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Commentationes Mathematicae Universitatis Carolinae

8,4 (1967)

COMPLETIONS OF SMALL SUBCATEGORIES
V&ra TRNKOVA, Praha

Completions of categories and related questions are

studied in many papers, namely [1]),(8),[10],[13],[14].

Some questions concerning these problems are considered a%—
8o in the present paper where a few theorems on the existen-
ce of a completion with given properties of a small subca-
tegory of a given category are proved.

In the first part of the present paper the categories

M* and M~  of all small subcategories of a given
category M and all their MY -functors or M~ =functors
respectively are defined and considered. It is shown that
the category S+  is not complete, S being the catego-
ry of all sets and all their mappings; even a directed pre-
sheaf need not have a direct limit in $* . A definition
of an MY -limit of a directed presheaf in M™M7T  ig gi-
ven so that if every directed mresheaf in M has a direct
limit, then every directed mresheaf in M™%  has an M*-
limit,

In the second part of the present paper some lemmas: needed
for the constructions of completions are proved. In the third
part the following results are proved: Let M. be a replete
complete category, k its arbitrary small subcategory. Then
there exist complete subcategories K, »K, ,K; of M
such that k is a full subcategory of K , K, , K; and
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b
1) the inclusion fumcter I, : &k — K4 preserves all
(direct and inverse) limits (already existing in k );

2) the inclusion functor TL : K,_ — M preserves all
limits;
3) the inclusion funetor I, : ® — K, preserves all

direct and the inclusion functor fa : K3 — M all
inverse limits.

In the fourth part we define the notion of M* (&, V) -
completion of a subcategary k of a given category M , whe-
re G is a class of diagrams in k , V is a class of
diagram schemss. M*(&, V) =-completion of k is ,
roughly speaking, the "smallest" subcategory K o M such
that every diagram in K with the schema from V has a di-
rect limit in K, k 418 a full subcategory of K and the
inclusion functar I : &k — K preserves direct limit
(whenever exists) of every diagram from & (for exact de-
finition see IV.1l)., Under some assumptions about the category
M , these being satisfied by many familiar categories, the e-
xistence of M¥(G , V) -completion of every small sub-
category k of M is proved whenever either & is an
arbitrary class of collections in k and V is an arbitrary
class of discrete diagram schemas or G is an arbitrary
set of diagrams in k and V is an arbitrary class of dia-
gram schemas. Dually the notion of M=(G, V) -comple-
tion is defined and considered. .

The present paper is vrritten within the Bernays—-Godel set
;theory, [5], without any further requirement, unless expressly
stated (only in IV.6). The axioms of set~theory are consistent-

ly respected and the axiom of choice is assumed.
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Conventjons,notation and known definitiops (ef.[2],

133,(43,173,09],(10),(11},[12) )¢

If K is a category, then K< denotes the class of
all its objects, and K™ is the class of all its morph-
isms., If a, b € K”, then  K(z,b) 4s the set of all
morphisms. of K from a to b.For o € K(a,4£) put
X =a,® = & . IfaxeKla,2), Be K(&ec),
then the composition of o and 33 is denocted by B - O .
¥e shall assume that all functors are covariant unless we
explicitly say otherwise, A functor & : K > H  is cal-
led f£yll whenever P (K) is a full subcategory of H 3
it is called faithful if its restriction to every set
K (a, &) 4is a one-to-one mapping in the set H ($(a) ,
O (&)). For a € KY denote by e, the identity-morph-
ism of a . A category K such that K™  contains identi-
ty-morphisms only will be called a discrete category. A cate-
gory K such that every K(a,b) contains at most one morph-
ism is also considered as a guasi-ordered clgss: a = £ <>
= Ka,&) + g . Let J, X be categories, J
small, % : J — K a functor; £ 1is termed a dig-
gram in K , J is called a diagram schema; if J 1s a qua-

si-ordered set, then £ will be called a preshegf and if
Lo} = J(a,£ ), then F (o) will be denoted by

YF ; if J 1s & directed set, then F  will be called
a directed presheaf; if the category dual to J is a direc-
ted set, then £  will be called an inverge presheaf; if J
is a discrete category, then F  will be called a gollec—
tion,
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Let % : J-—> K be adiagram in K . A couple O =

=(q,9{7u;4, e J% > will be called a djrect (or
an inverge) bound of #  whenever a € K% and
{1, 5 € J7¢ is a natural transformation of % into
the constant functor X :J —=> K (or of X  into
F ), where K (i)=a forall i€ J , i.e.

1 € K(F (i), a) (or 3; e K(a,F(Z) ) ad
if 6 e J(i,4i’), ther o, =27, - £¢6) (or
Feey - x; = XA ; , respectively); put o = () ;
it o : K —=>H is ‘& functor, put @ (o) =
2<P@); {P ;) 5 1€ TI%Y. It w=<asiq; ;< eI,
ot = (a’;-{qfi 51 € 3%} Y are both direct (or inverse)
bounds of 5 , then every morphism & € K (a,a’) such
that B, = 712 (or B e K(a’,a)  suah that
A, = %: , Trespectively) far all 1e J”  will be
called an oo =-canonical morphisp of o’ o+ A direct (or in-
verse) bound &« of F: J —> K is called its direct
(or inverse) limit whenever every direct (or inverse, respec-
tively) bound «‘ of £ has exactly one «¢ ~-canonical
morphism (then it is called, for short, canonical). If o« =
=<a;4x, 51 e J”3> is & direct (or inverse) limit
of #® , we denote it by oc = 11/777( F (or w:%,‘ 7,
respectively)., If % is a collection, then a,=(ZuTn‘:’< 9")

€<«
{or a = (/&/m/K 3’] ) will be also denoted by

(1) ‘ = A .
a =¢.>/7’ F (i (or ;/e\” F (<) , vrespectively)
A functor @ : K — H  is said to preserve direct (or

an jinverge) limit of adiagrap £ ¢+ J — K whenever,
if there exists a direct (or an inverse) limit oc of % ,

- 584 -



then & (o) 1is a direct (or an inverse, respectively) 1li-
mit of the diagram & F : J — H . Let G (or
G;

P d E—
is said to be Gd. ~meserving (or to be ; —REeser-—
ying) whenever it preserves direct (or inverse) limits of.all

) be a class of disgrams in K ; a functor $ : K= H

diagrams from G; (or G; ); if G; (or G; ) is the
class of all diagrams in K , then a EZ ~preserving (or
ﬁ: -preserving) functor is also said to be gll-preserving
(or ‘_—gl l-preserving, respectively); a functor which is both
@: -preserving aid ﬁG—: -preserving is said to be
( E; R f@: ) -preserving. let V be a class of diagram’
schemas; if K 1is a categoary, denote by - 44 the class of
all diagrams in K , the schema of which belongs to V ; &
category K 1is called directly (or inversely) V-complete
whenever every diagram from KV has a direct (or an inver-
se, regpectively) limit in K . If V is the class of all
diagram schemas, then a directly (or inversely) V-complete
category is called directly (or inversely, respectively) comp-
lete. A category which is both directly and inversely comple-
te is called complete.
The category of all sets and all their mappings is denoted
by S . If g is an ordinal number, then T‘L denotes the

set of all ordinal numbers less than q .

I. Categor of su ies.
I.l. Definition. Let M be a category, let h, k be its
subcategories, let I : h — M, I : k — M
be the inclusion functors. A couple (Q , ¢ > will be
called an M* -functor (of h in k or from h to k)
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whenever & : A — k 1s a functor and g ={g ; aen}
is a natural transformation from I, to I - & . A cou-
ple ( d, & > will be called an M~ -functor whenever

P : m = kR is afunctor and ¢ 1is a natural trars-
formation from I . & to I,

Notation: If ( $, > : h =k, ¥ v >: k> 1L
are M* -functors, put (¥ ¥ > <P, 9>=<¥ 3,y -¥>
mere ¥ g = (Y,
M~ ~functors, put (¥ ¢ > <P p>=<¥-P -y ) where
g-y= {9;_' Vo) @ € 47} . byidently all small subca-

tegories of M and all their M¥ -functors (or M~ -func-

a € M7} . If they are

tors) form a categary *); denote it by M™T (or M~ res-
pectively).
I.2. If M is a complete category, then IM|+ may not
be complete.

Now we give an example:

We show that in the category S*  (we recall that
S denotes the category of all sets and all their mappings)
a directed presheaf need not have a direct limit: Let A°
be the directed set of all positive integers with its natu-~
ral order; let {a,; b= 0,1,...} , {8 ; 5=0,1,.} be two
one~to-one sequences, a,b be the sets of all its members,
let & %= b.Let F: A —» S*  be the following pre-
sheaf: F(m) = 4o wher~ &7 = {a,& } ,

The morphiems of MIT  are precisely the triples

(M ,{®, 9>, %> vhere (§, pr:h-+Mk is an M -func-
tor and analogously for M|~ ,
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k, (a,a)=1¢}, &, (b, )={¢3, R &a)=0,*, @,b){; £}

where ¢ is the constant mapping which maps a on b, ,
t, (a,) = Donau (0,5-my ; if B D € N , n< m,

we define :?’ =< P y v > as follows:

whr=a, T wr=t, "d0)=0, " (£ )= £, ;

H

mga‘ is the identical mapping of a onto itself,

mn

"';cy& (L) = /b‘m (0t * Now we prove that %  hase
no direct limit: we define two direct bounds o , /3 of
F in &% '
ots(h;{(”%,”u); me NT§ > where

Wafa ny, n=4 4; 3, /  has exactly one non- iden-
tical morphism ¢ : a4 —> f (which is, of course, a
constant mapping); TU : &, — M is a functor such
that *U (@) = a, "U (&)= p,"UE)="U () =q,, "u,
is the identical mapping of a onto itself, "“u”_ is the
constant mapping of b onto p .

=L {<"W, "w )y m e N7} > where

-
2% = {av 2y, Y has exactly two non-identical

morphisms, namely 02 Pa v — & which ia the

constant mapping on b, and g : a U & —» & sueh

that g (X) = 4 whenever x € a, g(x) =x whenever

xeb; "W: k, —> L is defined as follows: ~W(a)=
=au b, "W = £, "We)=q,"WE)=g; "u: aravt

(4

is the inclusion mapping, ‘”'w; : X — & ia the
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constant mapping on b, . _
Suppose that & has a direct limit, denote it by
SRy {<™V,™r >im € A¥§>. Since <"V, )= (V.7 )de

.(:@ ,:':c; S whenever n £ m , there is ﬂ"i - m% s

4 ":gb and consequently W’Mb‘, (&) is a one-point
set, Denote ¢ = "V(a), ¢’ = "y (a) . If ¢’ =¢

then ™V (¢) =”V('F,n) because ”V(r)-”gl: ”"ul; ‘o =

= ”'1){?’ -, =”V(+‘ﬂ)- ‘”15 . But then /8  would have no ca=
nonical morphism because W) * ™ w (f,) . Consequent-
ly ¢ E coChoose x € e=-c . Let <% 5 be
the canonical morphism of o« ; then 14.(!‘_ (X) may be an
arbitrary element of Y (c) = "U a) = a ., i.e. there

exist many canonical morphismsof o .

I.3. Definition. Let M be a category, let h,k be its
subcategories, let ( ,p>: h— o W, yd: h — .k
be M*-functors. A collection {3, ; @ € A"} is called
a patural transformation from < @ , o > to (¥ vy )
if it is a natural transformation from ¢ to W and

4
/3“ Y = Y, for all a € h . It is a natural equi-
valence if all’ /.s‘w are isomorphisms of k . Then
(®,? and ¢ Y, v are said to be naturally equi-
valent.

Definition. Let £ be a subcategory of h . An M7*-
functor < § ,<w ¥: A — .k  will be called identical
on £ if P (x)= o  whenever « € £ U L™ and all

Y,, a4 € £% , are identity-morphisms, It will be called
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identity-M* ~functor if £ =h=k. (P, ¢ > 1is cal-
led an M*-isofunctor if ¢ is an isofunctor and all G,
are isomorphisms of M ., Two subcategories k,h of M are
said to be M¥T ~igomorphic whenever there exists an M* -iso-

functor of k onto h .

Definitjog. Let M be a category, let \h, k be its
subcategories. h and k are said to be M*’m if
there exists MY -functore($,p>: Ak, <Y,y >: k— 1
such that (¥, > - (P, > awma (P, > <%, yv>
are naturally equivalent with identity—M"'-functors. X

Proposition. Let M be a category, h, k 1its subcate-
gories, (P, g>:h >k, ¥,y > k> h M+ -func~
tors sueh that (¥ oy >- <P, ¢ > and(P, g)> <Y, )
are equivalent with identity-M+—functors. Then all S s
aeh’, and all 7, , be k7, are isomorphisms of M ,

® and ¥ are faithful full functors, and the skeletons of
h and k are MT -igomorphic.

Proof: This is easy.

Note: The definitions of a natural transformation of M™
functors, of an identity-M~ -=functor, of an M~ -isofunctor,
of M -isomorphic and M~ -equivsal ent subcategories of M are
obtained by replacing M by its dual category. Evidently two
subcategories of M are M¥T-isomorphic if gnd only if they
ar’e M~ -isomorphic; they are MY -equivalent if and only if
they are M~ =equivalent and this happens if and only if they
are equivalent in the sense of [8]. T M+ -igomorphic or
M+t -equivalent subcategories will be called simply M-isomorph=-
ic or M-equivalent.
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I.4. Definition. An M¥* -functor < J ,p >: ©h — 4k
will be called an ¢pi-M* -functor ifo.@ *0 P, when-
o -4
ever aeh” ,cek”, @, P,erR(P@l,c), O + @ -
Mopo-M~ =functor is defined dually.
K Note: We recall that the Mac Lane ‘s representation-iso-

functor Rl of a swall category £ 1s defincd as follows:

Rz(a).zcekl)’z (c,a); if we £(a, b)), then
Rl () Rz(a,)—? Rt (&) 1is the mapping such that
[Ry(m)I(»)=(e -» .It is known [3] that R, s an
iscfunctor of /4 onto & suwall subcategory £ of S . But
R, s are not only representations of small categories. They
define in a natural way the functor R: C — $% of the
categary C of all small categories into St if we put
R(I.)=£—; ir @ L, = 4 is a functor, we put
R()=<Y¥,y> where ¥ =Ry - § - R;T, ¥ =
={¥, ; A€ 2—1’3 where, far A = R£1 (a)

H

¥, + U ,81(c,a,)-—->‘5: £,(2,9(a)) is 8 mapp-

ce £y
ing such that 7y, (») = & (») .
Proposition: R: C — §* is a faithful functor.
Ir 3 e C™ | then R($ ) is an epi-S* -functor.
Proof: If. £, ,22 are small categories, & : £ — ,22
1s a functor, R (P) = < ¥,y >, A= R£1(a') €L, m,

4
w'ed,(d@)d), then Ry () -y, # th (@)« ¥,
because these mappings have distinect values at the argument
€, € A . R is evidently faithful.
‘Note: The functor D:iC —> $~ with dual properties

is obtained as follows: for £ e (7 define the isofunctor
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Dl : 4 = 7 onto a small subcategory of S such that
D@)=ecn (cgi’ £L(a,e)) ;4 w« € L(a, &) , then D ()
is the mapping such that, ifpeR@). [ D ()] (p)
is the set of all » € L{’ L (&, c) for which » .
ce ,
T @ (thus D, is the composition of the Mac Lane s
representation-isofunctor of the dual category with the ree=-
triction of the functor P~ defined in [6]). Put D(£) = 2
£ &: L— 4 ,d € C™ | put D(P)=<K¥,y ) vhere
-1 ~
Y=Dl,_'¢’-DL, yv=iy, ; Ae 27} where,
If A =D, (a) ,then %:m‘%{g@m,d}—y wfz.“ul’, L,(a,e)
is the mapping such that Y, (@) is the set of all P ¢
v ) ; . -
ecei;' L(a,c ! for which & (»» )€ @ . One may eamsi
1y prove that D ¢ L —> %5~ is a faithful functor. If § e

€ C™, then D(J ) is a mono=3~ -Functor.

I.5. Definition: Let #:(T,3) — M* (or F: (T, 3)»
=M~ ) be a directed presheaf, F(t) = Rk, . Its di-
rect bound ﬁ:(k;{(tw; twr >, te T3> will be cal=-
led gdriggible if it catisfies the following condition: if t €
eT, o, e .kto(a.,ﬂr), t’W(oc)*t"W(/s) , then there exists
tye T, t £ t_ such thot

, &
t _ 1
"Wl ) 1wz * 1E"‘A/((A) - Tur where @ = t;’f’“(cz)
a a t°
(or t,% . t°\/\/(0{,) =* t’w‘; o Tow (3) vhere
- t
& = t’:/f‘ (&) |, respectively).,

Ar admissible direct bound @& of & is called its Mt =
limit (or M~ =-limit,respectively) if every admissible di-

reect bound of f’ has exactly one o =-canonical morphism,
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Theorem: Let M be a replete category in which every
directed presheaf has a direct limit (or every inverse pre-
sheaf has an inverse limit). Then every directed presheaf
in M7 (or in M~ ) has an M* _limit (or an M|~ =
limit, respectively).

Proof: Let F:< T, 2 > — ™M* be a directed

’

presheaf. Put &k, = F(t); if t 2 ¢’, put YF o=

2 L]
=(:,§> , :9’ > . We define the relation R on the set P =
o .

tgr {3 = &k, as follows:

‘
(t,a>Rit, @)=t 2t anda .d@)=a . We de-
fine the relation S on the set Q= U {t}] x &

€

as follows: {t, ot " S<t,aveE=t 2t and

:’q>(oc) = o’ . Let R* and S* be the smallest equivalen-

ce on P and Q contsining R and S respectively.‘ Put

P
P= /R* , & = Q/S"‘ . Every elemert p e P is direc-
ted by the restriction Rﬂ of R + Now we define presheaves

idln, R, Y>> M such that £, (<t,a>) = a ;

, <l’> v ,
1 {t,a ¥R, <t a’>, ’chen<:::,5;= :gpa‘:a.-—ba.
iIr p e P, oput <1ﬂ_;{.7t'/3€4b§>= MM?;L,

T3 %)
where we choese lﬁ * Zﬂ whenever p % p’ . If qeQ,
(t,deq,axehk(aa’), n=(taYen A=(tdepn' tha
there exists exactly one mapping V(o ) : 11, — ,lﬁ_, such

that A, coc= V(x): A . Ifalse (T &degq,

then evidently V(ox) = V(& ) . Nowlet k be the
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category for which &%= {,tﬂ v fL € P3 s ir 4'1“ Z»ru € k";
then k(L £ )={V(x);ac k, @,a’)<t,aden,{ta’>en'}.

If te T, put 1"V(«rz)st,, whenever <t a2 > e 1,

"
View Y= V(a), 115=‘11b whenever o = {t, a e fn;

then, as it may be easily proved (tV, ) ’ka — & is
an M*—functor amd < 4e; {<*V, *»r >, t € T 2> 4s an
admissible direct bound of & . We shall prove that it is the
MY -limit of £ . Let M=< ;<Y ty S5t e T3>
be an admissible direct bound of ¥ . If p € P, .
(t,a>en, <t,a’>e n, thm *¥Ya) =*¥aH= R,
and < {*Y, ; <t,a>epn > is & direct bound
of ?f" (in M ). Denote by 8, Z,, — 7 its canoni-
cal morphism (i.e. g, - Py = ty, . IfBehkdl,, L,),

then there exists t € T , o< € 4.~ such that
(-]
tﬂ tﬁ
V(o) = 3, Denote °¥(x) by ¥ .

1) First, let us prove

(*) ’X’ . qaﬂ' = 9'1\-' . /3 -
- _ t = -
Let t, = t, andput o = t.@ (), a x, ,
’ - t " _ , ¢
' = o, . Then Y, c X, = V&3 4 and also

_ , t X . T =t
'y‘fv . "‘; = Y, - Using the equalities g,ﬂ Y ¥,

t - t ] ¢ €
%, T-Z, ‘Vz, there is (%4 [3)e Y = (y- g,rl_)- '
and therefore (%) holds.

2) Secondly, we shall prove: if also 3 = V(&) for some

— e d
x € ko,

, ‘then necessarily *¥(x)= y . Butthis
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easily follows from (&) and from the fact that [ is ad-
missible.

Now we define the MY -functor < F, £5: & — A as
follows: F (L, Y= fi,F(B)=7, ft,» = g, . It is easy
to see that < F, £ is the unique M™* -functor such that
CF, 49Ky, tv )y = (Y 5y >
The assertion of the theorem concerning ™|~ is obtained
replacing M by its dual category.

Note:From the construction of M%“1mit it is easy to see
that the M|* -limit (under the same assumptions on M , of
course) has the following properties:

1) If all 'kt = F(t) contain a category k¥ as a
subcategory and all (:'é , :lgp > = :’5" are identical

on ¥ , then the MY -limit (k;{<C*V,*v >, t e T}

can be chosen so that k contains k and all (*V, tar >
are identical on X 3 if ¥ is & full subcategory of all k.,
tnen it is also a full subcategory of k .

2) If P=Kh;{<*Y  ty >, t € T3> is adivect
bound of ¥  such that all {(*%¥ ty >  are epi-M* -func-
tors, then it is an edmissible direct bound and its canonical
MY ~functor is an epi-M* ~functor.

3) Ir 2€e k% (or z € k™), then there exist t € T
and z'e kJ (or z’e k]* ) such that z = fy(z’) , If
t,e T, a ae l::i ’ t"V(a.)=""V(a"), then necessa-
rily there exists t £ t, such that , §(a)= :‘,Q a’) .
But thg analogous proposition for morphisms of kf. is ge-
nerglly nct true as it is shown in Example I.2 (the direct

bound o 4s the IM?* =limit of % ). In the following
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lemms we shall prove that this proposition holds in a very
apecial case.

All these properties of MY -limits will be used in the
following parts of {he present paper without explicit mention.

I.7» We shall call a couple ( M, || > a concrete ca-
tegory whenever M 1is a category and || : M — S is
a faithful funector. Let 4 be a positive cardinal number.
We shall say that a directed set (T, 2 > is s -in-
accessible if it has no last elemert and every set Ta c T

with card T, < 4 has an upper bound in T .

Lepng: Let (M, Il > be a concrete categary, let

M have direct (or inverse) limits of directed (or inverse,
respectively) presheaves, let || preserve these lim’ts.
Let ¢( T, 2 > be an 4# -inaccessible directed set, let
F:icT,2> = M+ (for 7, < T, 2 >= M~ )
be a presheaf; put R, = F(t), ir t 2 t°, denote ::?'e
=<, g0, <R LY, > te Tids MY-tim &

(or veoe = M™ =lim F ). Let t, e T , = a ¢ k:; ,
w, B € do @a), “Va) ="V(R) . If card lal<smu

t . t
and all mappings | t’%l. lal—'r.lt“@(a,)l are onto
t .t ’ ’ -
(or all mappings | ' I: Itpé (a’)l — la’l are one
to-one, respectively), then :@(oc) = :é (R for
° (4

some t £ t o

= °
Proof: 1) First we shall prove the direct case: If 3z ,
,. £ ¢,
z'e | a'l, | ‘u, 1(z) = | ‘v, | (/) | then there exists

- 595 -



t £ o euch that 5% 1ex) = | g, 1(2) . Since oy,
? o t,
- & V(ac)-t'b;- V((3)-t'va"=- t'1€/- 3 for every x € lal
t
there exists t E t, such tpat It-:@(og) . :: % 1 (x) =
t ¢ —_ -
It:'dacﬁ)-t‘:%!(«) . Lt TeT, t & ¢t _ for

x

all x €l ale. Then lf_.é(ac)-f.c_pa_l- lfné((uv f;q;l

and | f,ch, | is onte.

2) Now we prove the inverse case: Put b =

t
= | ’%lclt'V(a)l);thcn b Cclal. denote by i: b — | al

t

the inclusion mappinge. Since ot - t"za: "zg, . t.’V(O:!(.) =

= t"'l;, . t'V(ﬁ)=/.5' t‘zg , we have [oc|+1i = |B8)+4 . For eve-

ry x € | a|=1b there exists tuﬁ t, such that x ¢
€13010 *®@I). Lot TeT, TE t, forall x e
i t
€ lal=-b . Then Ifoqza\(\ t,$@)1) ¢ &, end
| 'y t % 3
therefore \1’%’0 :@(o(,)|= - iq@\: 13- .,..ccya|=| :.‘3&' . t,é (3l,

and | f % /l is one-to=-one.

o

IT. Auxjliary lemmas.
II.1. Convention. Let M be a category, = e M7 . A set

L will be called a gtar from a jn M (or o gtapr to a in
M ) whenever L is a set of couples < “ (u’ > of morph-

isms of M such that & = ', a= & = @&’ (or
— -,
a= u = (“f', ﬁ: = ﬁc_’ respectively). Let L be a
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star from a (or to a ); a morphism »  guch that ¢ -V=
=(u,’.v (or » - = » . «’ ) whenever (e, wc’>€ L
and every 1 , for which also - Yy = « » (or

4

Y= P oo ) for all <, «’> € L , uniquely
factors through % , will be called a kernel (or cokernel
respectively) of L .

(Thus a kernel of a star is a strict monomorphism in the sen-

se of [B81).

Lepng: Let M be a category, a € M” , L a star from
a, » ite kernel, Let & € M(a,a) such that < -6,
(u.' «+6 >e L whenever 4, (a_’ > e L . Then therel e~
xists exactly one & € M (T R S such that 6 .
c YV = ». 6 .
Proof: Since w - (6 » )=’ (6 . » ) for all
Ce@,m’>e€ L, 6. % uniquely factors through » .

11,2, Legmg: Let M be a replete inversely complete cate-
gory. Let h be its subcategory, & € h” ; let k be & full
subcategory of h such that h - k" = {af; let L be &
star from & in h such that:

Vitdew, w’>e L , 6 € h(a,a) thea

?
‘w6, w.6>e6 L
2)if fe h(ec,a), c € £, then -t f.,

Then there exists a subcategory h” of M and an M~ =func-

tor <Y,y >: A — A such that

1) k is a full subcategory of h° , <¥,6 4 > 1is iden-
tical on k, (AT - &7 = {¥(a)} -

i <, e’ > € L, then ¥(w) = ¥ia);
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3)‘ it <P,g>: h — H is a mono-M ~-functor
such that &(@w) = P (w’) whenever (e, w’de€ L,
then there exists exactly one M~ -functor < P, ¢’ >:
:h”— H such that (@, ) =<(P, 0> ¥, ¥ (P o>
is also & mono-M~ =functor.

Proof: I, We shall ccnstruct B with the required pro-
perties. Choose a kernel i € M(a’, @) of L so that
a‘¢ x% . For every f € Mhic,a), c€ J&r, there e~
xists exactly one £'e M (c, @) such that f =1 .
. £’ « For every 6 € h (q,’ @ ) there exists exactly one
6°€¢ M(a’, @’) suchthat 6.1 = .6 . Let h” be
the category such that ¢ £)7 = 4 u{a’} , 4 1s a
full subcategory of h’ ’ )54 (a.',, a’) is the semigrcup
of all 6, if e € &7, then A'(c,a’) 1isthe
set of all f° with f € h(c,a) , h'(a’,e) is the set of
all » .4 with » e 4 (a, ¢ ). The definition of
LY, v is avident. Of course, we put 1y, = %

II.If <& ,9>: K — H is a mono-M T -"unc-

tor such that @ (e ) = ® ) whenever ( w w’>e€ L,

then also G~ Gf  P(u)=gy - ()= w'* g aad

there exists exactly one o, € M((P (a ), a’) such that
¢, =i+ ¢, . Nowit is svident how tc define < &, ¢”>-

It is only necessary to prove that: 6’1' = 5;’ = §(6,)=$(6,);

flaf)=3 (£)=0(f)); Vri= V- i=dB)) = (v, -

But this assertion can be easily proved using the fact that
(&, ¥ > 1s a mono-M~ ~functor. Evidently, {3’, ¢’ >

is also a mono-M~ -functor.

- 598 -~



Note:(n what follcws, the category h’ will be denoted
by M/ , erithe MT-functor (¥, y >  will be cal-

led an L-projection.

II.3. Definition. A faithful functor || : M — S will

be called jnversely powecr-preserving if it satisfies the foi-

lowing conditions:

1) if € M (a, &) is a monomorphism, then card lal &
£ card [bl;

2) if -[a,‘; ; 1€ T3} is a collection in M , aaiﬁ\ag‘-,

then card |alg Tl card |a. | .
i€ L

Note: Evidently forgetful functcrs of many familiar ca~
tegoriaas of sets with g atructwe and all their mappings na-
turally induced by this structure are, in most cases, inver-

seLy power—preserving,

II.4. Conventjon: In the fullowing two lemmas we assume
that a replete inversely completaz category ¥ is given, k
and h are both small subcategcries of M , k is a full
subcategory of h, W ~-x"= {a} 21, LY k> is
the inclusion M~ =functor.

Leuma: Let <€ : ¥ — fe  be a diagram in k which

hes an inverse limit of, = <&;{A;; 4 € Y73 ) in

ko.Let B = <a, {q;,» 5 7 e}r}> be an inverae
bound of IR ., Then there exists a small subcategory h’

of M and an M~™~functer <% y b: h — A’ such
that:
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1) k 4c a full subcategory of h’ , (¥, v > is iden-
ticel on k , W~ k={a’}, ¥Y@)= a’ ; the restric-
tion of ¥ to the set h(e,a) is a one-to-one mapping
onto the set h’(c,a” ) for all c e k7 .

2) There exista J% ~canonlcal morphism < of ¥3)
in n° .

N1 <P, > : h—>H is a mono-M ~=functor such
that @(d"q_ ) is an inverse limit of & I o in H,
then there exists exactly one M~ -functor < &7, ¢’ > :
: /A"— H  such that <3’ @ - (¥, y>=<d, g>
and ¢ () is the & (d}eé._ ) =canonical morphism cf

d(3) 1in H.,

(P g’ > is a mono-M~ -functor.
Moreover if (| : M — S is an inversely po-
wer-pregerving functor and .#t is a cardinal number such
card hia,a)

then

that . > card lal >« {card a1l } ,

ML > card la’l.

Proof: I. Write > = s(a,a ), For every 6 € 5
put da,= a . Putlr:/\d‘, K o= 2. A & 1 M;
e 7
let 0 e M(n,a),5eMr,8), 7€ M(&,dy) be projec-

x
tioms. If @ ‘€ > denote by © € M {(n, £ ) ‘the

’
- . . m

BT T %

It +€ h(c,a), ceh’, 6 e X, denote by %

the o’fq_ =canonical morphism of the inverse bound

morphism such that o = 7);- gD"

<°';{7L,-'5'"F H j€}r§> of Y} in k . Denote by
e M (¢, £ ) the morphism such that %--F"- £,
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T Ty, £ = F7 . Tt is easy to prove that
1) (6.4 =6". "

m—- Ml M .
2) (6’2'6;) =6, 6

3) (- 0e)%= £%. 3¢ where o € 4 .

II. Lev < & ,9>: 4 — H be a mono=M ~ =func-
tor satisfying the requirements of the Lemma. Denote by (u'
the canonical morphism of & () ip H . Let q‘s
eM(@(a),n) be the morphism such that m, - q"- % ,
oo gt = Cf‘t'(u'- $ (o). It is easy to prove that
1) if @ € 3, then 57.)"- gt - g B @) 2
2)1f fe hle,a), ce &7, then £% ¢ =9"d¢),

3) W-eu.wb'g¢=g¢'ﬂl,

IIT. Let L be the set of ell couples (-6 T, ,

. -
2.5.17&-#& > , where 6'6}:.’_3-52:‘ and of all

<<f—m.19..yr

)

a* with 6 € 3 te fic,e), Pehia,

c)e+a 6=F.7% . It is easy to prove (using 1)2)3) of I,
and 1)2) of II. of the present proof) that
' &
i (»,»Yel, e | then (W-p*,
v . gb" >e L
2)if~Fe,h_(c,a.), c *+ a then  +%= p’. %

’
whenever < », 75> e L
3) V.t = . g* whenever <(», ‘> e L .,

Let i be a kernel of L such that a'= T ¢ &” . Denote
by p’e M(a’,a'),f'e M(c,a’), g ,eM(d (a),a’) the
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morphismfor which .p"=@™ 7, ©-#'= £, i-g =gt

IV. Now it is evident how to detiue h'. Put @ =TT Z.
Put A= R0 {a’} y k is to be a full suhcategory
of h”; if ce k7, then h'(c,a” ) ie to be the set of
all f° where fe (c,a), Al (a’, e ) ie to be tie
set of all V-, . < where ¥ e h (a,c) aud
of all o€ -« where 2 € & (d,c); Hh'(a’,a’) is
the smallest semigroup containing all gv' where [ >
and all £° . w where fe h(d,a); Y@)=a’, ¥ =

=m.i, Y($)= 4;9’@))=p59’(19)=79=%.1t is only necessary to
prove that

1) (6,-6,) = 6, - 6 whenever 6,, 6, € 2 ;
2) (6 .+)= 6+ whenever 6 € X | f € h(c,a),t+a;
3) ($£-2¢) = £’- 2¢ whenever fe s (c,a), 2 € hic,c’);
) Y.y, - f =B F whenever fe€ A (c,a), D€
€ m(a,e’), c,c’e R ;
5) 6°= 7. (5 . Y, )  whenever 6 =+:- 6 X,
fe h(e,a) ¢ +a .

But the proofis easily accomplished by using 1)2)3) of I. of
the present proof and the fact that i is a moromorphiam.

V. Now i1t is also evident how we shall define < §’, @)

($’, @) wtobeequal to < $ g> on k, da) =
=d(a), ¢, 1is slresdy defined, ()= ', () =
= §L+) whenever fe h(c,a),c*a, $'(6/)= 3 (6)
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whenever 6 € 5  and extend &’ on the whole h' , Ii is

only necessary to prove that

1) £ g = 9;’ P CED whenever f e f1(e,Q), ¢ + Q;
2 Gyt gl
3) @' P(#)= P (oe) wheneverw-f'=2e, fehlc,a),e+a;

4 Sg_" d6)=6"g,,  whenever 6 € Z ;

5) &c6,)= $(6,) whepever 6,6, >, 6’;= 6;_'-

)

6) @(157):@(195_) whenever ﬂ,,d%_EhCa,a),ﬁ*Q«,
q91. wﬂv= 1% ' vﬂ— ;

7 $m) =) w’ whensver 9 € A (a,c), B € kh(dc),
12.% = 7-9'(“ ;

8) 4)(.,.).(“/.@(5‘)=§(p) whenever f € th,a,),b",;os
€S, o=

K

9) @(ﬁ,)'(w" o€ )= @C‘F,_)'(«,'- ®(6;> whenever f, f €

2

Eh(d’a)76‘”6;eZ;'ﬁ,"(u’@”ﬁ"(‘"ﬁz’ o

But these statements may be easily proved by using the def;ni—
tion of o , '9”", and the fact that ( § o> is a momo-
M~ ~functor. It is easy to see that (®’, @’ > is also & mo~

no=-M~ ~functor.

II.:S. Botgtiomn: If > is a semigroup with an identity

ei;unt e, and T is an element, =T ¢ 3 , dencte by

> (7)) the semigroup with the following propertiéa:

2 3 is a subsemigroup of £ (Z ) , e i3 the iden=
tity element of 3 (2), T € Z (7)) ;
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b) 9 T — = peing a semigroup~homcmorphism,
g (e ) Ybeing the identity element of =, @ € =,
there exists exactly one homomorphism 9,’: Z(z)y—> =
such that 9_’(7:) =@ and g = 9,’- 7 , where by
i : 2 — 2 (z) is denoted the inclusion homo-
morphism .,

Evidently every 6 € 2 (7 ) may be uniquely written in

the form 6 = 5;»'5»;;-,,"”' 6;6’_’, 5 where 6, =€,
q,...,gmeZu{'v? and if G;GZ,then
Q;M--- T (i=2,.,m=1). This expression will be called
the gtasndard decompoaition of 8 , m  will be denoted by
m(ce ) .

II.6. Lemmg: Let & : J —» & be s disgram, let o=

-(a,-,-(ﬂ_’-‘,tej‘r}) be an inverse bound of I F such
that every inverse bound of & in k has exactly one 7 -
canonical morphism in h . Let /3 =<a; { i 1 €22
be an inverse bound of I % , Then there exists a small sub-
category h° of M and an M~ -functor ¥ y>: h = 4
such that: :

1) k is a full subcategory of h’ , (¥, > is identi-
cal on k, h”- k" ={a’},a’= ¥(a) , the restric-
tion of ¥ to the set A (c,a), ce o7, is a
one-to-one mapping onto the set h’(c, a’);

2) There exists @ [ ¥ ()] ~-canonical morphism ¢ of

Y(3) in n°.
1 (F,g>: h = H is a mono-K~ -functor
such that § (7 ) 1s an inverse limit of I F
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then there existe exactly one M~ -functor < e >: H—> H
such that <$", "> ¥,y > = <&, ¥ > and $ ()=’
M’

\

being the canonical morphism of & (@) in H.
{$’, @° > 1is also a mono-i ~ -functor.

Moreover, if Il : M — § is an inversely poc-
wer-preserving functor and £ 1s a cardinal such that

M > Cearol |a | )™k bercard hta,an , then

m > cand |a’l .
Progf: I. Put 2 = Jhm, o), for T & > put
2= 3 (z) . For every e €3’ put Q= a ;
n = /}_ a,P , and let Ws‘; : # — @, be projections.
pex
For every 6 € =’ dencte by %€ M (x, £ ) the
morphism for which :ns; . 6% = 77;0‘0_ for all P e =,
Ir +e€ hic,a), ¢+ a, put f6=6 . ¢+ when-
ever 6 ¢ 2 ;if =T , denote by 7 the o -cano-
nical morphism of <c;{7u--¢; ie€e J73)> in ‘h j
if P € Z_" 5; "l 5; is its standard decomposition,
- € 6 4
put F* = ( Foa., ) . Evidently, if o o € X
then IPﬂ Pa. = ?‘.p“ o Denote by 'FME M (C, A )
the morphism such that o . +% = F® .,  Then:
‘ v X 2
1) ;D"Pzéf_-ﬁ?g%-sqr- Cg-f%) . The proof is
es3ye.
2) 6e Z fem(c,ar=>(6-+=6" £ . Proce:
it peZ’, then q-(g.f)%= &FF, 7. 0" = FFT .
To prove 6. ¢ =F°° use induction on m (p) .

put

N tehie,a)2e ek, c)=> (f-2e“=¢"* - o¢ . The proaf

is analogous to 2).
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O femic,a),cka,pe T => F=g" % . The

proof is easy.
11, et <®,c>: K — H be a mono-M "~ -

functor satisfying the requiraments of the Lemma, Denote by
Put

@' the & () -canonical morphism of $(B).
P(o)=3(6) whenever & € Z,if pe X’ and
o;l s ! 6:’ is its standard decomposition, put

) whenever 6 € 3 ,

Tpr=-dcg )-8 .0 6
® (@)= (q,'-?é (6, ,c..." 6 whenever 6, = 2. De-
note by c;"’e: M((®(a), )

%. ?"= &, - gc'p).Ther_: _
e =6g"=g" & ()
go e Z’,thﬁn :TD, 6", ?ﬂ_—_ 7}—?»6'. ?*___ qa. g(P.O’)z

=g -F@)doi~m 9" Fo) .

2o, 0 €2, P:-‘P:@ &= & (p,) . Froot:
gﬂ,. ;(so"):: W:’e‘. ?,", équ)-%. {D:. ?g: ﬂ.;a‘a
) P:'?I‘s 75" ?t' o C{D,_) = %'¢ g,)

31 fe h(c,a,),a#a,#ﬁt?g‘;a-go”‘-;ac#) . Proof: First
prove tnat & (¥F) = 3(’;0) e $(F) for e-
very @ € b , using the induction on m (@ ). Then

B=F =900 g -5 -

X

ihe morphlsm such that

]?roof: ir

..M‘
-

2SS @ e Bty
4) " q"’ = cf" . (u' . The proof is easy.
‘II1l, Let L be the set of aJllcouplea < X ."I’P ,
.7L1. . 17"?'? S where ¢ € J7, @ € 27, and of all
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couples ¢ €. o . %,5;" . 9;“‘ > where @ € X,

d:sz,a.':ﬁ-':}, femn(e,a) c+ a . It is easy to

rove (using 1)2)3)4) of I. and 1) of II.) that:

1) peX, <y,»>el=><»-0% ».p*>e L.

A fehc,a),cxa,{y,»SelL=>.$% »". £, Proof:

. - "- .

Evidently, (. J‘; + a{ .ﬂ;‘P
pe X . let peX | Ges, G6=4%P £6hce,a),
¢, ¥ a ; ‘then {£%. (B %)= (- B %)=
=6, Y= € (F) = a;"'.ga". +£%

Vv, u'del = . g" =g~ .

P whenever

Let 1 be a kernel of L such that @' = % & L7 .
Denote by o'ec M(a/,a’), f’e M(ce,a"),e M(F (@), a’)
the morphisms far which i :p'= ;o"- Z,1-f'= +% 7 F=g".

IV, Now it is evident how to define the category h’ and
C¥, 9>, Pt =z’ Put ,h""s,k"'u{a};‘,k
1s a full subcategery of h” ; h’ (a’, a”) is the set of all
@’ where o€ 2%, it ¢ e k7, then h’ (c,a” ) 1is the
set of all f° where e A (c,a), A'(a’,c) is the

set of all & - 7 £ where pe X, Ve hia a);
Yaryma), =, . i, ¥@)=#, ¥ (B)= B -y, Yo =6".

@

It is only necessary to prove that
(g6, = 66/ vhenever 6, 6, € T
2) (6. £)Y =6'-+’ whenever 6 % ,4€ 4 Cea),c*a;

3) (£-9) = {£7-2¢ whenever feh(c,a),2¢e h (c)e);
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4) Py - +/2 4. f whenever f ¢ #(c,2), PP e
€ hiae ) e, ¢ 2%
5) 67= 4’ (o + Y, ) vhenever 6 =+:4, 6e 2,

fe hi,a), Pe hlae), ¢c+a.

But these statements may be easily proved by using the fact
that i is a monomorphism of M .
V. Now it is also evident how to define < §”, @’>. Put

$'(a) = d@), g, =§, (I, g’> is to be equal to
($,y> on k, $(67) = $ce) whenever & e

€ '2__)7 $’¢f’y = $(#) whenever fe A (c,2), ¢c + a ,
Q'(q}»yfa\s $ (2%) whenever dehta,,c),cqha,;

further, extend &’ to the whole h°. It is only necessary
to prove that:
D #eg = G- f) whenever f € A (¢,2),c+Q

2) ?a&o:(ﬂ,-g;

3§ = (b'- 3 whenever @’ € I
4) 6(6;7 = 5(6’;) whenever @;,52523 5;': ’;

6,
5) @(’194)‘¢’C?:) = Q(qﬁz).gp’(@;) whenever 23 #;e

77
v

4 ’
€hca,e)cra, p,p e, By 0=-4y-g.
But tpese statements may be easily proved by using the fact

that (§ 9 & > is a mono-M~ -functor. It is easy to see
that ¢ §’, &> is also a mono-M~ -functor.
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Note: It is easy to see that Lemmas dual to Lemmas II.
3 and II.5 hold, too. For the proof it is sufficient to re-
place M by its dual category (with the exception of the pro-

position concerning the funetor || )e

III. Construction of c etio 1 _subeate
r i te .
IIT.1. We recall some definitions and propositions given
in [14].

Definition. Let &£ : J —» AR  be a diagram, let
Cay{a; ; 1 € J”% ) be its inverse limit. The set T,
: . R4
of all triples < a,, F(€), A,, >, where 6€ J(<,i’),

will be called the inverse substance of % in k . Two dia-
grams in k which both have an inverse limit in k are said
to be inversely equivalent if they have the same inverse sub-

stance.

Note: The inverse substance Tg , of course, depends on
the choice of an inverse limit of & . But if T, end _i';
are two inverse substances of & , then there exists an iso-

morphism @ of Xk such that (o, e, x> € Ty =

= (a o, w ,00";076__; . Thus two diagrams are inverse-
ly equivalent iff they have the same inverse substances.' The
inverse equivalence is a reflexive symmetric transitive rela=-
tion on the class D of all diagrams in k which have

an inverse limit in k. If @G is a class of diagrams in
k , denote by \/  some choice-class of G n D (i.ee,
no two different diagrams from \V4 being inversely equi-
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valent and every diagram from G A D being inversely
. equivakent with some diagram from v ) and call it the

inversely substantial class of diagrams from & . If Xk
is small, then V is a set.

I1I1.2. Definitiog. Let k be & full subcategory of h ,

let 1: R — A be the inclusion functor, let & :

i J — & be adiagram, and let <a;{A; 5 1 € 78>
be its inverse 1limit(in k ). An inverse bound ¢ & ; 11;;

£ € J3Y of IF in h will be called an inverse
bound of the inverse substance of & (in k ) if A=,

whenever J4. = .71_;, .

Lenmap: Let Xk be a full subcategory of h , and let
I: & — h  be the inclusion functor.Let diagrams
¥, €f e inversely equivalent in k . Let every inverse
bound of I Y in h be an inverse bound of the inverse
substance in k . If I preserves the inverse limit of &
then it also preserves the inverse limit of ‘ﬂﬂL .
Proof: Cf. Lemma I.5 of [14].

The following lemma is well known:

Lemma: Let k be a full subcategory of & category h ,
let I : & — A  be the inclusion functor. Suppose that
fpr every o & h” there exists a diagram 3; in Xk such
that ¢ = | m* 14 1 . Then I preserves di-
rect limits of all diagrems in k .

Proof: (81,[10], Lemma I.7 of [141.
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III.3. Conventjon: Let M be a category, and let Z be
a class of morphisms of M . We shall denote by genMZ the
smallest subcategory H of M such that H™ 5 Z .
Lemmg: Let M be a replete inversely complete category.
Let k be a small subcategory of M, F: J — R a dia-
gram. Then there exists a small subcategory K of M such
that k 1is a full subcategory of K , the inclusion functor
I: & — K preserves all direct and inverse limits alrea-
dy existing in k¥ snd I % has an inverse limit in X .
Proof: I. Put ¥ =<a;{A;1e7i>= Tm, TF
where I : k —» M is the inclusion functor and a, 1is
chosen so that a ¢ X . Denote by A the set of all
inverse bounds of § in k . For every o = < .2 ; {{t 5

1 € 373 >e A denote by £, its 7 -canonical
morphism in M . Put k, = gen,, (kmu{.li', 1€ J”fu{fcioceA\D.

Then evidently k 1is a full subcategory of Xk, ; denote by

(-]

I: & — &, the inclusion functor.

II. Denote by D the class of all diagrams in Xk
which have an inverse limit in Xk . Put a@ = whenever
&G =7, o, =bim, YU whenever ¢ D
) q h‘ [ .

Let dé:(d;{d;;j.ﬁ;'!) . Let V be
an inversely substantial set of diagrams from D , Let p
be the smallest ordinal number such that card p 1is a regular
cardinal number and card p > card ;'"" for Y e V v

U{F}, G: F —r R . We shall define a presheat J : < T, 6 £>+
—~ M~ using the transfinite induction.
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IIT. Let g € T,  and let a presheaf fz: (T, €+
—» M~ be defined as follows:
1) o) = Ao
v’ vy, v v
let J;Cv)=kv,v-’{=<v3£" vy, a,=,¥(a,);

v

2) k,_ contains k as a full subcategory, ,&:-— 47 = 1a, %,

/ ‘
:;‘7; is identical on & and : ¥ is one-to-one

mapping of AY onto AY' where A"ccs%’ & (e, a );

3) if v < < Q , ‘then every :%’Cm) where m
is an inverse bound of :’?{’ ‘I in k, , €Y €
eV u{#§, has a :’IY(d;# ) ~canonical morphism in

k.. i

4) if v < g is non-isolated ordinal, then (kvg {::C; 5

weT 3>=M"-m T, | where J: <T , &> M"

v o) v

is the restriction of fg ; if v is a positive isolated
’ m v Vv

ordinal, », ¥’ € A7 and V. "¥(£ ) = 27 TY (L)

for all o € A , then v = »

IV. Now we shall define k = and (::}t’ , 2y > . If g

is non-isolated, put (%;{(f”i’, Ly >, ve T i>= M~ - tm 7

where we choose k” such that it contains k and all

4 5'14{ , aqy > are identical on k . Every f;?l’ is a one-

to-one mapping € AY onto A% = =
pping AT = Y. H*, (c,a ), a

= %%, .
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For, if o = ot’, then a'::' o= ;«[:’ for some i € J
2 4 < _ 2 <
J¥ )= TY¥(£ ) dmplies 7; = T¥(7x]) =

[4 . ‘

=S¥ - =Rt ) fra = fvarTy = 17

V. Let q be an isolated ordindl, q=x+ 1, Let P
be the set of all inverse bounds of all :'.‘l’ ey, Y e

€ Wu{%} which have no ‘:Y(d'% ) =canonical morph-

ism. Let g : P — T; be a one-to-one mapping onto the
set of all isolated positive ordinals from T; + We shall de-

fine a [resheaf @y P (T, &> — M7 using
the transfinite induction. Let 7 € 'T;_p and let the pre-
sheaf .f; : < Tz , &£ > > M~™ be defined as fol-
lows:
1) .7%(0) =k,
= — ‘ e ‘. — -
let L=k, 2<%, 79> 8-,¥@,);

Y v ~g I'd -
2) k, contains k as a full subcategory, & -4'={a,},

VI_- —

'\"—
1,3;: is identical on k, . ¥ maps A

one-to-one onto AV’ where AV= s T, (c,7,);
3) if v < § is non-isolated, then (Ev;{:-i;;uef’;)z

= M -tim T,  where T, :¢ T, £5>— M~ ia
the restriction of 7. ;

z
if v < q@ 1is isolated, then the inverse bound
1:? (")) has a [r? :Y Cd"‘q) ) ~-canonical
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morphism in k_ .

Now we shall define ¥,  and ¥ gy, ve T
If § is non-isolated, the definition is evident. Let g =
=T+1l.1If p;"('é/) is an inverse bound of

:'ﬂ' °I ¥ , then use Lemma II.5; if it is an inverse

bound of some :3’ °1 ¢ , €Y s V then use

?
Lemma II.3. Using the transfinite induction we have defined

the presheaf Z:(‘%,é)—* M~ ., Put < .A,

K, “y >y e T3> = M~ &im T, where
h 4s chosen so that it contains k and all < “I*, “p >
ere identical on k. Put @ = “r(a, ). Let L be the
set of all couples < » , ’)> of morphisms of h such
that D =& and » . [°M3¥ (£ )1 = [T ¥ (L)]

forall « € A. If p € h (&, &), thenfor every

& € A there exists o' € A such that @ -

Lr 3% 1= "CI¥ (£,). Consequently, if < »,»7e

€ L ,then (2.0, » - p>e L. Pt ="/,

AY, 2y 3= (= §>- <M, °r >  where (= §5:

o — J‘Lg_ denotes the L-projection M~ =functor.
VI. Using the transfinite induction we have defined the

. - . ’,
presheaf 7 : < T £ 5> — M Hg,gel

n? H >

_ ’ ’ ’ k
let Tig)=h,, (T=(J¥, 2>, =¥ ) At= U K (,a);

put < K;{(’*Q,"t’);get})*lMl'-m T where K
is chosen so that k 1s & full subcategory of K and all
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(%20, 24 > are identical on k . Evidently every

20  is a one-to-one mapping of A% onto the set

A =ce%°‘ K<(e, a? (cf.IV. of the present proof).
Put @ = °Q(a,), I= 0°1, g, .= @ (4. : Ve shall
prove that K and I have all required properties. First of
all, we shall prove (%) and (x %) .

(x}1r
v, v'e K(a,e), Y+ gg= " g

for all oc € A , them » = »7 .
’
Proof: Choose g € ";, “, & € k@ca'z7C) when-
N o
ever ce k” , «, w'€ k, (a,, a,) whenever
¢ =a such that 20 (w)= v, 0 = » If for so~
me o € A there ie - W (4 )+ T¥ (£ ), then

7

0(w- fu’cf‘ N+ 29(w’s XW(£ )  since %0  is one-

to-one on k™ ou A% and then » - g = »'-g .

Consequently if » - % = »’. P fao all oo € A

then also o - f’ﬂ’ (£) = (u’- f!tf (£) for all «
+1 - ar1 P

and then ¥ J Y ().

H

(x x) 1r

€ T,,, 1s isolated,then %@ is one-to-one.

Proof: All %9 are one-to-one on k™ o A% ., Let

q be isolated, w, «’ e A* a, = @ = (\72’ and

O (w)=20(w’). Then - 3¥(f ) =@ - 2¥(£) for

all aLEA.For,if(u.:'ﬂf(ﬁ),g(,‘,’.fﬂ'(_,e‘) for

some o € A, then, since 29 is one-to-one on
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A™ o A%, there 18 20 (@ 2W(£.)) + 29’ Lween,

leee  20(): g, * %0 () g Now we use 4) of
III. of the present proof.

VII. Using (%) one may easily prove: ‘
1) If <} € D , then every inverse bound < a; { §; ;

J e }’3 > of I¢ 1is an inverse bound of the in-
verse substance of ¥} in k . For, if O = og, for
some J, J° € J7 , then necessarily E;,-" % = £ %
for sl o € A .

2) 1Ir Yy € Duv {F} , then every inverse bound m
of I hae at most one [ °Q (d:e# )] =canonical mo-
nomorphism in K + If (/m) € &% then this is evident.
Let (m) =q andlet » »’ ©bothbe [°O(c, )] -

&4
canonical morphism of m « Then °e (d; e yYeg, =

=°0(d; ). g, farall 7 €F, x € A, and the-
refore Ve 7 .

VIII. The proof will be finished by proving that every in-

verse bound m = <a;{§; 5 j€F 5> of I€ , where

Y € Y u{F3%, has at least one [ °Q (o, )]  =-canoni-

cal morphiam in K . Therefore it is sufficient to find g e

€ T, andan inverse bound m of o ¥ °I Y in Xk

such that %@ (m )= m , For, ;;}’cm) has a
g1
L*¥ (Fg )1 -canonical marphism @ in and

- +1
then evidently %''Q(w) s a [°6 (dg I -cano-

nical morphism of m in K . Now we find such 'Q € Tﬂ
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. o
and m. Put ¢ = ©L (4 ). For every e F choo=

c?, ) such that

se q; € T;I' and ; skzj(a,gé,

. - 2y, =
TOCE; = §y - Pw g o= gy, cy o (5
Since (% ) holds there is %! ¥(w)=Gr(0) - ¥ ¥ (wy)

whenever 6 € F(j,3’). Put g =9+ 1, 2 =
=£+4

LY (), m:(a.’_.;{v?-;jéj"}>.

Then 7 has the required properties,

III.4. Theorem: Let M be a replete complete category, k

its small subcategory. Then there exists a complete subcate-

gory K of M such that k is a full subcategory of K and

the inclusion functor I+ &k — K preserves direct and

inverse limits of all diagrams already existing in k .

Proof: Using Lemma III.3 and its dual one may easily con-

struct a small subcategory k, of M, for every cardinal

number .4 , so that

1) kx, = k;

2) ir m & m  them k__  is & full subcategory of k
and the inclusion functor I;:: k, — K, is
(m, m)-meaervmg;

31t @ : ¥ — Ak, is s diagram such that card Y7

£ mm , then I ¢}  has a direct and an inverse li-
mit in k= whenever 4 > . .
Pt K = U & .
. ) Fed "

IIT,5. Note: Using Theorem III.4 one may easily prove: Lek
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{ 4%, Il > be asmall concrete category. Then there exists
a concrete categary ¢ K ) 11* » such that K is complete,
k 1is a full subcategory of K , the inclusion functor 1I:

t e+ K is (a-f-’l, ?ﬁ)-preserving and Il = ||* + 1.

I1I.6. Copvention: Let M be a category, let k be its
small subcategory, let < T , LY o — M be the inclu=-
sion M -functor. Let % : J — K be a diagram which
has an inverse limit in k . We shall say that 2'_0;1-«“ ¥ is
absolute whenever Z&T;h F = WM IF.
By faithful M -functior we mean an M -functor ¢ § , & >
such that & 1is faithful and all ¢, are isomorphisms of M.
Lemma: Let M be a replete inversely complete category,
let k be its small subcategory, let <T , C>:% —+M be
the inclusion M =functor, and let %: J — R be a dia-
gram. Then there exists a small subcategory h of M such
that k 1s a full subcategory of h (denote by <1, ¢ > :
: o —v #,<I, T2 H —M the inclusion M ~functors) and
1) there exists 2‘7«,‘ 17 md it is absolute; if
%% : ¥ — & has an sbsolute inverse limit in Xk ,
then I preserves it; I 1is ;ff-preserving;
2) it ($,g >+ o — M 1s a falthful M -functor which
' preserves absolute inverse limits and ¢ & has an ab-
solute inverse limit in h’, then there exists a faithful
M"= functor <($’, ¢’>: o — &' such that

(Q', 92 <I, > =¢<P,9>.

Broof: Denote by |/ the class of all diagrams in A&
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which have an absolute inverse 1imit in k . Choose P =

=<a;{A, ;1€ J7¥) = mMT?' so that a ¢4,

For every inverse bound o of # in k denote by £ its
7 =-canonical morphism. Put A, = gem, (R™ U {A; 5

ie I3 ot 5 £3). Let L= K Mla,e). et
p be the smallest ordinal number such that card p 1is a re=
gular cardinal number and card p > card L , We shall con-
struct h using the transfinite induction. If g € T,'L ’
put lg' = gem (z'&/% /@e;’," Yy denote by .5': ho— lz
the inclusion functor; let Si c L be the set of 21l ca-
nonical morphisms of all inverse bounds m of all I” <y

in £, , where Y € Vu F, suchthat (m)=

= a; put A, = gem, (LT U Si) . Put hs=

= %(gH}. zk:’ ) . Then evidently h has all required
properties.
Theorem: Let M be a replete complete category, let
k Dbe its small subcategory. Then there exists a complete
subcategory K of M such that
1) k is a full subcategory of K and the inclusion func-
tor I : K —+ M is (a_ﬁ, :ﬁ)-preserving;
2) if H 1s a complete subcategory of M such that k is
a full subcategory of H and the inclusion functor I’ :
it H—=>M ig (;J_.-l’, ‘;ﬁ)-preserving, then there exists &
faithful M=functor of K into H which is identical on k .
Proof: The fheorem may be easily proved by a suitable
iteration of Lemma ITI.6 and its dual.
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III.7. Note: 1) One may easily prove theorems analogous

to Theorem III.4, III.6 but concerning either direct or in-

verse limits only.

2) Using a suitable iteration of Lemma III.3 and the lemma
dual to Lemma III.6 one may easily prove the following

theorem:

Theorem: Let M be a replete complete category, k
its small subcategory. Then there exists a complete subcate-
gory K of M such that k is a full subcategory of K ,
the inclusion functor J : o — K preserves all inver-
se limits and the inclusion functor T : K — M pre-
serveg all direct limits.

. ¥( G ,¥) and M*( G ,V)-gompletions and some
eore concerni their stence,
IV.le Definition: Let M be a category, k its subcate-

gory, G a class of diagrams in k , V a class of dia-
gram schemas. A subcategory K of M will be called a

M~ ( &, V) -gompletion of k whenever
1) k 4s a full subcategory of K, K is ?—complete, the

‘—
inclusion M~ —functor {1, ¢ >: & — K is G -

preserving;

Q)i <P, > Kk — H is a G -preserving mo-
no-M -~ -functor into a (V-complete subcategory H of M,
then there exists a W -preserving M~ ~functor <&’,

¢@’>: K = H , unique up to natural eguivalence, such
that <@ ,¢p>=<P", ¢">- <1, L > . Moreover
{($’, ¥’V 4ia alao a mono-M~ -functor,

Hote: Evidently if K, amd K, are both M7(G,V)-
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eompletions of k , then they are M -equivalent.

Note: The definition of the dual notion of M¥(G, V) =
completion is evident. We obtain it by replacing the category
M by its dual category.

IVe2. Lemma a). Let S be a set and let z be the small-
est ordinal such that card z 1s a regular cardinal and

card z > card S . Let be given, far every ¢ € T, , a de-
eomposition @R, of § such that @X« is a refinement of
2,, whenever ¢ & @’ . Then there exists x € T,

sueh that fD£ = 3‘,‘ for all @q & x .

. 2
Broof: For every D e 9, , @€ T, , denote by AJ,

the element of J, for which D c A% . since { AL ;

g € Tz % 1is a monotone system of subsets of S , there e-

xists x € T, such that A_: = AP whenever q & X .

D >
MYy X
= De 3, >
Lemmg b): Let M be a category, and let h be its
small subcategory. Let 2z be the smallest ordinal such that

Put

card z is a regular cardinal and card z > card h™ , Let
F:<T,, &> M~ be apresheat, and let F(g) =A,.

Let

1) J0)= 4 ;

2) if q 4is non-isolated, then < ,97_2 . {;y 5 Q’E Tz $>=

= MT-Lm S, where % :<T,, £> > M 1
a restriction o ¢ ;
3) 1 q = 2'+ 1, then 'h‘i,- 'h"'/,__" and :'3’ is the

- i - (4
LZ projection M~ =functor where Lz is g star from ak e'hé'
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in hg, .

’
Then there exists x € Tz, such that “ = [ Lor
(e, 7€ L., 2 & Xx.

: TP q'6 q,let 29 =< %= 2¢ > . Evident-
44 g' 2 2

1y :’,E'. is onto. Denote by the same symbol :‘;E the
induced mapping of the set 4-»;" onto the set h’: . Ir

q € T, , denote by 3z the decomposition of A" in-
duced by the mapping f?_ and use Lemma a).

v.2, Lemmg: Let M be a replete inversely complete catego—-
ry, let k be a small subcategary of M .Let G be a class
of collections in k , & a collection in k . Then there e-
Xists a small subcategory K of M such that

1) k 4is a full subcategory of K , the inclusion M~ -functor
—_ -
(I, Lt>: 4k — K is (all, & )=preserving and I F
has a product in K ;

2) if ($,e>: k — H is a t-meserving mono-
M~ ~functor and & F has @ product in H , then there e-
xists an M~ ~functor < §’, ¢'>: K — H , unique up
to natural equivalence, such that<®j o) <I, ¢ >=<¢( P, >
and $’ opreserves the product of I F ., <&, &> 1s
a mono-M ~ ~functor.

Proof: I. Be given k ,(J,o>:h—+H, G, F: T~k
with the properties of the Lemmm. Denote by I : J — M  the
inclusion functor. Put ; = F(<¢), < € J”. Choose o =
=<, ;{m ;1 € I7}> = ERM I%; for every inverse
bound o« of F in k denote by f, 1its - —canonical
morphism in M . Put fe = QmM(Jg"’"u {m,;1€I30if; ab)
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Evidently k is a full subcategory of k, , denote by

<°I, °c>: & — &, the inclusion M~ -functor.

. <«
II. Let <A;{P ;i€ J%3> = &m, &F , let
G e M (A, ) be the 2~ -canonical morphism of

<A3{9,,£'a',1: € J”3) in M . It is easy to see that

(&, & > mnay be essentially uniquely extended to <°$, °¢r>:
: &k, —» H. Of course; we put °g’% = & . It may be easgily

proved that <°$ , °¢p > 1is a mono-M~ -functor, :

III. Let D be the class of all collections in k which

have a product in k . Put o’;’_ = ¥ whenever ¥L = 7,
0(:% = j;;‘cq' whenever Yl € D . Let d;#_= (d;{d;,

3:6 }' $§ > . Let V  be an inversely substantial set
from D A G . Let p be the smallest positive ordinal such

that card p 1is a regular cardinal number and card p > card}""

whenever ¢ : ¥ — &k, Y € V u{ F} . Using
transfinite induction and Lemmas II.4, II.6 one may construct
the presheaf 7 < T, & >— M~ and its admis-

sible inverse bound F = (H; {<%p,%2¢p>: g € T 3>
(we may suppose that H is small) such that (put T(g) =
= R ¥ 2 .

kg_, zﬂ' <2Y,z1,v>).

1) Tco) = 4, 5 /kg‘ contains k as a full subcatego-

'd o_ _ R . [ 4
ry, ,k&—,k-{al}, @, = ¥ea, ) 27 is
identical on Xk , i’? is a one-to-one mep ping of A%
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.

onto the set A% where AR = “L‘).’, &y, Ce,a, ).

2) if q < Q' and e is an inverse bound of some

‘¥elep, Y e Vo LF? i k, , then F¥mm)

has at least one [ %'Y(d,;g_) ] -canonical morphism in k .
3) A1 <%p, 29 >  are mono-M~ -functors.

(The construction is analogous to that given in the proof of
Lemma III.3.) '

Put C<K;{<%0,28 5, 9 T §>= M™-lm T, & = °6(a,),

(I, T?=<°9,°% > <°1,°L>. Then <I,TY>: > K

is the inclusion M~ —functor onto a full subcategory of X .
Denote by <&, & > the canonical morphism of F in M~
Then < 5 , @ > 1is s mono-M~ -functor. Every inverse bound
m of Teg in X, Y & V vu{F$ has, in X, at
least one L °6,(d"q_ )J =canonical morphism (the proof of
this assertion is analogous to VIII. of the proof of Lemma
I11.3); if m= I(n), where n is an inverse bound of @ in
k , then it has exactly one °0 ( d;,g_) -canonical morphism
in X .

IV. Let g, = °O($f, ). Let L be the set of all
couples ¢ ¢, @’ > such that w =7;, @’s Ay, , vhere

(a ',{Jta- 5 # € F7 3> 1s an inverse bound of some

I¢9gy , ¢4 eGAD ,amd o, = o, (we recall that
L

o, = Um, Y =<dsid; 3 4 € T3> ). Evidemly, it

6e Kz,2),<ee, ' 7€ L ,then (-6, /-6 > € L.
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Ir <(a,,(u’>e L , then Ef((u)sa((a') and “ 9 =

=@ -9, forall a .Put K, = K/ denote by

?
(R, P>: K — K, the L-projection M~ =functor, A, =

= R(& ). Then every inverse bound of every R f‘ég—, Ye

e 6 AD in Ko , is an inverse bound of its inverse substan-
cein k. Let <°3, °p> : K, — H  be the M~ —func-
tor such that < 3, H ¥=<"F,°F> - <R, @> . <P, °F>

is & mono-M~ -functar.

V. Let 2z be the smallest ordinal numter such that card z
is a regular cardinal number and card z > card K:"’ +Using
Lemma II.2 and the transfinite induction it is possible to con-
struct a presheaf & : < T k6 & > — MIT and its ad-

missible inverse bound F = <H; <23 25> 5 ¢ & T %>

2 - ¢ ¥ 2’ \
such that (put & (g)= K_, 2L =<JA, iﬁ. > ):
1) &£(0)= K, ; all K, contaln k as a full subcate-

. - e = = % . 2
gory; K;: R = {Ag'?y, Az- TACA) 2,2
are identicatl op k ; :_/\. are onto;

2) if q 1is non-isolated, then < Kg'; {:,éf; R'e T‘ §> =
=M'—ﬁm:‘z where ﬁfg‘: < Ti’ &€ >— M~ 1is the

restriction of & ; if Q= 9,"" 1, then Kz" K”/‘-z

and :;:C is the L, - projection M ~functor where L g
is the set of all couples (3, »“)> such that » and
v’ are both [XAR®6 (0 )  -canonical
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morphisms of an inverse bound mv of f’/\. RIwg ,

where E € V 01F3, Im )= A, ;
3)all < 23, & > are mono-M ~ -functors.
Using Lemmg VI.1l.b) we can show that there exists x € T,
such that L, consists of couples Cwv, » > for which
v = w’, It is easy to see that K = K_ <P, g >=CF,
*35,<1, L= CAA> (R, <1, T> have all required pro-
perties.

IV.3. Using Lemma IV.2 and the transfinite induction one
may easily prove:

Theorep: Let M be a replete inversely complete category,
let V be a class of discrete diagram schemas. Let k be a
small subcategory of M, let G be a clase of collections
in k . Then there exists an M~C(G , V) -completion K
of k . The inclusion fumctar J : k — K 1is .a-ﬁ-preser-
ving. If V 18 a set, then we may choose X small.

Note: If we replace the categary M in the Theorem by
its dual category ' s We obtain the dual theorem concerning

Mt (@ , V) -completions.

V.4, Lemma: Let ( M, Il ) be a concrete category. Let
M be replete directly complete, let || preserve direct 1li-
mits of direct presheaves., Let k be a small subcategory of M,
let G Dbe a set of diagrams in k , and let & be a dia-
gram in k ., Then there exists a small subcategory K of M
such that
1) "k is a full subcategory of K , the inclusion M ¥ -func-
tor <I,LY: &k — K is (?,Sﬁ-’-preur-
ving; I & has a direct limit in X ;
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)1t <$,g>: k = H is a G -preserving epi-
M*t-functor and § #  has a direct limit in H , then
there exists an M*-functor ¢ $’, ¢’>: K — H uni-

que up to natural equivaknce such that (&, gD = <¢', X

*CI, LY and (F’, ”> preserves the direct limit of
17 . <d’, ¢°> 1is an epi-M* ~functor.

Note: The proof of the Lemma is based on the same prin-
ciple as the proof of Lemma IV.2. But the identifications
which we have made at the end of the proof of Lemma IV,2
would now lead to the appearance of new direct bounds. We
shall now sketch the proof of Lemma IV.4 and show where. it
differs from that of Lemma IV.2,

Prodf: I. Be given 4, G, F: vk, <P,g>: k—+ H
with the properties of our Lemma; put #(z ) = 5; 3 denots
by I: kR — M the inclusion functor. Choose 7o =

—_—
=<a,;{v; ,1 € J73)>= Lom, 1 F . For every direct bound o
of § in k denote by £, its o -canonical morphism.
Put &k, =g, (R™0 {v;; 1€ T730lf j3) . Evi-
dently k is a full subcategory of k, , denote by <°1 ,
-+

°t »: & — &k, the inclusion M7 =functor. < &,o>
may be essentially extended on <°®,6 °cp>: &, — H 80
that °P ()= ,ezzm,’M d F ; of course, '9a° is the
7 -canonical morphism in M of the direct bound <Aj; {w -

-96%3 1; [ :7'5 > of ?g”"here (A'){w_".'s

, S
ie )= dm, ® F . svidenmtly <°F, °g >
is an epi-M* -functor.

II. Let p be the smallest ordinal number such that
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card p is a regular cardinal number, card p > card J”

whenever Y : ¥ — k, Y € G u F and cardp>

> card l¢| whenever ¢ € k: « Denote by G  the set

— :

of all %Y € G for which dim, L exists. Put
>

% = tim, YL  whemever Yl € G,aé= 7~ vhenever

Y = F. Let d~%= (d;'{'d; 5 4 e}"}} . Using

transfinite induction and Lemmas II.2, II.4, II.6, IV.2.b)

one may construct a presheaf 7 :< T, ,6 & > — M™* and

its admissible direct bound F = (H; {<23 ,%¢ > ;

g € T, %> such that:
L o ¢ 2’
(put T(g)= &, , T = < ¥, v >)
1) Jw) = &, 5 4 contains k as a full subcate-
I I'd [3 , 2
gory, &k - k ={a£3,’az=°3’(q,, Yy T
is identical on k , i&’ is a ‘one-to-one mapping of

2 ‘ 2= .
the set A onto A% where A cekl)d *’2 CQBJ e);

2) if q < q . then every %_'Y(rm) where m is a
direct bound of some *¥°I¢p, Y e &G v {F}

?

has exgctly one fl ¥ d"q' ) —canonical morphism in k_,;

£4
3 all <%§,%g > are epi-M* -functors.
(If all ‘k’z" @’ < ¢ , are defined, one may define
k 2 using the construction [with small modifications] given
in III, - V., of the proof of Lemma IV.2 .)

Put < K; {20,208 >, g€ T 3> =M*~ Lim T, where

K is chosen so that K contains k and all <(%0,6 24 )
are identical on k . Put a =°0(@,). Pt <1, ¢ > =
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=(°0,°%°% ¥ (°L,% ). Denote by <&, ¢'> the
canonical morphism of F .

I1I. Now we shall prove that K has all required proper-

ties. Let m =<a;{x; ; 3 €F7 35> be adirect bound
of some 1%, Y e & u{F}r. Put t;= YY) For
every 4 € ¥ choose ; € T and §. € 42 90
v 3ed 2 ¢ '» 55 € %o,
that <) (§3)=7%x; . Since cardp > card H‘.a-lfor
all j € F% and all | 2’7}:' | are identical mappings of the
4
get |t,-| onto itself, one may use Lemma I.7; then for every
6 e (3 ,23'.’ ) therezexists 2€T0, 22 2, %2 U,
¢ 5
such that 94,‘4’(?5) =97_,YC§‘?') - € (e ) . Put
4

- 3 ’
Q“f’:‘gﬁ' 2, 1; = 2’,2’(95% Then m = <a_;

{7(:5 5 4 € }’} Y is the direct bound of f’ﬁ’ﬂ[‘@. for
which 20 (m’)= m and therefore sm has at least one

°e (d'q ) —canonical morphism in K . Let @ and (a.' be
both ’G(d:q_ ) =canonical morphisms of it in K , i.e.

o« 6 (09’):@'- "G(d; ) for all Z e}’. Then there e~
xists g € T, and v, ¥'e h;’ such that ([« =

=% (), @' =20 (»"). sice (v LY CTHN = -

* %8 (g3 :(u'. 'efd;: )2 fY (9% )) , we get, using
Lemma I.7 again, that there exists gj.: @  such that

?7' ,§? _Ea’ ’ i‘.? o —
FY)- TH = ¥ - TH(G) put T = pup 2,
ol

(cZ=3Y(v), R 22 -EY(V') . Then (& andg’
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are both [ ‘f’! Cd'q_ )] =-canonical morphisms of the direct
bound Cay ; L@ F¥ ()54 eF i o Zyorqy

+1 ~,
in kz, and thus z’é:‘t’ (&) = zlf (&) conse-

quently (@ = (a,’ .

IV.5. Theorem: Let ¢ M, Il ) be a concrete category,
let M be replete directly complete, let || preserve
direct limits of directed presheaves. Then fo? every small sub-
category k of M there exists its M* (& , V) -comple-
tion X , where G is an arbitrary get of diagrams in k ,
V is an arbitrary class of diagram schemas. Moreover, the in-
clusion functor I : 4 — K is rﬁ_l-preserving. If V
is a set, then we may choese K small.

Proof: Use Lemma IV.4 and the transfinite induction.

Note: If in the Theorem the category M is replaced by
its dual category v , we obtain the theorem concerning
M- (@ , V) —completions of small subcategories of M .
But in this dual theorem the assumptions about ¥ doesnot
seem to be natural, namely the existence of a contravariant
faithful functor M : M — S which turns inverse limits:
of inverse presheaves into direct limits. In what follows we
shall prove the theorem concerning MT (G, V) comple-
tions in which the assumptions about M are satisfied evi-
dently by many familiar categories, but this being done under
a strong assumption about the set-theory.

IV.6. We recall that a cardinal number Kt is called
strongly inaccessible if it is an uncountable regular cardinal
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such that
~,
Hey < 5, => 2% < K, .
Convention: In the following we assume that for every car—
dinal number .44 there exists a strongly inaccessible cardi-

nal greater than u#t+ .

Theorem: Let (M, [I) be a concrete categary, let
M be replete inversely complete, let | preserve inver-
se limits of inverse presheaves and be inversely power-preser-
ving. Then for every small subcategory k of M there exists
its M~(®, V) -completion K , where G is an arbit-
rary set of diagrams in k , V is an arbitrary class of dia-
gram schemas. Moreover, the inclusion functor I : £ — K

is alX=preserving, If V is a set, then we may choose K
small.

Proof: Let ( M, ||) satisfy the assumptions of the
Thearem, let k be a small subcategory of M , let &  be
a set of diagrams in X , let F . J —r fe be a diagram., It
is sufficient to show that it is possible to join an inverse
limit of & +to k so that all requirements are satisfied.
The proof is analogous to the dualization of the proof of Lem—
ma IV,4, We must only set p +to be the smallest ordinal num-
ber such that card ; is a strongly inaccessible cardinal
and card p > card }™ whenever ¥} :JF - k, Y €

G o {F}, cardn > card la,!, where o, = (I;?‘_DM -]:5’)

( T: & — M is the inclusion functor), card p > card i el
for all ¢ € k7, card p > card k™" , 8o that we may use the

inverse case of Lemma I.7 at the end of the proof, G\oosihg 1
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in such a way, we have card .1 > card la | for all g€T,.
(This follows from the assertions about an inversely power-

meserving functor in Lemmas II1.4,II,6 and the fact that

ir: M —= 8 oreserves inverse limits of inverse pre-
sheaves and it is inversely power-preserving,)
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