon L WP+ X cos XY,
we obtain
-
P(Y)=(Acowa +Bess B+Ccod ) 5g
-f-EW—(Cm/B-Bwﬂgv)Jgo:-; 2
- [ - (Ceonee covg+Beosacos 3+ Aless'n-1)] G
Thus each transformation W (Y%)= ecpr, o ir (Y¢) is
a screw-movement around the axis ¢ |l 7. . QeE.D.
Especially, the transformation y (2J.Y) 1is a pu-
re translation having its direction in ¢ . If 2. T(#Z)
is the vector determining this translation, then
T@) W= Ao+ Beos B+ Ceov - .
This may be rewritten as
(2) T(R) W= Ly, cos’a+C,eo8B + aycost -
+ (4, +e,)eosa cos B+ (a,+ 4y ) i cos
+(ayte,)eon B e 7 .
We shall place each vector 1 ( ) into a position such
that the initial point shall be the origin of the coordina-
te system. Then the end points of T(A) (W e S%=
= the unit sphere of E, ) generate a surface,which will
be called a characteristic surface of B with respect to

v . The equation (2) of a characteristic surface can

- 639 -



be expressed by means of X , Y, and the obtained e-
quation
2
(3) (x* g+ =2)3- Lo x2+r0,9 + a,’z‘+ (G re, ) xy+
2
tlagt b)) Xz + (are,)yx] =0

shows that the considered surface is algebraic (of degree 6)
and hags a centre of symmetry in the origin. The characteris-

tic surfaces will play an important rfle in our investiga-

tions.

3) Automorphism invariants of B . We start to deter-
mine the sutomorphism group A u? (L) of ¥f . AL
derivatives (see e.g. [1]) of the algebra ‘f{# with respect

to a canonical basis { X, , Xgyere, qu g are given by the
matrix

a & e

-¥ a a 0
D= -¢ -d _a

€ g 0|0 -c -d

0 f -e|c 0 &

-f 0 -gld -& 0

Infinitesimal variations d".x"d’«“ ciey d‘.xu (where
X= %, X,,'l- szz'f... + Xy, X" € ‘qf ) by automorph-
isms are represented by the transpose of D . Hence all in-
finitesimal transformations of A T (¥f)  are deter-

mined by

J =
A,’“Bi’,"‘u'a'x
L‘ux

A i
3 Xy

X1y
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Here A,, A,,..., A,, are the infinitesimal transforma-
tions of the group Imt (@g) c Aaut () of inner
aut omorphisms induced by the infinitesimal transformations
Xy, er"; )(31 of Y4 . With regard to the diagram (1)
we may also say, that A1, A A are induced

27°°°7 "3 3
by infinitesimal isometries ﬁ—- , -5-37 y see 2

2 2l
X3z = % px of E, respectively. Ay 1is induced
in a certain sense by the infinitesimal similarity of E;
with centre in the origin. Corresponding infinitesimal trans-
formations of the group At (B) (written by means of

the coordinates (a,, &7 , ¢, ) ) are given by
3 =l 2 a a )
B = 3¢, ~ 9a,, B~ 5a,~ o7, B= o8, ~ ac,

3 3 2 3
A 8@’”44'61).331*”7’—3’-) e, *2 2a,
3 ) ) 3
+(b-e 55+ (h+e,) 50,7 ¢ 57 * 4 pe,

B, =68 B 6?8,

23 12 » 31 ©

where 6 denct es simultaneous cycklic permutations of

N
letters and indices a4 —c¢—a, 1> 2+3—>1.
Finally,
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5 - 2 o 559‘_‘ 5+ ol
The linear partial differential system

Bt =B f=Bt=~B,f=~B f=Bf=0
is involutive and it remains involutive if we adjoin the e-
quation B, ¢ = 0 to it. Hence we see that there are
exactly 3 independent point-invariants with respect to

Int (B ) (called point-semi-invariants of B ) and e-
xgetly 2 independent point-invariants with respect to

Awt (B) which are homogeneous functions of degree O
in varisbles -a. , &; , C; . P. invariants of B
are exactly those p.semi-invariants of B which are ho-
mogeneous functions of degree 0 in q.. & e, . Intro-

T %9
dueing new variables

Wy = Gyt 0 My = atly My = b e,
my = &, Mg = G A = A
wWy= Q, My= & Ay = Cy

we see that A, , Uy, ..., Ay form a complete system of

solutions of the differential system 514- B:.'F = B,@ =0
and therefore the point-semi-invariants depend on these six
variables only.
To determine the p.semi-invafia:nts, it remains to solve
the involutive system )
Uu-F = Uza'f‘ = UM# =0 s

where

J o a g _ 2
Ug= My, B, ” Mq?ﬁz*z‘“#-"% )32,"-'«’3 (5771 ow, )

- 642 -



g _ @8
Uy = ‘Loéé%;"‘LzZ$%Z;"2 (U ~44) Eé%;'*‘4w(:5:; _Eia;)

3 2.
e ot - By i )

In order to determine the p.invariants we must still use the

equation

Z‘u,;gﬁ‘_:- 0

ieq
The system U, ¢ = Up,* = U’1-F = (0 may be solved using
the standard methods (see e.g. [2]);‘after a rather long
computation we obtain three solutions,which are homogeneous
polynomials of degrees 1,2 and 3 respectively in variables
W, .

This way is not very convenient and we prefer to take
advantage of the characteristic surfaces. The equation of a
characgteristie surface (3) takes, in the new variables, the
form

PCX, Yy 2y oy, Mg yeey A ) = (x*e ap®+ 22~
= Doag X+ b, o A 2P+ Al X g + ey X+ ey 2T 5= O
It is easy to see that the function @ (X,%, X, &, , ..., 4, )
satisfies the linear differential system

@%‘“%‘ng"o

s _ . O

% Gy~ %oz~ Uny =0
=) g =

xFg-rx g~ hy=0.

Passing to finite transformations we obtain the following
result:
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Proposition 2. Let W be a finite representation
of the algebra q_ on Ea and let ¢  be the charac-
teristic surface of a 3-block B € B with respect to
the representation ) , Denote by R a rotation around
the origin in I’Es and by SD* the corresponding inner
automorphism of the space B , Then the characteristic sur=-
face of the 3-block ©*/3  is the surface @7'¢p .

Moreover we see that 44 (and consequently the charac-
teristic surfaces) are not changed by such inner automorph=

isms of B which correspond to the translations of E.! .
Hence

Theorem 1. The characteristic surfaces are invariant
with respect to inner automorphisms of the space B exact-
ly up to rotations around the origin of Ea .

An arbitrary metric invariant of a characteristic sur-
face is then a b.semi—invariant of B. Instead of a cha=-
racteristic surface we now consider a "characteristic A -
surface"” generated by end-points of vectors A + T (42 )
for M’ € s* , where the number A is chosen arbitrary
but such that )

=ry, =¥
2')&%'-‘_(%)._%" ‘
Theorem 1 holds also for the characteristic A ~-surfaces.
A characteristic Q. -surface does not cut itself and there~

fore the volume Va‘ of the domain bounded by the sur-~
face is defined.

We obtain without difficulty
V,= $ 72+ A2+ BA + C

- 644 -



where

A= %Jr(u‘,ﬁ-u,*-u‘)

B= ;% m{2 (u,i-r-u:-l-uz)+(/.¢++M,+M,)z+u:+u;+ wll

2 2
C= _LS 5 T {2 Moy ahy Aby + (AL Ay + Ay Aoy + oy Ay )
2 2 2 2
+ B CUE U+ AR Al A, )+ B (Ul M+ Al +04 44
2 2 2 2 2
+ DM M+ A My A AL )+ B0kt Mg o+ 44 44)

3
+5 it ) + 24, 4l My §

The coefficients A, B, C are independent point=-semi-
invariants of B . The coefficient C denotes the measu-
re of an "oriented characteristic family of vectors". Provi=-
ded the characteristic surface does not cut itself, the ab-
solute value |C | expresses the volume of the domain

bounded by the characteristic surface. The number. 2‘/‘3; A=

= M,’ + uf, -+ M-‘ possesses aglso an interesting

geometrical signification: Let us again consider the para-

metric equation of a characteristic surface
— 2 2 2
T (@A) A =y con’or + g cos" 3+l 0™y + an, o0 Cos 3+
+ A, CO3 R COV P + M, COO LB Cod Y

- - 3
If we denote by { <, 4, 4¢ 3  the basic orthonor-

mal triplet of E,, thea

T T+ T(F) T+ TER)R =i, + i+
and the same holds for the vectors -?, -? s -I’ .
Because (""‘, + Ml A ) . .ia a point-semi-inveriant
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of B which is not changed by rotations of the characte-
tistic surface around the origin, we obtain, for each or-
thonormal triplet {d, P, e 3

T@) &+ T T+ T(B) T =t + 4+ 4

Let us construct oriented lengths which are cut by a cha-
racter:istic surface on arbitrary three mutually perpendicu-
lar rays starting in the origin.

Then the gum of these lensths is constant and equal to

w,f + .u,’ + .a.‘ .

This number may be called the pgrameter of g characteris—
tic surface.

4) The characteristic roots of a 3-block.The most simp-
le way of computing i;he point-semi-invariants is that using
the characteristic roots.

™" 2 is a gquadratic form defined on the unit
sphere S2 ¢ E3 .
Let us denote by .2.“ 9,2’ aa its characteridic roots
and consider a new Cartesian coordinate system with axes gi-
ven by the coi'responding characteristic directions. Denoting
by f_” g,ﬂ-’ §3 " the new components of a unit vector
;ﬁ" s We.obtain )
@ TR R A E A5

<

Hence the numbers A, , A,, A, expressing the oriented
lepcsths of axes of a characteristic surface are point-semi-
-invariants of B .

Consequently the characteristic determinamt
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U,
wi- 2P T
4_?1 4,(,,-.2.";1 =-2% A (U + Mg + A )= Al g +

2 2 2
’ “;14'“2*41__
PP R S

Ay . b+ ey by~ (gt 1 14 + Ay i)

of the quadratic form (regarded as a polynomial of one va~
riable A ) is a point-semi-invariant of B  and the
same holds for its coefficients. Evidently, spplying an au-
tomorphism of % (not necessarily an inner one), the cha-
racteristic roots of any 3-block will be multiplied by a
positive factor at most.

Let us recall that a l-dimensional group of screw-mo=
vements with the direction /7'1_' is a rotational subgroup
if and only if T (4*). A’ = O . Hence we obtain an
invariant classification of 3~blocks according to the pre-
sence of rotational subgroups in its finite representations:

1) Elliptic cage. All characteristic roots of /3 & B
are non-zero and they have the same sign.
The quadratic form T (). A0 is positively defi-
'nite or negatively definite. There are no rotations in the

finite representations of A .

2) Hyperbolic cgse. The characteristic roots of 3
are all non-zero and they do not have the same sign. In each
finite representation L (/) of 03 there are l-di-
mensional rotational subgroups; the axes of which are paral=-
lel with the generating lines of a cone.

3) Parabolie cases.

A) One of the characteristic roots is zero, the other

- 647 - .



ones have the same sign. .
In any finite representation of /) there is exactly one
l-dimensional rotational subgroup. )

B) One of the characteristic roots is zero and the
other ones have opposite signs. In each finite representa-
tion of /3 there are l-dimensional rotational subgroups;
their axes are parallel to one of two mutually non-paral-
lel planes.

C) Only one of the characteristic roots is non-zero.
In each finite representation of (3 there are l-dimensio-
nal rotational subgroups; their axes are parallel to a plane.

D) All characteristic roots are zero. Then ., =
=AUy = Uy= Ay =i =4k = 0. The 3=block /3 1is a sub-

algebra, its finite representations are the isotopy groups
o E, .

From the preceding we obtain

Corollary. If the finite representations of a 3-block
/3 admit rotationa only, then 7 is a subalgebra of

Finally, we obtain the following theorem:

Theorem 2. Let a 3-block B e B be not a subal~
gebra Thefx, after a convenient denotation, the ratis 2,1 :
H 9&3, % : 33 of oriented lengths of axes of its cha~

racteristic surface do not depend on finite representatiom
of % on [E, . let afixed finite representation of’ Y

be chosen, Let @, , B, be two 3-blocks. Then two fol-
lowing conditions are equivdent:
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@ There is an sutomorphism of @ which sends /3, onto
A, . |
b) The preceding ratia are the same for /37 and 4B, .
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